Some Thoughts on
Generic Programming

CSE 5900, Autumn 2007
Benjamin Ylvisaker

The Source

* An extended comparative study of language
support for generic programming

* Ronald Garcia, Jaakko Jarvi, Andrew
Lumsdaine, Jeremy Siek and Jeremiah
Willcock

Their Terminology

Language Algorithm Concept Refinement Modeling Constraint
CH++ template docs docs docs docs
ML functor signature include implicit param sig
1 hi .) . !
OCaml i s class interface inherit interface class type
function
olymorphic +
Haskell PO YyIOID type class subclass instance context
function
Eiffel generic class deferred class inherit inherit conformance
Java generic method interface extends implements extends
C# generic method interface inherit inherit inherit
. parameterized abstract) + type
i method object el Shpipie constraint

Their Ratings

Cr+

SML ©OCaml Haskell Eiffel

Java

C#

Ceclil

Multi-type concepts
Multiple constraints
Associated type access
Constraints on assoc. types
Retroactive modeling

Type aliases

Separate compilation
Implicit arg. deduction

® O e

D 0000000

000G CC0 O

*

Sk HOSOE MS e

afs

-0 O & 09-2

CeOCO0CCO0OeO

DN PEON N NN N)

Their Criteria

Criterion

Definition

Multi-type concepts
Multiple constraints

Associated type access

Constraints on associated types
Retroactive modeling

Type aliases
Separate compilation

Implicit argument deduction

Multiple types can be simultaneously constrained.
More than one constraint can be placed on a type
parameter.

Types can be mapped to other types within the context
of a generic function.

Concepts may include constraints on associated types.
The ability to add new modeling relationships after a
type has been defined.

A mechanism for creating shorter names for types is
provided.

Generic functions can be type checked and compiled
independent of calls to them.

The arguments for the type parameters of a generic
function can be deduced and do not need to be explicitly
provided by the programmer.

ReadWrite-Msap
Rsad-Map |

TETDT ;':a'r;'

Bellman-Ford Shortest Paths

"SRR N PIEISLES P |

Dijkstra Shorlest Paths

How Does Chapel Fit In?

* Most like C++?
* Separate compilation/type checking?

® Constraints on generic functions/classes/...?

	Some Thoughts on Generic Programming
	The Source
	Their Terminology
	Their Ratings
	Their Criteria
	Their Test
	How Does Chapel Fit In?

