Interface Compilation:
Steps toward Compiling Program Interfaces as Languages

Dawson R. Engler
Computer Science Laboratory
Stanford University

Stanford, CA 94305, U.S.A
engler @stanford. edu

Abstract

Interfaces — the collection of procedures and data struc-
tures that define a library, a subsystem, a module — are
syntactically poor programming languages. They have
state (defined both by the interface’s data structures
and internally), operations on this state (defined by the
interface’s procedures), and semantics associated with
these operations. Given a way to incorporate interface
semantics into compilation, interfaces can be compiled
in the same manner as traditional languages such as
ANSI C or FORTRAN.

This paper makes two contributions. First, it pro-
poses and explores the metaphor of interface compi-
lation, and provides the beginnings of a programming
methodology for exploiting it. Second, it presents MAGIK,
a system built to support interface compilation. Using
MAGIK, software developers can build optimizers and
checkers for their interface languages, and have these
extensions incorporated into compilation, with a corre-
sponding gain in efficiency and safety. This organization
contrasts with traditional compilation, which relegates
programmers to the role of passive consumers, rather
than active exploiters of a compiler’s transformational
abilities.

1 Introduction

This paper presents MAGIK, a system that can be used
to incorporate both application semantics and control
into compilation. MAGIK is motivated by two sets of in-
sights. First, programmer-defined data structures and
functions define a semantically rich (albeit syntactically
poor) language, built on top of the language the pro-
grammer uses to define them. Unfortunately, these meta
languages have not had optimizers: optimization occurs
at the lower-level of the programming language, but not
at the higher-level defined by their interface. Our hy-
potheses is that since high-level operations are heavy-
weight (e.g., they deal with file I/O, window manipula-
tions, transactions, and thread creation), optimizations
which understand their semantics offer the hope of sig-
nificant speed improvements, potentially exceeding the
impact of all other compiler optimizations. Second, pro-
gramming has historically been passive: with the excep-
tion of restricted local code transformations provided
by macro systems, programmers are limited to writing

code, while the power to transform the code has been
reserved for compilers. Our belief is that giving pro-
grammers safe, ready access to the compilation process
will significantly improve the scope of programmer ca-
pabilities.

The MAGIK system has been built to test these be-
liefs. MAGIK provides a simple, modular mechanism
for programmers to dynamically incorporate extensions
into the MAGIK compiler. User extensions, written in
ANSI C, are dynamically linked into MAGIK during com-
pilation. Extensions are given access to MAGIK’s inter-
mediate representation (IR) through a set of interfaces
that allow them to easily create, delete, and augment IR
at compile time. Both this IR and MAGIK are built on
top of the lcc compiler [6], which is used to compile the
source language (ANSI C). The control MAGIK gives to
programmers enables a broad class of optimization and
code transformations. This paper presents seven such
extensions and sketches many more.

This paper concentrates on two abilities provided by
MAGIK. First, it provides a way for implementors to in-
clude domain-specific semantics into compilation. Using
this ability, implementors can build both interface op-
timizers (for speed) and interface checkers (for safety).
Interface optimizers exploit application-specific knowl-
edge in order to obtain performance improvements. Such
optimizers are applicable to a wide range of interfaces:
“bignums”, message passing and I/O libraries, math li-
braries, matrix transformations for graphics, even sim-
ple queue operations. From a compiler perspective this
ability is useful in any situation where providing a com-
piler “builtin” would allow more aggressive optimiza-
tion. From an implementor perspective they are use-
ful in situations where an interface implementor could
look at a call or sequence of calls to the implementa-
tion and craft specialized call(s) that exploited local
uses. For example, a file system implementor can write
a optimizer that exploits knowledge of file system op-
erations to perform optimizations such as hiding disk
latency by both inserting disk block prefetching com-
mands, and transforming synchronous file I/O opera-
tions into asynchronous ones. Interface checkers use
application-specific knowledge to enforce stricter seman-
tic checks. For example, by requiring that system call
error codes be checked (or inserting such checks) or by
ensuring that assertion conditions do not have side ef-
fects.

The second main ability MAGIK provides is an easy,
modular way to do general code transformations with
full access to source information. Using this ability, pro-
grammers can instrument code, augment it (e.g., by in-
troducing software fault isolation code [19] or garbage
collection reference counters) or enforce invariants about
it (e.g., that no pointer casts are allowed). Unlike object
code modifiers such as ATOM [16], MAGIK clients are
tightly integrated with the source compiler. Perform-
ing transformations during the translation from high-
level source language to machine code has two impor-
tant characteristics. First, it provides access to the full
semantics of the high-level language, information that
source transformers can exploit (or require) during code
transformation. Second, the IR produced from these
user transformations is a first class citizen, optimized
no differently than the IR produced by the compiler
itself. As a result, the compiler optimizes these trans-
formations as it would any other code.

This paper is organized as follows. Section 2 explores
the metaphor of interface compilation (IC) further and
presents a primitive methodology for it. Section 3 pro-
vides an overview of the MAGIK system and Section 4
present examples of how it can be used to support IC.
Section 5 discusses issues in the current system and di-
rections for future work. Finally, Section 6 discusses
related work and Section 7 concludes.

2 Metaphor: Interfaces as languages

This section articulates a primitive methodology for in-
terface compilation. Our goal is to provide interface
builders with specific, operational guidelines for decid-
ing how to compile their interfaces. The reader should
keep in mind that while the latter half of this paper
presents a system for implementing such decisions, the
patterns below are applicable to any implementation
scheme used to support interface compilation, whether
it be a domain-specific language, an extensible type sys-
tem, or an extensible compiler. All of these require
that interface writers know how to exploit compilation.
Thus, two basic questions need elaboration: when should
it occur to an implementer to apply interface compila-
tion? And what rules, common patterns and heuristics
can be followed to proceed effectively?

In order to apply compilation to interfaces, we need
an intuitive model of what an interface without inter-
face compilation means. An “interface” is the direct
use of one of a variety of abstraction mechanisms pro-
vided by a programming language. In a language such
as C, an interface would be a set of data structures
and simple functions that operate on these data struc-
tures, typically collected in a “header file.” In more
advanced languages, an interface could be implemented
using abstract data type (object method) invocations,
more elaborate protocols for remote procedure calls,
or even synchronization scenarios involving distributed
message passing. Code that uses an interface (as op-
posed to implementing it) will be referred to as “client
code” in the following text and the code produced by
compiling the abstraction directly as “traditional com-
pilation.”

There are two useful intuitions to keep in mind dur-
ing the following discussion. First, an implementor shown
a clients’s use of an interface will invariably see ways of
optimizing and checking that use. Interface compila-
tion allows the implementor to provide a set of rules for
codifying these improvements and a mechanism (e.g.,
an open compiler) for implementing them. Second, tra-
ditional compilation, unsurprisingly, provides a useful
supply of ideas for how to compile interfaces. Many op-
timizations and checks in that realm have analogues in
this one. For example, optimizing by special-casing op-
erations (“strength reduction”) and reusing intermedi-
ate results (“common sub-expression elimination”) have
equivalent operations, as we shall discuss below. The
difference between interface compilation and normal com-
pilation is that interface compilation occurs at a much
higher level. For example, optimizing file input and
output operations rather than loads and stores. The
challenge in applying interface compilation is in pulling
high-level semantics into compilation.

The rest of this section concentrates on understand-
ing interface compilation. We do so by examining it
from two perspectives. The first examines capabilities
that simply cannot be obtained using traditional inter-
faces without interface compiler support. The second
examines specific ways that these capabilities are lost
during the mapping of interface abstractions into low-
level code. The rest of the paper then presents a system
for implementing our methodology, along with many
concrete examples.

2.1 A mechanical perspective on interface weakness

Interfaces suffer from two problems: (1) their imple-
mentations using traditional abstractions are blind to
the context and manner in which they are used and (2)
they are “passive” in the sense that they cannot modify
the client code surrounding their uses, e.g. for opti-
mization purposes. An interface’s inability to analyze
and transform client code prevents static detection of
errors, precludes specialization to the calling context,
and generally prevents many forms of adaptation to
use. Interface compilation gives interface implementors
a mechanism both to obtain a clearer view of the con-
text surrounding the uses of an interface and to modify
this context and uses. Below we explore more concrete
effects of passivity and blindness, along with the fixes
that interface compilation provides.

Interface passivity: Interfaces cannot modify client
code. This inability renders interfaces unable to insert
code to do runtime checking to detect the profitability
or safety of optimizations, unable to specialize calls to
a specific use (e.g., generating specialized code for func-
tions called with constant arguments), and often unable
to insert sensible error handling because requisite con-
textual information has been lost. Most of the following
patterns require the ability to rewrite client code.

Blindness to callsite: Interface functions are blind
to the callsite context in which they were called. Thus,
an interface cannot statically check that client uses are
legal, nor can it exploit callsite information to specialize
uses.

One natural framework to exploit callsite informa-
tion is to view interface functions as compiler “builtins.”
Compilers have long used such a mechanism to optimize
frequently used routines. Interface compilation shifts
the ability to include builtin from compiler writers to
system implementors, making it more widely applica-
ble. Some examples of using this ability are compile-
time evaluation of constant-argument calls to referen-
tially transparent functions, and specialization of mem-
ory copy routines to pointer alignment and size.

More generally, interface implementors can exploit
callsite information to construct partial evaluators for
important routines. Standard examples include special-
ization of output routines and remote procedure call
marshaling code.

A final scheme is to implement callsite-specific mem-
oization, which allows an interface to associate and spe-
cialize the memoization cache with each callsite rather
than treating all calls as generic. Using this ability,
memory allocators can craft allocator functions taylored
to a particular object type and size, I/O libraries can im-
plement program-counter determined prefetching, etc.

Blindness to global context: Interfaces cannot
see the global context in which they are called. They
have no way to detect whether they are being invoked
in a threaded environment, or if a procedure’s operands
have changed since the last use, etc. Access to data flow
and “whole program” information enables many cor-
rectness checks and optimizations. For example, an in-
terface optimizer for remote procedure call (RPC) could
exploit global information to aggregate a sequence of
RPC calls into a single message (improving through-
put). Additionally, it could improve latency by using
information about the definition of RPC operands and
use of RPC results to replace synchronous RPC with
asynchronous calls, pushing calls higher in the program
text, and checking for RPC completion before use. Sim-
ilar optimizations can be done for file I/O.

A second example in this spirit is a library-specific
extension that optimizes across calls to a graphics li-
brary. Given a sequence of calls that manipulate a ma-
trix, this optimizer can reuse intermediate results, elim-
inate intermediate copies, and perform cache optimiza-
tions across calls. A “big num” package can optimize
across calls to its operations in a similar manner.

A final, real-world, interface-checking example comes
from Bishop and Dilger [2], where they describe a sys-
tem that uses global information to detect race con-
ditions in privileged Unix applications. Many “root”
programs have “time-to-check-to-time-of-use” (TOCT-
TOU) bugs where they check to see if a particular user
has access to a file and, if he does, begin writing on
it. Unfortunately, since this check-action pair is not
atomic, a malicious user can remove the file after it was
checked and create a “symbolic link” to a file he was
not allowed to access, which the privileged program will
then begin writing on. Global information allows these
calls to be bound together and, thus, security errors to
be detected [2].

Since interface operations tend to be quite costly,
optimizing across multiple interface calls has the poten-

tial for enormous benefits. These optimizations benefit
from the ability to transform client code in order to ex-
ploit flow graph mutation techniques for improved in-
formation. For example, they can split flow graphs to
improve the data flow properties of a path by removing
the pollution of joins (“path splitting”) or optimizing a
sequence of calls on one path (“software pipelining”).

Blindness to client data structures: Interfaces
cannot analyze or modify client data structures. Data
structure traversal allows the definition of structure in-
dependent routines for sorting, searching, marshaling,
and printing. Control of data structure layout can im-
prove performance by allowing extensions to group mem-
ber fields that are used close together into the same
cache line, improving cache behavior. It can also en-
hance usability by enabling extensions to abstract away
such details as endianness by automatically rearrang-
ing structures to be endian neutral. Data structure re-
definition can improve speed on machines that do not
provide sub-word memory instructions by allowing an
extension to replace sub-word sized structure elements
with word-sized ones. Data structure augmentation al-
lows functionality enhancements such as automatic ad-
dition of bookkeeping fields needed by reference count-
ing garbage collectors.

Blindness to compiler context: Interfaces can-
not access compiler information. Compilers calculate
much useful information, which should be made avail-
able to interfaces. Two simple extensions we have built
in this spirit are an extension that, given a pointer to a
type, returns the alignment of that type (this is useful
for memory allocators) and an extension that takes a
single argument and indicates whether it is a constant
expression (useful in making inline decisions).

2.2 A mapping perspective on interface weaknesses

From another perspective, mapping an interface “meta
language” onto a lower-level implementation language
causes problems whenever there is a semantic mismatch
between the two levels. Typically, interfaces are seman-
tically richer than the base language used to implement
them. Thus, the invariants or restrictions imposed by
this richer language will be inexpressible in the lower
language, preventing its compiler from checking or ex-
ploiting them. In the former case, the traditional com-
piler is prevented from checking the constraints; in the
latter the compiler is prevented from exploiting context
to perform interface-specific optimizations. For exam-
ple, operations using a Unix file handle after it has been
“closed” are illegal. However, since a traditional com-
piler will not know this invariant, it cannot check for
such illegal uses. Similarly, a compiler that is oblivious
to the semantics of a set of trigonometric functions can-
not replace sequences of calls to them with numerically
equivalent, but cheaper, sequences. Below, we discuss
common mapping mismatches and how interface com-
pilation can fix them.

Same concept, different result: High-level con-
cepts (such as allocation and deallocation) may not map
well onto the similar events within the base language,
causing constraints lost in the process to be unchecked

except with manual inspection (with predictable results).

A common mismatch is that destruction maps poorly
to language abilities. For example, on Unix, the system
call close kills a file handle (a capability used to read
and write a file). If there is no way to express this in
the base language, then subsequent uses of the handle
will only be caught at runtime. Consider the following
C code, which opens a file, closes it, and then attempts
to write to this closed file:

static char buf[1024];
int fd;

fd = open(filename);

/* ... %/
close(fd); /* free file handle */
/* ... */

read(fd, buf, 4096); /* use to read */

The compiler has no way to know that the object
named by the integer value of fd has been killed and,
thus, that the subsequent use of fd by read is illegal.
Similarly, it cannot statically detect the buffer overrun
that will happen when read is invoked since it does not
know that read’s third argument indicates how many
bytes to copy into the buffer. None of these checks are
hard to understand, nor, given a means of extending
compilation, difficult to incorporate.

Pervasive, poorly supported dynamic typing:
The lack of compiler support discussed above requires
that interfaces resort to implementing ad hoc, dynamic
type-checking schemes themselves (e.g., explicitly check-
ing that parameters obey interface invariants). Manual,
runtime checking increases both complexity and errors.
Moreover, the use of dynamic checks when errors are
apparent at compile time violates the general rule that
the earlier errors are caught the better.

When checking must be dynamic (irrespective of com-
piler support), such as system calls verifying the legality
of their arguments, the current inability for implemen-
tors to extend type checkers means that they must man-
ually place boilerplate at the beginning of each function
to check argument legality. Further, since the compiler
does not understand these checks, it cannot warn when
they are erroneously elided. As an example, consider
the Unix read call, which has the following C function
prototype:

/* copy ‘nbytes’ of data from file named by
’fd’ into buffer ‘buf’. */
int read(int fd, void *buf, size_t nbytes);

Among the many security conditions that read’s im-
plementation must check are (1) that fd is legal, (2)
that the current user can read from the file, (3) that
the virtual address range [buf, buf+nbytes) can be writ-
ten to. Any of these checks is easily forgotten. A sim-
ple solution uses the compiler to verify that system call
functions check the validity of all user-supplied point-
ers. Such automatic enforcement can of course be made
sophisticated. For example, system call routines tak-
ing both a pointer and a parameter named (say) nbytes,
can be checked to ensure that they verify the virtual
memory range [ptr, ptr+nbytes).

Unchecked logic errors: Many interface invari-
ants are logic conditions, which often go unchecked be-
cause they cannot be expressed in the base language’s
type system. For example, the reversal of sink and
source parameters to copy routine, or the element size
and object size to a generic sorting routine can type
check perfectly but still have disastrous results. The
ability to augment typing with conventions for indicat-
ing intent (such as name checking of arguments) can
eliminate several classes of such errors.

Lost optimization opportunities: Mapping high-
level concepts onto a low-level programming language
frequently loses semantic information and, thus, loses
optimization opportunities. For instance, consider a
user-defined trigonometric library. Since the compiler
does not understand the semantics of the library’s func-
tions, it cannot do even simple optimizations such as
computing the result of function calls with constant ar-
guments at compile time, never mind more semantically-
aware reductions such as exploiting trigonometric iden-
tities and relationships to replace sequence of calls to
the library to compute a formula with a numerically
equivalent but cheaper computation. Interface optimiz-
ers allow these semantics to be incorporated into com-
pilation.

The patterns from the previous subsection (in partic-
ular exploiting callsite information and global informa-
tion) can be viewed as ways to exploit richer semantics.

Inability to enforce a more restrictive con-
text: The inability to disallow certain programming
constructs prevents interfaces from enforcing necessary
restrictions on their clients. Many subsystems used by a
programmer may require that application code be writ-
ten to assume a more restrictive execution environment.
For example, in a multithreading context, formally le-
gal, unrestricted access to global data must be serial-
ized, while in the context of an operating system kernel
running with interrupts disabled, code paths must not
exceed a small number of instructions. Interface check-
ers allow such restrictions to be enforced.

A useful restriction pattern is language subsetting,
which preserves the syntax of the base language, but
makes some constructs (such as pointer casts) illegal
and (possibly) inserts runtime checks to catch errors
allowed by the base language (e.g., null pointer deref-
erences, arithmetic over- and under-flow, etc.). A con-
crete example is to use language subsetting to support
thread stack relocation. Because relocation moves a
stack to another address range or, even to another ma-
chine, pointers to a relocated stack will be invalid. Most
systems simply decree that programmers should not ad-
dress local variables (i.e., create pointers to stack mem-
ory). Given interface checkers, a compiler can automat-
ically enforce these rules.

2.3 Relation to traditional compilation

A methodology to develop interface compilation further
is to enumerate traditional compiler optimizations, at-
tempting to find their analogues in this new domain.
Either the technique will apply, in which case we gain an
operational guideline for how to compile interfaces, or

the technique will not apply, in which case the difference
between interfaces and actual languages will become
clearer. Analogues explored in this paper include: com-
mon subexpression elimination, flow graph mutations,
memoization, strength-reduction, prefetching, load/store
coalescing. Additional analogues include using runtime
invariant checking to ensure that optimistic assump-
tions hold and instruction scheduling (here, overlapping
long-latency interface calls with others). A concrete ap-
plication of the above approach is to notice that file
reads and writes are simply expensive loads and stores
and thus, that traditional optimizations can be used on
them: pushing reads early, prefetching, coalescing oper-
ations, making writes asynchronous, etc.

While interface optimization has strong similarities
to traditional compilation, it has two important differ-
ences. First, interface operations are extremely expen-
sive compared to the operations that traditional com-
pilers are typically applied to. (An ALU add takes
nanoseconds on a modern processor, while a call to the
read system call may take tens of milliseconds.) Second,
related operations are stretched farther across both the
lexical landscape of program text and temporal time line
of program execution. These two differences imply that
a more active approach to compilation may be appro-
priate. The first difference means that the overhead of
runtime monitoring and adaptation can be more easily
recouped than in the context of traditional compilation.
The second difference implies that there is more need for
such techniques.

Traditionally, compilers have mostly been passive:
given a program, they try to derive properties by static
analysis and, typically, when that fails, they give up.
Interface compilers can be more active. For example,
given an invariant that must be checked either for safety
or to enable an optimization, but which cannot be de-
termined statically, inject code into the application to
do runtime verification that the invariant holds. Active
compilation changes the driving question of a compiler
writer from “how do I optimize given limited informa-
tion?” to “what other information do I need and how
do I get it?”

Interface compilation can be viewed as an example
of orthogonal programming, where the actions of a mass
of software are controlled from functions that reside
on the outside of it, at right angles. ' Done appro-
priately, orthogonal programming aids modularity by
isolating the “meta” functionality of checking and con-
trol from the brute implementation. Consider an inter-
face checker that works at the level of interface’s spec-
ification: it requires no knowledge of implementation
internals, allowing it to be used across different inter-
face implementations. Neither do these internals need
to know about the checker, allowing it to be transpar-
ently added and extended. For example, a Unix system
call usage checker can be readily constructed by third
parties and used across different Unix implementations.
And, rather than breaking when interfaces themselves
differ, the checker can warn of subtle differences (or even
insert code to correct for them).

L Another example is “aspect programming” where aspects of
synchronization and related concepts are controlled by code out-
side, in a sense, the actual program doing the work [11].

3 System Overview

MAGIK provides a framework to extend compilation.
User extensions are implemented as dynamically-linked
functions. User extensions come in two classes: code
extensions and data structure extensions. Code exten-
sions are invoked at every function definition and are
able to enumerate, add, delete, and modify MAGIK’s
IR as it makes the transition from source language to
machine code. Data structure extensions are invoked
at every data structure definition and are able to add,
delete and modify structure elements. Since compiler
internals are in flux, implementation portability is pro-
vided by isolating extensions from internal IR details
via a set of standardized interfaces; multiple interfaces
are provided, specialized to the main domains MAGIK is
used in.

A given compilation may use many different exten-
sions. To make the system usable, it is crucial that
extension composition is modular. The two main re-
quirements of modularity are that extensions be able to
inspect the code produced by others and that extensions
can be obliviously composed. MAGIK meets these re-
quirements by providing three different extension types,
transformers, optimizers, and inspectors, that correspond
to the three main functional uses of extensions. Trans-
formers are used to perform code transformations that
do not depend on integration with global optimization
(e.g., partially evaluating a C printf call). Optimizers
are used to perform iterative optimization and are re-
peatedly invoked during global optimization until no
IR modifications occur. (Optimizers differ from both
transformers and inspectors in that they may be invoked
multiple times.) Inspectors are similar in functionality
to transformers except their placement in the extension
pipeline ensures that they see all IR that will be com-
piled to code.

The main implementation limitation of the MAGIK
system is that optimizers have only weak data flow in-
formation. This restriction comes from the fact that
the compiler MAGIK is built on, lcc, has no global op-
timization framework. We are investigating methods of
removing this limitation (e.g., by using the SUIF com-
piler system [1]).

An operational overview of the extension process is
as follows:

1. Programmers implement extensions using the MAGIK
libraries; these extensions are compiled to object
code. The location of this code is either speci-
fied to MAGIK using command-line flags or by em-
bedding the location in source files. For instance,
header files can specify an extension to optimize
the interfaces they define.

2. MAGIK compiles high-level source (ANSI C) to its
internal IR in the traditional manner. As MAGIK
encounters extension location directives (either as
compiler flags or embedded in source) it uses the
dld dynamic linker [8] to dynamically link the named
extensions into the compiler proper.

3. When MAGIK encounters a function in the source
language, it compiles the function to IR, and then

invokes all code extensions, beginning with trans-
former extensions. At this point the extensions
can augment, modify and delete parts of the IR.
As part of the global optimization loop, MAGIK
calls each optimization extension. These exten-
sions have access to any data flow information
computed by the compiler (e.g., use and def sets,
values of procedure parameters, etc.) To ensure
that code produced by any extension is visible to
all others (a requirement for modular composition
of different extensions) MAGIK loops through the
extensions until no more modifications occur to
the IR. A nice result of this organization is that
the code produced by an extension is optimized as
aggressively as the code produced from application
source. After all optimization extensions have run,
and no modifications occur, MAGIK runs inspector
extensions in their specified order.

4. When MAGIK encounters a structure definition, it
generates a symbol table entry, and then invokes
all structure extensions, which can add, modify
and delete structure entries. Typically these ex-
tensions are also paired with code extensions that
augment data structure field uses and definitions.

5. MAGIK emits code.

MAGIK’s lowest-level IR interface, based closely on
that the the underlying compiler (lcc) is terse, simple
and portable. Structurally, the IR is a tree language.
Leaves are variables, labels, or constants; internal nodes
represent operations performed on them (e.g., addition,
indirection, jumps, function calls). When operands are
created they are associated with a type selected from
MAGIK’s base types (shown in Table 1). Thereafter,
types are implicit: operations infer their own types based
on the type of their operands. Any conversions required
by ANSI C are performed by MAGIK (e.g., as required
by ANSI C a character variable will be converted to an
integer before addition with an integer).

User-created IR (type: I_IR) is of a different type
than native IR (type: X_R). This distinction is help-
ful because user-constructed IR typically requires pre-
processing before it can be sensibly incorporated into
lcc’s internal representation. By exploiting static type-
checking, MAGIK can prevent users from blithely inter-
mixing the different representations.

The interfaces are presented in the following tables:
routines to allocate, lookup and manipulate symbols in
Table 4, routines to construct IR in Table 5, and rou-
tines to navigate the IR in Table 2. Higher-level inter-
faces are discussed in Section 4.

We expect MAGIK to evolve with further experience.
To aid iterative design, the current implementation has
emphasized simplicity at all levels. MAGIK is built on
top of the lcc retargetable ANSI C compiler [6], and
uses its IR language as its fundamental interface [7]
(higher-level interfaces are crafted on top of this). The
regularity and small size of lcc’s IR has been a major
asset. Importantly, since mapping other IR’s to the
MaAGIK IR and back should be straightforward, it can
be realistically used as a basis for defining a standard-

Type | C name

Vv void

C signed char
ucC unsigned char
S signed short
us unsigned short
| int

U unsigned

L long

UL unsigned long
F float

D double

P void *

Table 1: MAGIK types (superset of lcc’s types).

ized, compiler-independent, extension interface similar
in availability to ANSI C’s standardized libraries.

While the implementation exploits lcc’s infrastruc-
ture, there is no fundamental tie to lcc. As experience
with the system and its uses grows, reimplementations
will occur in more aggressive compilers (or, alterna-
tively, MAGIK will be used to enhance the optimization
framework of Icc).

One of the common uses of MAGIK is to incorporate
new functions as “built-ins” into the compiler. Since
there can be tens or (at aggressive sites) hundreds of
builtins, it is critical that the extension process itself
is efficient. To achieve the required efficiency, MAGIK
dynamically links extensions rather than isolating them
in sub-processes that communicate via shared memory.
In most cases this process has no significant impact on
compilation speed. For implementations that wish to re-
move all overhead (at some cost in reduced flexibility)
MAGIK provides an interface that can be used to stati-
cally link extensions into the compiler proper (similar to
the process of adding device drivers to most operating
systems).

The following two sections discuss the interfaces MAGIK

provides for incorporating application semantics (e.g.,
interface optimization and checking) and for general
code transformation.

4 Extensible compilation: patterns of use

MAGIK provides mechanisms that allow applications to
construct extensions that can exploit interface seman-
tics for improved semantic checking, optimization, and
general transformations. The two main constructs of in-
terest are functions and data structures. In the case of
functions, clients are mainly interested in two pieces of
data-flow information: the location of calls in relation
to each other, and the definitions and uses of each call’s
operands and results. Clients also require semantic in-
formation about each call site’s operands: their type,
whether they are constants, and if so, what their values
are. In the case of data structures clients are primarily
interested in definitions and uses of structures and their
fields.

To make IR manipulations easier, MAGIK exploits
the limited information needed in this area to provide a

default interface that is simpler than the general MAGIK
IR. It includes basic block structures, function calls, de-
tails about function arguments and results (e.g., whether
they are constants, their type, possible values, etc.) and
information about structure accesses. A library of rou-
tines are provided that allow clients to add, modify,
delete and augment function calls and code easily. Ad-
ditional routines are provided to search for particular
functions and lists of functions in the IR (easing IR nav-
igation), traverse argument lists, and routines that com-
pute the set of variables defined and used by a given call
site. Table 6 presents MAGIK’s interface for finding, ma-
nipulating, and constructing call sites. Table 7 presents
MAGIK’s interface for finding IR tree patterns, and both
structure and structure field uses.

Clients that need access to the full power of MAGIK’s
IR can, of course, use it; the layering provided by default
is intended as syntactic sugar rather than a barrier.

The following subsections present MAGIK’s semantic
interface and numerous example clients. These uses il-
lustrate how interface implementors can use MAGIK to
build interface checkers and optimizers. The first client
uses MAGIK to add a compiler “builtin” output function
that is implicitly aware of its operand types (eliminating
the need for printf-style format strings).

The next three clients are interface checkers. The
first adds more rigorous error handling of Unix system
calls by inserting checks around call sites that ignore a
system call’s return value. The next client uses global
information to warn of possible race conditions in “sig-
nal handlers” by searching for calls to non-reentrant
functions. The final client warns of side-effects in de-
bugging “assertions.”

The final three clients are interface optimizers. The
first optimizes RPC call sites by using partial evaluation
to generate specialized argument marshaling code. The
second specializes memory copy to its argument type
and size. The final rearranges client data structures for
improved space consumption.

4.1 Adding type-aware functions

ANSI C suffers from the lack of a graceful mechanism to
handle poly-typed functions. Programmers are typically
reduced to specifying argument types using a manually-
constructed type string. This methodology is clumsy
and error prone. One of the more painful effects of this
lack is that C is one of the few languages in use that
does not have type-aware I/O routines.

Figure 1 presents a MAGIK extension that adds a
type-aware output routine, output. It works by rewriting
all calls to the poly-typed function it defines (output) to
call printf using a type string (typestring) it constructs
from the type of output’s arguments. An operational
view is as follows:

1. The extension iterates over all calls to output using
the MAGIK functions FirstCall and NextCall.

2. For each callsite, it builds up a printf-style type
string by iterating over output’s argument list (us-

ing the MAGIK functions FirstArg and NextArg) and
appending the type of each argument to typestring.

3. After typestring has been constructed, the exten-
sion uses RewriteCall to modify the call site to call
printf instead of output and inserts typestring as the
first argument.

A sample usage:

void example(int i, int j) {
Output("i = ||’ i, ||j = Il, j);
}

While some languages (such as C++) support this
capability for simple scalars, our extension can be eas-
ily modified to print the fields in aggregate types, free-
ing programmers from having to tediously write data
structure-specific output routines (this functionality was
elided for brevity). Extensible code synthesis is pow-
erful. Example uses include the automatic generation
of routines to translate data structures between “in-
core” and on-disk representations and the construction
of linked-list, hash-tables, and associative arrays spe-
cialized to particular data structure types. A similar
technique is used in Subsection 4.5 to construct an effi-
cient argument marshaling routine for a remote proce-
dure call system.

4.2 Safe signal handlers

This extension uses global information to enforce a more
restrictive programming context than that of the base
language. Unix signal handlers represent primitive thread
of controls. Unfortunately, they are used by many pro-
grammers who are unfamiliar with the dangers of threaded
programs. A common mistake made is to call non-
reentrant library functions from these handlers. If the
application was suspended in the middle of a call to
the same function (or to a function that manipulates
state it depends on) the application program will, non-
deterministically, exhibit incorrect behavior.

To help prevent this class of problems we have de-
fined an extension that prevents calls to non-reentrant
functions in a signal handler (the extension’s code is
elided for brevity). The extension works as follows:

e To trigger checking all signal handlers adhere to
the naming convention of prefixing their name with
“sig” (e.g., sig_protection_fault).

e The extension scans for all functions beginning
with this prefix and, for each callsite, checks that
the call is either to one of a list of known reentrant
functions or to a function that is prefixed with sig_.
Any call that does not satisfy these requirements
is flagged.

e To ensure that only checked handlers are installed
as signal handlers it also looks for handler instal-
lation calls and checks that they only install func-
tions beginning with the sig_ prefix.

/* Add a type-aware output function. */
int RewriteQOutput(X_IR c) {
define MAXARGS 64

X_IR a;

/* Foreach callsite, rewrite the output call. */
for(c = FirstCall(c, "output");

}

¢ != NULL;
c = NextCall(c, "output")) {

/* String to hold derived typestring. */
char typestring[MAXARGS*2+1] = {0};

/* Foreach argument, create a typestring. */
for(a = FirstArg(c); a != NULL;
a = NextArg(a)) {
switch(OpType(a)) {
case I: strcat(typestring, "%d "); break;
case P:
/* Print strings differently
than pointers. */
if (RawPtrType (NodeType(a)) == C)
strcat(typestring, "%s ");

/* Add checks to unchecked system calls. */
int RewriteUnix(X_IR c¢) {

/* list of all calls we insert checks for */

char *unixcalls[] = {"read","write","seek",
/* ... %/ 0};

I_IR res, err, stmt;

char *n;

/* foreach callsite, rewrite the output call */
for(res = NULL, ¢ = FirstCallV(c, unixcalls);
¢ != NULL; c¢ NextCallV(c, unixcalls)) {

n = CallName(c);

/* If result used, assume it is checked. */
if (Uses(c))

continue;
else

warn("unchecked system call <¥s>\n",n);

/* Create temp to hold returned value */
if('res)
res = Temp(inttype, MAGIK_REG);

else
strcat(typestring, "Ox¥%p "); /* Create IR to assign the return value
break; to res. */
/* ... %/ stmt = AddStmt(c,
default: panic("Bogus type"); Asgn(res, ImportExprRef(c)));

}
¥
/* Add newline */
strcat(typestring, "\n");
/* Change call to output to call to printf. */
RewriteCall(c, "printf");
/* Add typestring as first argument. */
PushArg(c, Cnststr(typestring));

return MAGIK_OK;

/* Create a call to error routine; expects
syscall’s name and return code. */
err = Call("error", voidtype, Cnststr(m),
res, NULL);
/* Insert check for syscall failure. */
AddStmt (stmt,
IfStmt (Lt(res, Cnsti(0)), err));
}
return MAGIK_OK;

} }

Figure 1: Routine to add a type-aware output routine Figure 2: Extension that places error checks around
to C unchecked system calls.

4.3 Safe system calls

C and Unix are notorious for using integer error codes
to indicate exceptional conditions. C and Unix pro-
grammers are notorious for not checking these codes.
This problem is a significant one, especially with the
prevalence of network computing (where file I/O opera-
tions have to be retried with some frequency). Figure 2
presents an extension that inserts error condition checks
around unchecked Unix system calls and prints out er-
rors that occur.

The extension works as follows:

1. It iterates over all calls to the functions listed in
the array unixcalls using the MAGIK functions First-
CallV and NextCallV.

2. For each call site it checks if the result of the call
is used (using the MAGIK routine Uses). Unfor-
tunately, a use does not guarantee that the call’s
result is checked — for simplicity, we elide more
aggressive checking.

3. For call sites that do not use the result of the sys-
tem call, the extension creates IR to check the sys-
tem call’s return value and, if it is an error, call
an error procedure (error) to print it out. It then
inserts this IR into the original IR using AddStmt.

4.4 Safe assertions

Debugging assertions check invariants at runtime. The
presence of side-effects in assertion expressions causes
difficult-to-find bugs that show up when the assertions
(and thus their side-effects) are disabled for “production
use.” Figure 3 presents an extension that conservatively
guards against side-effects in assertions by scanning for
function calls and assignments.

4.5 RPC specialization

Remote procedure call (RPC) is a widely used abstrac-
tion in distributed programming. A significant overhead
of a general-purpose RPC call is the cost of copying the
call’s arguments into a message buffer (“argument mar-
shaling”). Figure 4 presents a MAGIK extension that
uses partial evaluation to remove the main contributor
to this overhead, the interpretation of argument types,
by crafting marshaling code specialized to a particular
callsite.

The extensions infrastructure is similar to that used
to implement output: it scans for calls to rpc and ex-
amines its argument which, syntactically, is a call to a
remote function. It decomposes this call into its con-
stituent pieces and then builds marshaling code to copy
each argument in the RPC call into a memory vector. It
then rewrites the call to rpc to take a pointer to a local
copy of the remote procedure along with a pointer to
the constructed message buffer and its size. A sample
usage is as follows:

int k,j,i;
double d;
/% ... %/

/* Look for function calls or assignments */
static int HasSideEffect(X_IR c) {
if(lc)
return 0;
else if(Op(c) == ASGN || Op(c) == CALL)
return 1;
else
return HasSideEffect(Left(c))
|| HasSideEffect(Right(c));
T

/* Check that assertions do not contain
side-effecting optations. */
int AssertCk(X_IR c) {
for(c = FirstCall(c, "assert");
¢ != NULL;
c = NextCall(c, "assert")) {

/* The assertion expression is the call’s
first argument. */
if (HasSideEffect(FirstArg(c)))
warning("assert has a side-effect\n");

}
return MAGIK_OK;
}

Figure 3: Routine to guarantee that assertions are free
of side-effects.

/* call remote procedure remote_foo */
rpc(remote_foo(j, i, k, d));

Of course, this usage can be made prettier by com-
municating the names of remote procedures to the ex-
tension, thereby eliminating the need for the rpc anno-
tation. For simplicity we do not perform this syntactic
cleanup (we also ignore result passing).

4.6 A memory copy builtin

To show how MAGIK can be used to define builtin proce-
dures for improved performance we have also written an
extension that recognizes the ANSI C memcpy (“mem-
ory copy”) function. The extension exploits information
MAGIK provides to specialize to the local characteris-
tics of each callsite. For example, in the general case,
memcpy must treat its operands as unaligned. How-
ever, using the semantic information MAGIK provides,
the extension can determine when a call site’s pointer
operands are aligned and specialize accordingly. Addi-
tionally, it unrolls and inlines the memory copying loop
when the number of bytes to copy is a constant, Static
specialization removes runtime selection overhead, and
shrinks the function’s memcpy footprint (due to the fact
that the gaps introduced by non-taken cases is elimi-
nated). These optimizations are profitable in the con-
text of operating system device driver and networking
code, which can extensively access fixed-sized quantities
of partially unaligned memory.

/* Find RPC calls and build marshalling code. */
int MarshalGen(X_IR r) {
/* foreach callsite, rewrite output call */
for(r = FirstCall(r, "rpc");
r != NULL; r = NextCall(r, "rpc")) {
I_IR index, marshalv;
int offset, sz;
X_IR a, c;

/* Allocate marshaling array on stack. */
marshalv = Array(doubletype, Nargs(r));
offset = 0;

/* Remote call is rpc’s first argument. */
¢ = FirstArg(r);

/* Store arguments in marshalling vec. */
for(a = FirstArg(c); a != NULL;
a = NextArg(a)) {
/* ensure correct alignment. */
offset = roundup(offset, NodeAlign(a));
sz = NodeSize(a);

/* Form expression "*(type *)(marshal +

offset)" where type is typeof(a). */
index = Index(Cast(Copy(marshalv),

Ptr(NodeType(a))),
Cnsti(offset/sz));
/* marshalv[offset] = a */
PushStmt (c,
Asgn(index, ImportExprCopy(a)));

/* Add size of argument. */
offset += NodeSize(a);

/* Replace rpc call with message send; send
takes a pointer to a local copy of the
remote function and the marshal vector
and size as arguments. */

c = ReplaceExpr(c,

Call("send", inttype,
CallName(c), Copy(marshalv),
Cnsti(offset), NULL));
}
return MAGIK_OK;
}

Figure 4: Extension that creates specialized marshaling
code based on remote procedure call argument types.

10

/* Used by gsort to compare element sizes. */
static int pack_cmp(void *p, void *q) {
return FieldSize(*(Field *)p) -
FieldSize(*(Field *)q);
}

/* Look for structures with "pack_" prefix and
minimize their storage size by sorting their
elements by size. */

void Packer(Symbol p) {

unsigned n;

Field *fl;

if (strncmp(StructName(p), "pack_", 5) !'= 0)
return;

/* Get fields */

£l = ImportFields(p, &n);

/* Sort them. */

gsort(fl, n, sizeof £f1[0], pack_cmp);

/* Write them out. */

ExportFields(p, fl, n);

Figure 5: Routine to minimize structure size by sorting
elements by alignment requirements.

4.7 Structure packing

Dense structure layout can be used to improve local-
ity. Figure b presents a data structure extension that
rearranges structure fields to reduce structure size. Us-
ing the same capabilities extensions can perform many
useful structure transformations: fields can be automat-
ically arranged to be endian-neutral and on machines
that lack sub-word operations, shorts and chars can be
promoted to ints.

4.8 General code transformations

MAGIK also enables code transoformations that are in-
dependent of any interface. Example transformations
are software fault isolation, the translation of pointers
from one representation to another, or the insertion of
checks to ensure a pointer use is not nil.

In MAGIK, code transformations are typically im-
plemented by searching for specific IR trees and (pos-
sibly) replacing or augmenting them. To make this
style of usage easy, MAGIK provides an interface spe-
cialized to this domain. IR navigation can be imple-
mented using MAGIK-provided pattern matching rou-
tines that iterate over IR, returning all locations that
extension-specified IR trees occur at. Rewriting support
includes procedures that insert, delete and augment IR
subtrees. These routines isolate the programmer from
implementation-specific details of IR modification (e.g.,
the need to update all pointers to a node that has been
used as a CSE).

Using MAGIK’s interfaces, applications can imple-
ment a vast set of general code transformations such
as the insertion of reference counting, software address
translation or providing protection via software fault
isolation [19].

Similarly ready access to a semantically-rich inter-
mediate language can be used to answer many questions
about source-level code. For example, it can be used to
verify hypothesis about software engineering by corre-
lating bug reports to how many times an abstraction
layer is broken (perhaps by tracking structure accesses)
or by correlating ease of modification to the number of
intermodule dependencies a source file has. Checks can
be inserted to check for the aliasing of pointers to de-
termine what optimizations would be profitable. It can
also be used to support graphical performance monitor-
ing in the spirit of Jeffery and Griswold [9] by automat-
ically inserting display calls around interface uses.

5 Discussion

MAGIK attempts to literally make “library design lan-
guage design.” It does this by attacking the three cru-
cial differences between writing a function-level inter-
face and defining an input language and compiler. The
first difference is obvious: languages have syntactic sugar,
libraries do not. (I.e., other than what can be synthe-
sized from macros, libraries have little syntactic sup-
port for their idioms.) By enabling interface designers
to include context- and semantic-sensitive code trans-
formers, sugar can be judiciously added to function in-
terfaces (e.g., as done in the output and rpc examples in
Section 4). The second difference is more subtle: lan-
guages allow semantic checks that can be difficult for a
library to replicate in terms of its implementation lan-
guage. By giving extensions access to both the symbol
table and function-level IR this barrier can be elimi-
nated. Finally, languages can be optimized. Encoding
their semantics in a compiler allows a ready implemen-
tation of both local (e.g., peephole optimization) and
global (e.g., CSE) optimizations. Current compilers are
blind to interface semantics, precluding analogous op-
timizations. MAGIK provides mechanisms that can be
used to build interface optimizers that optimize inter-
face primitives as aggressively as source language con-
structs.

5.1 Interface issues

An interesting research question is determining the de-
sign rules for building interfaces that are amenable to
language-like optimization techniques. Two principles
seem relatively safe. First, high-level optimization is
aided by the use of declarative, high-level interfaces that
can then be “strength-reduced” to the characteristics of
local usage. Second, optimization across interface calls
is eased if the result of one interface call is immediately
used by another: function call nesting is an ideal way
of eliminating data-flow ambiguities. Thoroughly codi-
fying practical precepts will be challenging.

Careful (but, unfortunately, iterative) design of the
MAGIK system has allowed us build it so that it is inte-
grated with the infrastructure Icc uses to construct its
internal IR. An important result of this integration is
that we have been able to reuse lcc’s front-end routines
for constructing abstract syntax trees. Using this code

11

has two significant benefits. First, the interface simpli-
fies code construction by only requiring users to supply
types when an operand (such as a variable or constant)
is defined. Operations then derive their type from their
operands. For example, the addition operator, Add, can
determine whether it is an integer or floating-point ad-
dition by examining its operands rather than having the
type encoded as AddL (“add long”), AddF (“add float”),
etc. Eliminating the need to explicitly encode types has
dramatically simplified MAGIK’s code construction in-
terface. Second, lcc’s routines are designed to perform
implicit conversions as required by the rules for ANSI C.
As a result, they type-check their arguments (providing
users with safety) and perform coercions as necessary
(providing users with convenience).

There are a few challenges to using the current IR
system. The first is dealing with IR tree layouts across
compiler versions. Layout of IR trees is a fairly volatile
implementation feature. Currently, MAGIK decrees an
IR interface and layout. The cost of this solution is
that future implementations may require extra mapping
code to compile their IR to the standardized MAGIK IR
and back. An alternative solution is to specify code us-
ing a higher-level representation. The main technical
challenge of using IR to specify patterns is that func-
tionally identical language expressions may be compiled
to structurally different trees. Fortunately, the Icc IR is
spare enough that this problem is not difficult: the num-
ber of possibilities tends overwhelmingly to one and,
in rare cases, two. In fact, the use of a low-level IR
can have a significant benefit over both source-level and
machine-code matching in this respect since both, in
practice, can contain significant numbers of synonyms
(e.g., consider the possible ways to get values to and
from memory on the x86, or the different but equiva-
lent methods to reference an array element in C). How-
ever, while the IR representation has been sufficient for
all examples we’ve wanted to implement, there are times
when a less strenuous mechanism of code specification is
preferable. We are currently investigating alternatives.

5.2 System limitations

There are a number of limitations with the current sys-
tem; most were deliberately chosen in order to allow it
to be built quickly so that real programmers could use
it in the near future, thereby allowing the wheel of iter-
ative design to begin turning with the least amount of
delay. Four main limitations are discussed.

First, constructing large pieces of code is tedious.
This would naturally be remedied with language sup-
port. A promising avenue is to use the ‘C (“tick-C”)
language [5] (designed to construct code dynamically)
as a sugary method of dynamically constructing MAGIK
IR. ‘C solves most of the semantic issues dealing with
variable binding, and code construction, leaving us with
the fairly straightforward task of modifying it to dynam-
ically emit MAGIK IR rather than executable code.

Second, the current code specification MAGIK inter-
face — the low-level IR of lcc — while simple, is per-
haps not the most natural for mainstream programmers.
There are tradeoffs in this representation: a low-level IR

can be more precise, however, it can also be more com-
plex than necessary. We are investigating the represen-
tation of code templates used for matching via language
support: here to a modification of the ‘C language seems
promising.

Third, the system is manual, even for tasks that
could be done automatically (e.g., in the spirit of Van-
devoorde and Guttag [18, 17]). As we determine which
of these tasks are important and common, automation

will be added.

Finally, lcc, while simple and easy to modify, is a
poor optimizer. We are examining ways to improve its
code quality.

5.3 A simple language extension

Exploitation of application semantics is helped if seman-
tics can be clearly and unambiguously indicated. For
example, translating shared memory accesses is eased if
every such access can be explicitly labeled as “shared.”
The clean, clear conveyance of semantic information to
extensions is a general problem. Fortunately, it has a
simple solution: the addition of a new syntax opera-
tion to ANSI C (annotation) that is used to create new,
scoped type qualifiers. These qualifiers would be syntac-
tically parsed and internally stored in the symbol table
but otherwise ignored by the compiler proper — their
semantics provided solely by extensions. An example
usage:

/* add ’’shared’’ as a new type qualifier */
annotation shared;

/* Allocate an integer with new type qualifier. */
shared int x;

6 Related Work

Examples of including application-level information into
compilation are compiler-directed prefetching and man-
agement of I/0 [14] and ParaSoft’s Insure++ [12], which
can check for Unix system call errors (similar to the
MAGIK checker shown in Figure 2). Using a MAGIK-
based approach, systems such as these could be built
without compiler modifications.

Concurrently with this work, Tom Lord proposed
the construction of application-specific semantic check-
ers and built a scheme-based system, ctool, for imple-
menting them [13]. There are many specific differences
between his system and MAGIK but much of motivation
is shared. Outside the topic of semantic checking there
are two key differences. First, Lord restricts his atten-
tion to read-only semantic checking, while this paper
additionally proposes application-specific optimization
and general program transformation (“incorporating
programmer control into compilation”). Second, this
paper proposes the metaphor of treating programming
interfaces as languages, and sketches a methodology for
interface compilation which can be used by interface
builders to compile their interfaces in the same manner
as traditional languages such as ANSI C or FORTRAN
(see Section 2 for further discussion).

Prior to this work, Shigeru Chiba implemented Open
C++, a system that extends C++ with a “meta object

12

protocol” [4, 3]. Meta objects are objects that exist only
at compile time and control the compilation of the pro-
gram. Included in this control is the ability to add new
functions, types and data to the translated code [4].
Mechanically, there are many similarities between the
abilities given by Open C++ to meta objects and by
MAGIK to interface checkers and optimizers. The main
difference between the two approaches is one of perspec-
tive: Open C++ appears to be driven more by a focus
on low-level transformations, while MAGIK is driven by
the desire to raise compilation to the level of interfaces.
‘While the results produced from these two desires over-
lap, the main question of this paper (“how to compile
an interface?”) is not addressed in this prior work.

Below, we compare MAGIK to macro systems, semantic-

based optimizers, extensible compilers, and object code
modifiers.

Macro systems are the most venerable instance of
user-level code transformers. An advantage of such sys-
tems (Lisp is a good example) over MAGIK is their tight
integration with the source language — extensions are
typically written in the same language and style as the
rest of the application. The main advantage MAGIK
provides is power. Macro systems such as Weise and
Crew’s recent work [21] are restricted to fairly localized
code transformations, while MAGIK extensions can per-
form global transformations across many interface calls,
using symbol table and flow graph information provided
by the compiler.

Mark Vandevoorde and John Guttag [17, 18] de-
scribe a system that provides programmers with a safe
way to impart some classes of semantic information to
the optimizer. User-level specifications for a restricted
functional language are consumed by a theorem prover
that optimizes based on the specific situation in which
function calls are used. While their system is more au-
tomatic than MAGIK, it is less powerful. For instance,
MAGIK gives programmers the ability to perform op-
timizations that appear difficult to express as specifi-
cations. The cost of this power is that MAGIK more
difficult to use. Further practical experience is needed
to determine if MAGIK’s added power is worth this cost.

MAGIK follows in the footsteps of the Atom object
code modification system [16] (foreshadowed by the ob-

ject code modifiers of Wall [20] and Srivastava and Wall [15]),

which provides users with the ability to modify object
code in a clean, simple manner. Atom was one of the
first tools to give programmers ready access to the trans-
formational abilities encased in compilers. MAGIK com-
plements this work, and trades the practical generality
of dealing with object code for improved information
and code efficiency gained by working within a high-
level source compiler. Since MAGIK has access to all the
information available to the source compiler (e.g., sym-
bol table, flow graph information, high-level semantics)
it can derive facts lost at the object code level. For in-
stance, it can easily insert reference counts around all
accesses to a particular pointer type; an object code
modifier, working solely at the level of loads and stores,
cannot. Furthermore, since MAGIK extensions are in-
tegrated with the optimization done by the compiler,
they can be implemented more efficiently: IR added by

an extension is optimized no differently than IR pro-
duced from source. In contrast, object code have to
both work without much source-level information and
cannot bootstrap existing compiler optimizers [20]. An
important practical difference between MAGIK and ob-
ject code modifiers is that MAGIK is significantly eas-
ier to implement. The system described in this paper
took the author less than a month to implement and it
runs on all targets that the base compiler supports (x86,
Mips, Sparc). In contrast, duplicating the functionality
of ATOM for even a single architecture would require
significantly more work (especially on an architecture
such as the x86).

There are many compilers designed to support easy
addition of optimizations (e.g., SUIF [1]). These sys-
tem could have been used to implement MAGIK; lcc was
chosen because of the author’s familiarity with it. To
the best of our knowledge, none of these compilers have
been used explicitly for extending the optimizer with
user-level semantics or transformations.

MAGIK can be viewed as an “Open System” in the
spirit of Kiczales’ work [10].

Of course, programmers have long performed inter-
face optimizations by hand. The advantages of auto-
mated optimization are well known.

7 Conclusion

This paper has addressed two problems programmers
have historically faced. First, the languages they de-
fine via interfaces have not been treated as first-class
languages. As a result, these languages have had no
language-specific semantic checkers, transformers, or op-
timizers. Second, their programs are passively consumed
with little support for active transformation (such as
rewriting of structure fields and the addition of profil-
ing code).

The MAGIK system is a first step towards solving
these problems. MAGIK provides a modular interface
implementors can use to extend compilation. The main
interaction is through a set of interfaces that give ex-
tensions access to the IR produced from source. MAGIK
thus provides a method that system implementors use
both to incorporate domain-specific semantics into com-
pilation (thereby enjoying the obvious advantages of
automated optimization and checking) and to perform
general transformations on the IR produced from source
(thereby having both access to high-level semantic infor-
mation and the resulting transformation code optimized
as aggressively as code produced from source).

This paper can be viewed as an initial step towards
a new style of programming that treats interfaces as
languages. It has proposed the beginnings of a method-
ology for interface compilation and provided a system
that allows this methodology to be applied.

This paper has presented many example clients of
the MAGIK system. Many of these extensions provide
capabilities that programmers did not previously have.
Future research will involve both extending these capa-
bilities and exploring their consequences.

13

It is the hope of the author that elevating the lan-
guages interfaces define to first-class citizenship (where
they are optimized and checked easily and well by com-
pilers) will change programming practice in a non-trivial
way. For decades, there has been a clamor for higher and
higher-level languages. But, in fact, these languages are
already prevalent, as a simple perusal of header files and
module definitions will show. Their apparent absence is
merely due to lack of compiler support.

8 Acknowlegements

The author would like to thank Saman Amarasinghe,
Frans Kasshoek, David Mazieres, Thomas Pinckney, Mas-
similiano Poletto, and Martin Rinard for interesting dis-
cussions of interface compilation and proof reading. Mar-
tin Rinard articulated the concept of “language subset-
ting” discussed in Section 2. Eddie Kohler and Massi-
miliano Poletto helped enormously with fonts and for-
matting. Dave Wile and Constantine Sapuntzakis gra-
ciously provided last minute proof reading. Chris Ram-
ming and the anonymous referees were particularly help-
ful in improving the paper’s presentation.

Dawson Engler is an assistant professor at Stan-
ford University, where he holds joint appointments in
the electrical engineering and computer science depart-
ments. He received his PhD degree in computer science
from the Massachusetts Institute of Technology, where
he co-initiated the exokernel operating system project.
He received his BS in math and computer science from
the University of Arizona, where he was a bouncer at a
blues bar. His research focuses on systems and compila-
tion. Past projects have included dynamic code genera-
tion and extensible operating systems. Current projects
include interface compilation and novel approaches to
verifying code correctness.

References

[1] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and
A. W. Lim. An overview of the SUIF compiler for scal-
able parallel machines. In Proceedings of the 6th Work-
shop on Languages and Compilers for Parallel Comput-
ing, Portland, OR, August 1993.

[2] Matt Bishop and Michael Dilger. Checking for race con-
ditions in file accesses. Computing systems, pages 131—
152, Spring 1996.

[3] S. Chiba. Open c++ programmer’s guide. Technical
Report TR93-93-3, Dept. of information science, Uni-
versity of Tokyo, 1993.

[4] Shigeru Chiba. A metaobject protocol for c++. In
OOPSLA 1995 Conference Proceedings Object-oriented
programming systems, languages, and applications,
pages 285-299, October 1995.

[5] D. R. Engler, W. C. Hsieh, and M. F. Kaashoek.
‘C: A language for high-level, efficient, and machine-
independent dynamic code generation. In Proceedings
of the 23th Annual Symposium on Principles of Pro-
gramming Languages, pages 131-144, St. Petersburg,
FL, 1995.

[6] C. W. Fraser and D. R. Hanson. A retargetable
C compiler: design and implementation. Ben-
jamin/Cummings Publishing Co., Redwood City, CA,
1995.

(7]

[10]

(11]

(12]

13]

(14]

(17]

(18]

(19]

[20]

(21]

C.W. Fraser and D.R. Hanson. A code generation inter-
face for ANSI C. Software—Practice and Ezperience,
21(9):963-988, September 1991.

W. Wilson Ho and Ronald A. Olsson. An approach to
genuine dynamic linking. Software—Practice and Ez-
perience, 24(4):375-390, April 1991.

Clinton L. Jeffery and Ralph E. Griswold. A framework
for execution monitoring in Icon. Software—Practice
and Ezperience, 24(11):1025-1049, November 1994.

Gregor Kiczales, Jim des Rivieres, and Daniel G. Bo-
brow. The Art of the Metaobject Protocol. MIT Press,
1991.

Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc Lo-
ingtier, and John Irwin. Aspect-oriented programming.
In FEuropean Conference on Object-Oriented Program-
ming (ECOOP), June 1997.

Adam Kolawa and Arthur Hicken. Insure++: A tool
to support total quality software.
http://www.parasoft.com/insure/papers/tech.htm.

Tom Lord. Application specific static code checking for
¢ programs: Ctool. In twaddle: A Digital Zine (version
1.0), 1997.

Todd C. Mowry, Angela K. Demke, and Orran Krieger.
Automatic compiler-inserted i/o prefetching for out-of-
core applications. In Proceedings of the Second Sym-
posium on Operating Systems Design and Implementa-
tion, 1996.

A. Srivastava and D.W. Wall. A practical system for
intermodule code optimization at link-time. Journal of
Programming Languages, March 1992.

Amitabh Srivastava and Alan Eustace. Atom - a sys-
tem for building customized program analysis tools. In
Proceedings of the SIGPLAN ’9 Conference on Pro-
gramming Language Design and Implementation, 1994.

Mark T. Vandevoorde. Ezploiting Specifications to Im-
prove Program Performance. PhD thesis, M.I.T., 1994.

Mark T. Vandevoorde and John V. Guttag. Using spe-
cialized procedures and specification-based analysis to
reduce the runtime costs of modularity. In Proceedings
of the 1994 ACM/SIGSOFT Foundations of Software
Engineering Conference, 1994.

R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Ef-
ficient software-based fault isolation. In Proceedings of
the Fourteenth ACM Symposium on Operating Systems
Principles, pages 203-216, Asheville, NC, USA, Decem-
ber 1993.

D.W. Wall. Systems for late code modification. CODE
91 Workshop on Code Generation, 1991.

D. Weise and R. Crew. Programmable syntax macros. In
Proceedings of PLDI ’93, pages 156-165, Albuquerque,
NM, June 1993.

14

Operation Description

X_IR LeftChild(X_IR n) Returns n’s left child or nil on error.
X_IR RightChild(X_IR n) Returns n’s right child or nil on error.
int OpType(X_IR n) Returns opcode of n.

int Type(X_IR n) Returns type of n.

int Align(X_IR n) Returns alignment of n.

int Size(X_IR n) Returns size of n.

Table 2: Base IR Interface.

Class Examples Prototype
Arithmetic binary operations. ADD SUB MUL DIV XOR AND OR | T_IR op(I_IR a, I_IR b)
Arithmetic unary operations. NEG COM IR op(I_IR a)
Conversions (“convert to type”). | CVIT CVTD CVTUS IR op(I_IR @)
Memory operations. ADDR INDIR I_IR op(I_IR a)

Table 3: Partial IR-construction Interface. Functions determine the type of opcode to use based on operand type.
Conversion conventions are those of ANSI C.

Operation Description

I_IR Local(Type ty) Creates a local variable of type t and returns its symbol.

I_IR LocalArray(Type ty, int n) Creates a local array of type t and size n and returns its
symbol.

I_IR Global(Type ty) Creates a global variable of type t and returns its symbol.

I_IR GlobalArray(Type t, int n) Creates a global array of type t and size n and returns its
symbol.

I_IR Cast(I_IR var, Type 1) Creates a copy of symbol var changing its type to t.

I_IR Lookup(char *name) Lookup symbol for variable name.

Table 4: Symbol construction and manipulation routines (routines to construct new aggregate types are elided).

Operation Description

X_IR Copy(X_IR n) Create a copy of node n. This function is typically used
when adding a new subtree between a node and its child.

I_IR TmportExprRef(X_IR expr) Import a reference to expr. This reference can then be used
as an argument to functions that require a I_IR type.

I_IR ImportExprCopy(X_IR expr) Import a copy of expr. This copy can then be used as an
argument to functions that require a I_IR type.

X_IR AddStmt(X_IR a, I_IR stmt) Add stmt after node a. Returns stmt.

X_IR PushStmt(X_IR a, I_IR stmt) Add stmt before node a. Returns stmt.

X_IR DeleteStmt(X_IR stmt) Remove stmt, returns its successor.

X_IR DeleteExpr(X_IR expr, I_IR replacement) Delete node expr; replaces the tree with replacement. If
replacement is nil, MAGIK will coalesce the tree expr was
part of until it is well-formed.

X_IR AddExpr(X_IR a, I_IR b) Insert b on top of a.

I_IR Tf(I_IR bool, I_IR stmt) If bool is true, execute stmt.

I_IR TfEIse(I_IR bool, I_IR stmtT, T_IR stmt2) If bool is true, execute stmt1 otherwise execute stmt2.

I_IR While(I_IR bool, I_IR stmt) While bool is true, execute stmt.

Table 5: Partial High-level IR construction Interface

15

Operation

Description

X_IR FirstCall(char *name)

Returns pointer to first call of name or nil if none is found.

X_IR FirstCallV(char **namelist)

Returns pointer to first call of any function in namelist or
nil if none is found.

X_IR NextCall(X_IR c, char *name)

Returns pointer to next call of name or nil if none is found.

X_IR NextCallV(X_IR c, char **namelist)

Returns pointer to next call of any function in namelist or
nil if none is found.

X_IR RewriteCall(X_IR call, char *newname)

Replace name of call to be newname.

X_IR FirstArg(X_IR call)

Return first argument (if any) of call.

X_IR NextArg(X_IR arg)

Get next argument (if any) after arg.

X_IR Arg(X_IR call, int n)

Returns the nth argument of call; returns nil on error.

void PushArg(X_IR call, I_IR arg)

Adds arg as the first argument to call.

void AppendArg(X_IR call, IR arg)

Adds arg as the last argument to call.

int NArgs(X_IR call)

Return number of arguments to call.

X_IR ReplaceArg(X_IR call, int argno, I_IR arg)

Replace argument argno in call with arg.

Table 6: Partial Function Navigation and Modification Interface

Operation

Description

X_IR Search(X_IR n, I_IR pattern)

Search for the tree pattern starting at location n. If n is nil,
the search starts at the beginning of the function. Unspec-
ified subtrees in pattern can be created using the function

I_IR Any(Type ty).

X_IR FindStruct(X_IR n, char *StructName)

Search for use of StructName starting at n.

X_IR FindField(X_IR n, char *StructName, char *FieldName)

Search for use of field Fiel[dName of type StructName start-
ing at n.

Fields *ImportFields(Symbol p, unsigned *n)

Returns a pointer to an array of pointers to data structure
p’s fields. Elements in this vector can be reordered, deleted,
and added.

Fields *ExportFields(Symbol p, Fields *fieldlist, unsigned *n)

Export fields (defined by fieldlist) as the layout for data
structure p.

Field AddField(Symbol p, Field f1, Field f2)

Add field 2 after field f1 in structure p.

Field PushField(Symbol p, Field f1, Field f2)

Add field 2 before field f1 in structure p.

Field OverrideField(Symbol p, Field f, Type ty)

Change field structure p’s field f type to ty.

Field FirstField(Symbol p)

Returns the first field in data structure p.

Field NextField(Symbol p, Field)

Returns the next field in data structure p.

Table 7: Partial Structure Navigation and Modification Interface

16

