
CSE 590o: Chapel

Brad Chamberlain
Steve Deitz

Chapel Team

University of Washington
September 26, 2007

CSE 590o: Chapel (2)

Outline
Context for Chapel
This Seminar
Chapel Compiler

CSE 590o: Chapel (3)

Chapel
Chapel: a new parallel language being developed by Cray Inc.

Themes:
• general parallelism

data-, task-, nested parallelism using global-view abstractions
general parallel architectures

• locality control
data distribution
task placement (typically data-driven)

• reduce gap between mainstream and parallel languages
object-oriented programming (OOP)
type inference and generic programming

CSE 590o: Chapel (4)

Chapel’s Setting: HPCS
HPCS: High Productivity Computing Systems (DARPA et al.)

• Goal: Raise HEC user productivity by 10× for the year 2010
• Productivity = Performance

+ Programmability
+ Portability
+ Robustness

Phase II: Cray, IBM, Sun (July 2003 – June 2006)
• Evaluated the entire system architecture’s impact on productivity…

processors, memory, network, I/O, OS, runtime, compilers, tools, …
…and new languages:

Cray: Chapel IBM: X10 Sun: Fortress

Phase III: Cray, IBM (July 2006 – 2010)
• Implement the systems and technologies resulting from phase II
• (Sun also continues work on Fortress, without HPCS funding)

CSE 590o: Chapel (5)

Chapel and Productivity
Chapel’s Productivity Goals:

• vastly improve programmability over current languages/models
writing parallel codes
reading, modifying, porting, tuning, maintaining them

• support performance at least as good as MPI
competitive with MPI on generic clusters
better than MPI on more capable architectures

• improve portability compared to current languages/models
as ubiquitous as MPI, but with fewer architectural assumptions
more portable than OpenMP, UPC, CAF, …

• improve code robustness via improved semantics and concepts
eliminate common error cases altogether
better abstractions to help avoid other errors

CSE 590o: Chapel (6)

Chapel Design Philosophies
A research project…

…but intentionally broader than an academic project would tend to be
due to the belief that generality requires a broad feature set
to create a space for broad community participation/collaboration

Nurture within Cray, then turn over to community
• currently releasing to small set of “friendly” users
• hope to do public release in late 2008

Borrow when it makes sense, innovate elsewhere
• interplay between borrowed concepts is where many challenges lie

Language design as art / beauty in eye of beholder
• many of our decisions have been subjective
• some of them, even we don’t like

CSE 590o: Chapel (7)

Chapel Influences
ZPL, HPF: data parallelism, index sets, distributed arrays,
aggregate operations (see also APL, NESL, Fortran90)
Cray MTA C/Fortran: task parallelism, lightweight synch.
CLU: iterators/generators (see also Ruby, Python, C#?)
ML, Scala, Matlab, Perl, Python: latent types
Java, C#: OOP, type safety
C++: generic programming/templates
C, Modula, Ada: syntax

CSE 590o: Chapel (8)

Chapel Work
Chapel Team’s Focus:
• specify Chapel syntax and semantics
• implement prototype Chapel compiler
• code studies of benchmarks, applications, and libraries in Chapel
• community outreach to inform and learn from users, colleagues
• support users evaluating our preliminary releases
• refine language based on these activities

implement

outreach

support
release

code
studies

specify
Chapel

CSE 590o: Chapel (9)

This Seminar
Goals:
• Introduce the UW community to Chapel
• Solicit feedback about Chapel from…

…programming language / compiler / parallel programming groups
…potential users

• Identify opportunities for collaboration

Structure:
• week 1: context
• week 2: whole-language overview
• weeks 3-9: deep dives into feature sets

definition, rationale
open questions, opportunities for feedback

• week 10: grab-bag/open-ended

CSE 590o: Chapel (10)

Seminar Outline
Date Topic Reading Facilitator
Sep 26 Chapel context, Seminar goals -- Chamberlain

Nov 28 Distributions, locality Ch 23 Chamberlain

Oct 3 Chapel overview IJHPCA paper Chamberlain

Oct 10 Language fundamentals Ch 6-13, 17 Chamberlain

Oct 17 OOP & generics Ch 14-16, 21 Deitz

Oct 24 Ranges, domains, arrays Ch 18-19, 24 Chamberlain

Oct 31 TBD (may be cancelled)

Nov 7 Iterators Ch 20 Deitz

Nov 14 Task parallelism, synchronization Ch 22 Deitz

Nov 21 NO MEETING (Thanksgiving) -- --

Dec 5 Open issues / grab-bag -- Chamberlain

CSE 590o: Chapel (11)

Ground Rules
For us:
• be open, honest about project status – avoid sales pitches

what is “solved”
where we believe we have a solution
where we have a promising path ahead of us
where large open questions remain

• take criticism constructively

For you:
• tell us your thoughts, reactions, insights, and criticism
• realize that some things would be difficult to change at this point
• if session times out, please follow up over email

CSE 590o: Chapel (12)

Who we are
Our current team (sorted by time on project):
• Brad Chamberlain (bradc@cray.com)
• Steve Deitz (deitz@cray.com)
• Mary Beth Hribar
• David Iten
• Samuel Figueroa

Current academic collaborations:
• Vikram Adve & Robert Bocchino (UIUC): software transactional

memory for distributed memory computers
• Franz Franchetti (CMU): SPIRAL back-end targeting Chapel to

leverage its portability
• <Your Name Here?> (UW): …

mailto:bradc@cray.com
mailto:deitz@cray.com

CSE 590o: Chapel (13)

Who are you?
Name
Department / Advisor
General Research Interests
Specific Interests in Chapel / this seminar

CSE 590o: Chapel (14)

“How do I earn credit for this course?”
Participation in discussions a must
• we should have some sense of who you are by end of quarter

Remainder open to negotiation; choose one of:
• program some parallel algorithm of interest in Chapel

submit code plus short report
track bugs, workarounds, feature requests

• facilitate next week’s session
• co-facilitate a language topic session

present survey of a week’s concept in other languages
help lead discussion on a Chapel topic

• submit written comments/suggestions on the language specification
• propose your own idea

Taking for two credits? Do 2 of these, or 1 in more depth
Mail brief proposal of how you would like to earn credit for
the seminar to bradc@cray.com by next week’s session

mailto:bradc@cray.com

CSE 590o: Chapel (15)

Compiling Chapel

Chapel
Source
Code

Chapel
Executable

Chapel
Standard
Modules

Chapel
Compiler

CSE 590o: Chapel (16)

Chapel Compiler Architecture

Generated
C Code

Chapel
Source
Code

Standard
C Compiler

& Linker

Chapel
Executable

Chapel
Compiler

1-sided Messaging,
Threading Libraries

Runtime Support
Libraries (in C)Chapel

Standard
Modules

Internal Modules
(written in Chapel)

Chapel-to-C
Compiler

CSE 590o: Chapel (17)

Chapel-to-C Architecture
Chapel-to-C

Compiler

Generated
C Code

Chapel
Source
Code

IR normalizeparser resolve
symbols

code
generation

lower
constructs optimizeresolve

fns, types

CSE 590o: Chapel (18)

Prototype Compiler Status
Features: enough there to experiment with
• Base language features: in decent shape
• Task parallel features: implemented naively using pthreads for one

locale (multicore processor, SMP node, etc.)
• Data parallel features: implemented, but do not currently generate

parallelism
• Multi-locale (dist. memory) features: essentially unimplemented

Performance: has not been a primary concern to date
• execution speed: tuned for some 1D idioms, not much for others
• memory: avoids large temporary variables, but leaks smaller stuff

Getting Access: need to fill out the user agreement
• will make an installation available on CSE machines
• will make a downloadable copy available to others

Help us Improve: if you use the prototype compiler, track…
• bugs: chapel_bugs@cray.com
• questions, feature requests: chapel_info@cray.com

mailto:chapel_bugs@cray.com
mailto:chapel_info@cray.com

CSE 590o: Chapel (19)

TODOs for next week
Yours:
• read IJHPCA paper (link to paper on course web)
• mail proposal for earning credit to bradc@cray.com

Ours:
• set up mailing list
• update course web with schedule, readings
• install Chapel prototype compiler

mailto:bradc@cray.com

CSE 590o: Chapel (20)

For More Information…

http://www.cs.washington.edu/education/courses/590o/07au
http://chapel.cs.washington.edu

chapel_info@cray.com
bradc@cray.com
deitz@cray.com

http://www.cs.washington.edu/education/courses/590o/07au
http://chapel.cs.washington.edu/
mailto:chapel_info@cray.com
mailto:bradc@cray.com
mailto:deitz@cray.com

Questions?

	Outline
	Chapel
	Chapel’s Setting: HPCS
	Chapel and Productivity
	Chapel Design Philosophies
	Chapel Influences
	Chapel Work
	This Seminar
	Seminar Outline
	Ground Rules
	Who we are
	Who are you?
	“How do I earn credit for this course?”
	Compiling Chapel
	Chapel Compiler Architecture
	Chapel-to-C Architecture
	Prototype Compiler Status
	TODOs for next week
	For More Information…
	Questions?

