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Chapter 1: Approaching Parallelism  
 
 
In March of 2005, as techies eagerly awaited the arrival of the first dual core processor 
chips, Herb Sutter wrote an article in Dr. Dobbs' Journal titled, "The Free Lunch is Over: 
Fundamental Turn Towards Concurrency in Software."  His point was that for 35 years, 
programmers have ridden the coattails of exponential growth in computing power.  
During that time, the software community has had the luxury of dealing mainly with 
incremental conceptual changes.  The vast majority of programmers have been able to 
maintain the same abstract von Neumann model of a computer and the same basic 
notions of performance-- count instructions, sometimes worrying about memory usage.  
The community occasionally welcomes a new language, such as Java, and it only rarely 
changes the programming model, as with the movement towards the object-oriented 
paradigm.  For the most part, however, the community has been spoiled to believe that 
business will continue as usual except that new generations of microprocessors will arrive 
every 18 months, providing more computing power and more memory. 

 
 
The advent of dual core chips, however, signifies a dramatic change for the software 
community.  The existence of parallel computers is not new.  Parallel computers and 
parallelism have been around for many years, but parallel programming has traditionally 
been reserved for solving a small class of hard problems, such as computational fluid 
dynamics and climate modeling, which require large computational resources.  Thus, 
parallel programming was limited to a small group of heroic programmers.   What's 
significant is that parallelism will now become a programming challenge for a much 
larger segment of programmers, as transparent performance improvements from single-
core chips are now a relic of the past.  In other words, the Free Lunch is over. 
 

What has caused the move to multi-core chips?  Over the past 20 years, 
microprocessors have seen incredible performance gains fueled largely by 
increased clock rates and deeper pipelines.  Unfortunately, these tricks are now 
showing diminishing returns.  As silicon feature sizes have shrunk, wire delay—
the number of cycles it takes a signal to propagate across a wire—has increased, 
discouraging the use of large centralized structures, such as those required for 
super-pipelined processors.  Moreover, as transistor density has increased 
exponentially, so has power density.  Power dissipation has thus become a large 
issue, and the use of multiple simpler slower cores offers one method of limiting 
power utilization.  All of these trends point towards the use of multiple, simpler 
cores, so multi-core chips have become a commercial reality.  Intel and IBM's 
latest high end products package 2 CPU's per chip; Sun's Niagara has 8 multi-
threaded CPU's; the STI Cell processor has 9 CPU's, and future chips will likely 
have many more CPU's. 
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The Characteristics of Parallelism 
Why does parallel programming represent such a dramatic change for programmers?  
Here are a few reasons. 
     

• Explicitly parallel algorithms are fundamentally different from sequential 
algorithms, because they embody multiple points of execution. 

• Programs with concurrent interactions are harder to reason about and harder to 
debug. 

• It’s harder to achieve good performance with a parallel program. 
o Small inefficiencies can lead to large performance problems. 
o It’s harder to ignore low-level details. 

• The performance model is different and more complex. 
o Counting instructions is insufficient. 
o Focusing on communication is insufficient. 
o The performance problem is instead an inseparable problem with multiple 

dimensions. 
• The joint goals of portability and performance are harder to achieve. 
• Tools and languages are immature. 

 
In this book, we will explore these topics and more.  As a first glimpse, the next two 
sections address the first two bullets, as we show that parallelism requires us to look at 
problems differently, and as we show that parallel programming is considerably more 
challenging than sequential programming. 
 

A Paradigm Shift 
Expressing a computation in parallel requires that it be thought about differently. In this 
section we consider several tiny computations to illustrate some of the issues involved in 
changing our thinking.  
 
Summation  
To begin the illustration, consider the task of adding a sequence of n data values: 
 

x0, x1, x2, …, xn-1 
 
Perhaps the most intuitive solution is to initialize a variable, call it sum, to 0 and then 
iteratively add the elements of the sequence.  Such a computation is typically 
programmed using a loop with an index value to reference the elements of the sequence, 
as in 
 

sum = 0 
for (i=0; i<n; i++) { 
    sum += x[i];  
} 
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This computation can be abstracted as a graph showing the order in which the numbers 
are combined; see Figure 1.1. Such solutions are our natural way to think of algorithms. 
 

 
Figure 1.1.  Summing in sequence. The order of combining a sequence of numbers (6, 4, 16, 10, 12, 14, 2, 
8) when adding them to an accumulation variable. 
 
 
Of course, addition over the real numbers is an associative and commutative operation, 
implying that its values need not be summed in the order specified, least index to greatest 
index. We can add them in another order, perhaps one that admits more parallelism, and 
get the same answer.  
 

 
Another, more parallel, order of summation is to add even/odd pairs of data values 
yielding intermediate sums,  
 

x0 + x1, x2 + x3, x4 + x5, x6 + x7, … 
 
which are added in pairs,  
 

(x 0 + x1) + (x2 + x3), (x4 + x5) + (x6 + x7), … 
 
yielding more intermediate sums, etc. This solution can be visualized as inducing a tree 
on the computation, where the original data values are leaves, the intermediate nodes are 
the sum of the leaves below them, and the root is the overall sum; see Figure 1.2. 
 

Nonassociativity. Strictly speaking, addition is not associative on floating point 
number’s fixed precision representation. For some sequences of values, adding the 
numbers in different orders will produce different answers, because floating point 
representations only approximate real numbers. We ignore such issues and reorder 
computations to improve performance, reasoning that (a) under most circumstances the 
sequence’s order was arbitrary in the first place, and, (b) in those cases where it is not 
arbitrary and numerical precision is a potential issue, error management is required 
throughout the computation anyway. 
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Figure 1.2.  Summing in pairs. The order of combining a sequence of numbers (6, 4, 16, 10, 12, 14, 2, 8) 
by (recursively) combining pairs of values, then pairs of results, etc. 
 
Comparing Figures 1.1 and 1.2, we see that because the two solutions produce the same 
number of computations and the same number of intermediate sums, there is no time 
advantage to either solution when using one processor. However, with a parallel 
computer that has P=n/2 processors, all of the additions at the same level of the tree can 
be computed simultaneously, yielding a solution with time complexity that is 
proportional to log n. Like the sequential solution this is a very intuitive way to think 
about the computation. 
 
The crux of the advantage of summing by pairs is that the approach uses separate and 
independent subcomputations, which can be performed in parallel. 
 
Prefix Summation 
A closely related computation is the prefix sum, also known as scan in many 
programming languages. It begins with the same sequence of n values, 
 

x0, x1, x2, …, xn-1 
 
but the desired computation is the sequence 
 

y0, y1, y2, …, yn-1 
 
such that each y i is the sum of the first i elements of the input, that is, 
 

y i = Σj≤i x j 
 
Solving the prefix sum in parallel is less obvious than summation, because all of the 
intermediate values of the sequential solution are needed. It seems as though there is no 
advantage of, nor much possibility of, finding better solutions. But the prefix sum can be 
improved. 
 
The observation is that the summing by pairs approach can be modified to compute the 
prefix values. The idea is that each leaf processor storing xi could compute the value, yi, if 
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it only knew the sum of all elements to its left, i.e. its prefix; in the course of summing by 
pairs, we know the sum of all substrees, and if we save that information, we can figure 
out the prefixes, starting at the root, whose prefix—that is, the sum of all elements before 
the first one in sequence—is 0. This is also the prefix of its left subtree, and the total for 
its left subtree is the prefix for the right subtree. Applying this idea inductively, we get 
the following set of rules: 
 

• Compute the grand total by summing pairs, as before. 
• On completion, imagine the root receiving a 0 from its (nonexistent) parent.  
• All non-leaf nodes receiving a value from their parent, relay that value to their left 

child, and send their right child the sum of the parent’s value and their left child’s 
value; these are the prefixes of their child nodes. 

• Leaves add the value—the prefix—received from above. 
 
The values moving down the tree are the prefixes for the child nodes. (See Figure 1.3, 
where downward moving prefix values are in red.) 
 

 
Figure 1.3.  Computing the prefix sum. The black values, computed going up the tree, are from the 
summing by pairs algorithm; the red values, the prefixes, are computed going down the tree by a simple 
rule: send the value from the parent to the left; add the node’s intermediate sum to the value from the parent 
and send it to the right. 
 
The computation is known as the parallel prefix computation. It requires an up sweep and 
a down sweep in the tree, but all operations at each level can be performed concurrently. 
At most two add operations are required at each node, one going up and one coming 
down, plus the routing logic. Thus, the parallel prefix also has logarithmic time 
complexity.    
 
Many seemingly sequential operations yield to the parallel prefix approach.  

Parallel Programming is Challenging 
Though the algorithms are different, they remain intuitive. The programming, even 
knowing the algorithm can be challenging.  
 
To understand the difficulty of writing correct and efficient parallel programs, consider 
the problem of counting the number of 3's in an array.  This computation can be trivially 
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expressed in most sequential programming languages, so it is instructive to see what its 
parallel counterpart looks like.   
 
To simplify matters, let's assume that we will execute our parallel program on a multi-
core chip with two processors, see Figure 1.4.  This chip has two independent 
microprocessors that share access to an on-chip L2 cache.  Each processor has its own L1 
cache.  The processors also share an on-chip memory controller so that all access to 
memory is equidistant” from each processor.   

Figure 1.4.  Organization of a multi-core chip. Two processors, P0 and P1, have a private L1 cache and 
share an L2 cache. 
 
We will use a threads programming model in which each thread executes on a dedicated 
processor, and the threads communicate with one another through shared memory (L2).  
Thus, each thread has its own process state, but all threads share memory and file state. 
The serial code to count the number of 3's is shown below: 
 

 1 int *array; 
 2 int length; 
 3 int count; 
 4 
 5 int count3s () 
 6 {  
 7    int i; 
 8    count = 0; 
 9    for (i=0; i<length; i++) 
10    { 
11    if (array[i] == 3) 
12    { 
13       count++; 
14    } 
15    } 
16    return count; 
17 } 

 
To implement a parallel version of this code, we can partition the array so that each 
thread is responsible for counting the number of 3's in 1/t of the array, where t is the 
number of threads.  Figure 1.5 shows graphically how we might divide the work for t=4 
threads and length=16. 
 

Memory 

L2 

L1 L1 

P0 P1 
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Figure 1.5.  Schematic diagram of data allocation to threads. Allocations are consecutive indices. 
 
We can implement this logic with the function thread_create() , which takes two 
arguments—the name of a function to execute and an integer that identifies the thread's 
ID—and spawns a thread that executes the specified function with the thread ID as a 
parameter. The resulting program is shown in Figure 1.6. 
 
 1 int t;  /* number of threads */ 
 2 int *array; 
 3 int length; 
 4 int count; 
 5 
 6 void count3s () 
 7 { 
 8    int i; 
 9    count = 0; 
10    /* Create t threads */ 
11    for (i=0; i<t; i++) 
12    { 
13       thread_create (count3s_thread, i); 
14    } 
15  
16    return count; 
17 } 
18 
19 void count3s_thread (int id) 
20 { 
21   /* Compute portion of the array that this thre ad should work on */ 
22     int length_per_thread = length/t; 
23     int start = id * length_per_thread; 
24 
25     for (i=start; i<start+length_per_thread; i+)  
26     { 
27        if (array[i] == 3) 
28     { 
29        count++; 
30     } 
31     } 
32 } 

 
Figure 1.6 . The first try at a Count 3s solution using threads. 
 
Unfortunately, this seemingly straightforward code will not produce the correct answer 
because there is a race condition in the statement that increments the value of count  on 
line 29.  A race condition occurs when multiple threads can access the same memory 
location at the same time.  In this case, the problem arises because the statement that 

 2 3 0 2 3 3 1 0 0 1 3 2 2 3 1 0 array 

length=16  t=4 

 Thread 0  Thread 1   Thread 2  Thread 3 
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increments count  is typically implemented on modern machines as a series of primitive 
machine instructions: 
 

• Load count  into a register 
• Increment count  
• Store count  back into memory 

 
Thus, when two threads execute the Count3s_thread()  code, these instructions 
might be interleaved as shown in Figure 1.7. The result of the interleaved executions is 
that count  ⇔ 1 rather than 2.  Of course, many other interleavings can also produce 
incorrect results, but the fundamental problem is that the increment of count  is not an 
atomic operation, that is, uninterruptible.  
Figure 1.7.  One of several possible interleaving in time of references to the unprotected variable count  

illustrating a race. 
 
We can solve this problem by using a mutex to provide mutual exclusion.  A mutex is an 
object that has two states—locked and unlocked—and two methods—lock()  and 
unlock() .  The implementation of these methods ensures that when a thread attempts 
to lock a mutex, it checks to see if it is presently locked our unlocked. If locked, it waits 
until the mutex is in an unlocked state, before locking it, that is, setting it to the locked 
state.  By using a mutex to protect code that we wish to execute atomically—often 
referred to as a critical section—we guarantee that only one thread accesses the critical 
section at any time.  For the Count 3s problem, we simply lock a mutex before 
incrementing count , and we unlock the mutex after incrementing count , resulting in 
our second try at a solution, see Figure 1.8. 
 
 1 mutex m; 
 2 
 3 void count3s_thread (int id) 
 4 { 
 5   /* Compute portion of the array that this thre ad should work on */ 
 6    int length_per_thread = length/t; 
 7    int start = id * length_per_thread; 
 8  
 9    for (i=start; i<start+length_per_thread; i+) 
10    { 

Thread 1   Thread 2 
  count  ⇔ 0 
load 
    load 
    increment time 
increment 
store 
  count  ⇔ 1 store 
  count  ⇔ 1 



11 

11       if (array[i] == 3) 
12       { 
13          mutex_lock(m); 
14       count++; 
15       mutex_unlock(m); 
16    } 
17    } 
18 } 

 
Figure 1.8.  The second try at a Count 3s solution showing the count3s_thread()  with mutex 
protection for the count  variable. 
 
With this modification, our second try is a correct parallel program.  Unfortunately, as we 
can see from the graph in Figure 1.9, our parallel program is much slower than our 
original serial code.  With one thread, execution time is five times slower than the 
original serial code, so the overhead of using the mutexs is harming performance 
drastically.  Worse, when we use two threads, each running on its own processor, our 
performance is even worse than with just one thread; here lock contention further 
degrades performance, as each thread spends additional time waiting for the critical 
section to become unlocked. 
 

Figure 1.9. Performance of the second Count 3s solution. 
 
Recognizing the problem of lock overhead and lock contention, we can try implementing 
a third version of our program that operates at a larger granularity of sharing.  Instead of 
accessing a critical section every time count  must be incremented, we can instead 
accumulate the local contribution to count in a private variable, private_count  and 
only access the critical section of updating count  once per thread.  Our new code for 
this third solution is shown in Figure 1.10. 
 
 1 private_count[MaxThreads]; 
 2 mutex m; 
 3 
 4 void count3s_thread (int id) 
 5 { 
 6   /* Compute portion of the array that this thre ad should work on */ 
 7    int length_per_thread = length/t; 
 8    int start = id * length_per_thread; 
 9 

 Performance 

 serial  Try 2 

 0.91 

 5.02 
 6.81 

 t=1  t=2 
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10    for (i=start; i<start+length_per_thread; i++)  
11    { 
12       if (array[i] == 3) 
13    { 
14       private_count[t]++; 
15    } 
16    } 
17    mutex_lock(m); 
18    count += private_count[t]; 
19    mutex_unlock(m); 
20 } 

 
Figure 1.10. The count3s_thread()  for the third Count 3s solution using a private_count  array 
elements. 
 
In exchange for a tiny amount of extra memory, our resulting program now executes 
considerably faster, as shown by the graph in Figure 1.11. 

Figure 1.11. Performance results for the third Count 3s solution. 
 
We see that with one thread our execution is the same the serial code, so our latest 
changes have effectively removed locking overhead.  However, with two threads there is 
still performance degradation.  This time, the performance problem is more difficult to 
identify by simply inspecting the source code.  We also need to understand some details 
of the underlying hardware.  In particular, our hardware uses a protocol to maintain the 
coherence of its caches, that is, to assure that both processors “see” the same memory 
image:  If processor 0 modifies a value at a given memory location, the hardware will 
invalidate any cached copy of that memory location that resides in processor 1's L1 
cache, thereby preventing processor 1 from accessing a stale value of the data.  This 
cache coherence protocol becomes costly if two processors take turns repeatedly 
modifying the same data, because the data will ping pong between the two caches. 
 
In our code, there does not seem to be any shared modified data.  However, the unit of 
cache coherence is known as a cache line, and for our machine the cache line size is 128 
bytes.  Thus, although each thread has exclusive access to either private_count[0] 
or private_count[1] , the underlying machine places them on the same 128 byte 
cache line, and this cache line ping pongs between the caches as private_count[0] 
and  private_count[1] are repeatedly updated.  (See Figure 1.12.)  This 
phenomenon in which logically distinct data shares a physical cache line is known as 
false sharing.  To eliminate false sharing, we can pad our array of private counters so that 
each resides on a distinct cache line. See Figure 1.13.  

 0.91 

 Performance 

 serial  Try 3 

 0.91  1.15 

 t=1  t=2 
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Figure 1.12.  False Sharing. A cache line ping-pongs between the L1 caches and the L2 cache, because 
although the references to private_count don’t collide, they use the same cache line.  
 

 1 struct padded_int 
 2 { 
 3    int value; 
 4    char padding[32]; 
 5 } private_count[MaxThreads]; 
 6 
 7 void count3s_thread (int id) 
 8 { 
 9 /*Compute portion of the array this thread shoul d work on */ 
10    int length_per_thread = length/t; 
11    int start = id * length_per_thread; 
12 
13    for (i=start; i<start+length_per_thread; i++)  
14    { 
15    if (array[i] == 3) 
16    { 
17       private_count[t]++; 
18    } 
19    } 
20    mutex_lock(m); 
21    count += private_count[t].value; 
22    mutex_unlock(m); 
23 } 

 
Figure 1.13. The count3s_thread()  for the fourth solution to the Count 3s computations showing the 
private count elements padded to force them to be allocated to different cache lines. 
 
With this padding, the fourth solution removes both the overhead and contention of using 
mutexes, and we have finally achieved success, as shown in Figure 1.14. 
 

L2 

L1 L1 

P0 P1 
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Figure 1.14. Performance for the fourth solution to the Count 3s problem shows that one processor has 
performance equivalent to the standard sequential solution, and two processors improve the computation 
time by a factor off 2. 
 
From this example, we can see that obtaining correct and efficient parallel programs can 
be considerably more difficult than writing correct and efficient serial programs.  The use 
of mutexes illustrates the need to control the interaction among processors carefully.  The 
use of private counters illustrates the need to reason about the granularity of 
parallelism—that is, the frequency with which processes interact with one another.  The 
use of padding shows the importance of understanding machine details, as sometimes 
small details can have large performance implications.  It is this non-linear aspect of 
parallel performance that often makes parallel performance tuning difficult.  Finally, we 
have seen two examples where we can trade off a small amount of memory for increased 
parallelism and increased performance. 
 
The larger lesson from this example is more subtle.  Because small details can have large 
performance implications, there is a tendency to exploit details of the specific underlying 
hardware.  However, because performance tuning can be difficult, it is wise to take a 
longer term view of the problem.  By creating programs that perform well across a wide 
variety of platforms, we can avoid much of the expense of re-writing parallel programs.  
For example, solutions that rely on the fact that multi-core chips have only a few cores 
with low latency communication among cores will need to be re-thought when future 
hardware provides systems with larger communication latencies. 

Looking Ahead 
We began this chapter by lamenting the demise of the Free Lunch, which was phrased as 
a steady sequence of performance improvements provided transparently to programmers 
by the hardware.  In fact much of this performance improvement has come from 
parallelism.  The first ALU's were bit-serial, which quickly gave way to bit-parallel 
ALUs.  Additional parallelism in the form of further increases in data-path width 
produced additional performance improvements.  In the 1990's we saw the introduction 
of pipelined processors, which used parallelism to increase instruction throughput, 
followed by superscalar processors that could issue multiple instructions per cycle.  Most 
recently, processors have improved instruction throughput by executing instructions 
simultaneously and out of order.  A key point is that all of these forms of parallelism have 
been hidden from the programmer. They were available implicitly for no programmer 
effort. 
 

 Performance 

 serial  Try 4 

 0.91 
 0.51 

 t=1  t=2 

 0.91 
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Since there are obvious benefits to hiding the complexity of parallelism, an obvious 
question is whether we can implement parallelism at some level above the hardware, 
thereby extending the Free Lunch to higher levels of software?  For example, we could 
imagine a parallelizing compiler that transforms existing sequential programs and map 
them to new parallel hardware; we could imagine hiding parallelism inside of carefully 
parallelized library routines; or we could imagine hiding parallelism by using a functional 
language, which admits copious amounts of parallelism because of its language 
semantics.  All of these techniques have been tried, but none has solved the problem to 
date. 
 
The costs and benefits of hiding parallelism depend on the setting, the type of problem to 
be solved, etc.  In some settings, a parallelizing compiler is sufficient, in others libraries 
may be sufficient, and in others, parallelism will simply have to be exposed to the 
programmer at the highest level.  One goal of this book is to help readers understand 
parallelism so that they can answer such questions and others based on their specific 
needs. 

Summary 
This book provides a foundation for those who wish to understand parallel computing.  
Part 1 (Foundations) focuses on fundamental concepts.  Part 2 (State of the Art) then 
provides a few approaches to parallel programming that represent the current state of the 
art.  The goal is not to espouse these approaches or to describe these languages in 
exhaustive detail, but to provide a grounding in two low-level approaches and one high 
level approach so that practitioners can use them.  Another goal of Part 2 is to allow 
researchers to appreciate the limitations of these approaches so that they can help invent 
the solutions that will replace them in the future.  Part 3 (Hot Themes) discusses in more 
detail various trends in parallel computing, and Part 4 (Capstone Project) puts everything 
together to help instructors create a capstone project. 
 

Exercises 
1. Revise the original Summation computation along the lines of Count 3s to make it 

parallel. 
2. Using the binary encoding of the process ID, use the concepts illustrated in the 

Count 3s program to Sum Pairs algorithm. 
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Chapter 2: Parallel Computers 
 
If we're going to write good parallel programs, it's important to understand what parallel 
computers are.  Unfortunately, there is considerable diversity among parallel machines, 
from multi-core chips with a few processors to cluster computers with many thousands of 
processors.  How much do we need to know about the hardware to write good parallel 
programs?  At one extreme, intimate knowledge of a machine's details can yield 
significant performance improvements. For example, the Goto BLAS, basic linear 
algebra subroutines (BLAS) are machine specific programs for core computations hand-
optimized by Kazushige Goto that demonstrate enormous performance improvements.  
However, because hardware typically has a fairly short lifetime, it is important that our 
programs not become too wedded to any particular machine, for then they will simply 
have to be re-written when the next machine comes along.  This goal of portability thus 
tempts us to ignore certain machine details.   
 
To resolve this dilemma of needing to know the properties of parallel machines without 
embedding specifics into our programs, we will take an intermediate approach.  We will 
first discuss essential features that we expect all parallel computers to possess, with the 
view that these features are precisely those that portable parallel algorithms should 
exploit.  We then take a look at various features that are characteristic of various classes 
of parallel computers.  We close this chapter by exploring in more detail five very 
different parallel computers. 

First There is the RAM Model 
To design parallel algorithms, we need to understand our target parallel machine.  If we 
are to have any hope of writing portable parallel programs—specifically, performance 
portable programs that run well across a wide variety of parallel machines—then we 
need a single, accurate model of a parallel computer.  To reason by analogy, notice that 
sequential computing has long benefited from such a model: The random access machine 
(RAM) model is an abstract machine that stores both program and data in its memory and 
allows one instruction to be fetched and executed at every cycle. We will use an 
analogous idea for the parallel case, but first, let’s review how we apply the RAM model 
in sequential programming.  
 
The simplicity of the RAM model is essential, because it allows programmers to estimate 
overall performance based on instruction counts on the RAM model.  For example, if we 
want to find an item (searchee ) that might be in an array A of sorted items, we could 
use a sequential search or a binary search; see Figure 1.1.  Knowing the RAM model, we 
know that the sequential search will take an average of n/2 iterations of the for -loop to 
find the desired item, and that each iteration will typically require executing fewer than a 
dozen machine instructions.  The binary search is a slightly more complex algorithm to 
write, but its expected performance is approximately log2 n iterations of the while -loop, 
which will take fewer than two dozen machine instructions.  For n < 10 or so, sequential 
search is likely to be fastest; binary search will be best for larger values of n. 
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1 location = -1;    1 location = -1; 
2 for (j = 0; j < n; j++)  2 hi = n-1; 
3 {       3 lo = 0; 
4      if (A[j] == searchee)   4 while (lo != hi) 
5      {     5 { 
6        location = j;   6   mid=lo+floor((hi–lo+1) /2); 
7        break;    7  if (A[mid] == searchee) 
8      }      8      break; 
9 }      9  if (A[mid] < searchee) 
                                   10      hi = mid ; 
                                   11  else 
                                   12     lo = mid+ 1; 
                                   13 } 
Figure 2.1 . Two searching computations; (a) linear search, (b) binary search.  
 

The applicability of the RAM model to actual hardware is also essential, because if we 
had to constantly invent new models, we would have to constantly re-evaluate our 
algorithms.  Instead, this single long-lasting model has allowed algorithm design to 
proceed for many years without worrying about the myriad details of each particular 
computer.  This feat is impressive considering that hardware has enjoyed 35 years of 
exponential performance improvement and 35 years of increased hardware complexity. 
 
We note, of course, that the RAM model is unrealistic.  For example, the single cycle cost 
of fetching data is clearly a myth for current processors, as is the illusion of infinite 
memory, yet the RAM model works because for most purposes, these abstract costs 
capture those properties that are really important to sequential computers.  We also note 
that significant performance improvements can be obtained by customizing 
implementations of algorithms to machine details. 
 
And of course, the model does not apply to all hardware.  In particular vector processors 
which can fetch long vectors of data in a single cycle do not fit the RAM model, so 
conventional programs written with the RAM do not fare well on vector machines.  It 
was not until programmers learned to develop a new vector model of programming that 
vector processors realized their full potential. 
 

A Parallel Computer Model  

To translate the success of sequential algorithms to parallel computers, we need an 
idealized parallel computer that corresponds to the RAM model.  Like the RAM, this 
model should be minimal and as universal as possible.  The model that we will present is 
known for historical reasons as the Candidate Type Architecture, or simply the CTA.  

The CTA Model 
A schematic of the CTA parallel computer model is shown in Figure 2.2.  It is composed 
of P standard sequential computers, called processors or processor elements, connected 
together by an interconnection network, also called a communication network.  The 
processors, described by the RAM model, are composed of an execution engine and a 
random access memory, which stores both programs and data. The P+1st processor 
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(denoted by dashed lines) is the controller.  Its purpose is to assist with various 
operations such as initialization, synchronization, eurekas, etc.  Many parallel computers 
do not have an explicit controller, and in such cases processor p0 serves that purpose. 
 

    (a)     (b) 
 
Figure 2.2.  The CTA parallel computer model.  (a) The schematic shows the CTA as composed of P 
sequential computers connected by a interconnection network; the distinguished (by dashed lines) computer 
is the controller, and serves such clerical functions as initiating the processing.  (b) Detail of a RAM 
processor element.  See the text for further details. 
 
The processors are connected to each other by the interconnection network.  These 
networks are built from wires and routers in a regular topology.  Figure 2.3 shows several 
common topologies used for interconnection networks.  The best topology for a parallel 
computer is a design-decision made by architects based on a variety of technological 
considerations.  The topology is of no interest to programmers.  
 

2D Torus    <and others> 
Figure 2.3.  Common topologies used for interconnection networks; the interconnection network’s 
topology is of little concern to programmers.  
 
A network interface chip (NIC) mediates the processor/network connection.  The Figure 
2.2 schematic shows processors connected to the network by four wires, known as the 
node degree, but the actual number of connections is a property of the topology and the 
network interface design; it could be as few as one (bidirectional) connection, but 
typically no more than a half dozen.  Data going to or coming from the network is stored 
in the memory and usually read or written by the direct memory access (DMA) 
mechanism. 
  
Though the processors are capable of synchronizing and collectively stopping for 
barriers, they generally execute autonomously, running their own local programs.  If the 
programs are the same in every processor, the computation is often referred to as single 
program, multiple data, or SPMD computation.  The designation is of limited use, 
because even though the code is the same in all processors, the fact that they can each 
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execute different parts of it (they each have a copy of the code and their own program 
counter) allows them complete autonomy.1  
 
Data references can be made to a processor’s own local memory, which is supported by 
caches and performs analogously to standard sequential computers.  Additionally, 
processors can reference non-local memory, that is, the memory of some other processor 
element.  (The model has no global memory.)  There are three widely used mechanisms 
to make non-local memory references: shared-memory, one-sided communication, which 
we abbreviate 1-sided, and message passing.  The three mechanisms, described in a 
moment, place different burdens on programmers and hardware, but from the CTA 
machine model perspective, they are interchangeable. 
 
A key aspect of parallel computers is that referencing the local and the non-local memory 
requires different amounts of time to complete.  The delay required to make a memory 
reference is called memory latency.  Memory latency cannot be specified in seconds, 
because the model generalizes over many different architectures built of different design 
elements from different technologies.  So, latency is specified relative to the processor’s 
local memory latency, which is taken to be unit time.  This implies local memory latency 
roughly tracks processor rate, and we (optimistically) assume that local (data) memory 
can be referenced at the rate of one word per instruction.  Of course, local memory 
reference is influenced by cache behavior and many aspects of processor and algorithm 
design, making it quite variable.  An exact value is not needed, however. 
 
The non-local memory latency is designated in the CTA model by the Greek letter λ. 
Non-local memory references are much more expensive, having λ values 2-5 orders of 
magnitude larger than local memory reference times.  As with local memory reference, 
non-local references are influenced by many factors including technology, 
communication protocols, topology, node degree, network congestion, distance between 
communicating processors, caching, algorithms, etc.  But the numbers are so huge that 
knowing them exactly is unnecessary.  

Properties of the CTA 
To summarize the characteristics of our abstract machine, we have: 

• There are P processors, which are standard sequential computers executing local 
instructions 

• Local memory access time is the usual memory access time for the sequential 
processor 

                                                 
1 Two classifications commonly referred to in the literature, but not particularly relevant to the CTA model 
or our study are SIMD and MIMD. In single instruction stream, multiple data stream (SIMD) computers, 
there is a single program and all processors must execute the same instruction or no instruction at all.  In 
multiple instruction stream, multiple data stream (MIMD) computers, each processor potentially has a 
different program to execute.  Thus, MIMD and SPMD are logically equivalent:  The separate MIMD 
programs can be conceptually unioned together into one (MIMDà SPMD); conversely, optimize the 
SPMD code so each processor’s copy eliminates any code it never executes (SPMDà MIMD). 
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• Non-local memory access time, λ >> 1, can be between 2-5 orders of magnitude 
larger than local memory access time. 

• The low node degree implies a processor cannot have more than a few (typically 
one or two) transfers in flight at once. 

• A global controller (often only logical) assists with basic operations like initiation, 
synchronization, etc. 

Further observations will result from a more complete look at the interconnection 
network below. 
 
The consequences of these properties for programming parallel computers can be 
encapsulated into a simple rule: 
 

Locality Rule.  Fast programs tend to maximize the number of local memory 
references and minimize the number of non-local memory references.  

 
This guideline must remain foremost in every parallel programmer’s thinking while 
designing algorithms. 
 

 
Though interprocessor communication is extremely expensive, it is helpful if 
programmers are aware of the effects of certain patterns of communication: 

1. All processors can transmit at once; that is, communication is a parallel activity. 
Referring to the topologies of Figure 2.3 notice that there can in principle be a 
transmission along each edge simultaneously. 

2. The processor graph is not complete, that is, not fully connected. Thus, some 
communication operations will be indirect, progressing through a series of 
routers. 

3. Processors are only sparsely connected, which is a graph theoretic term implying 
(among other things) that the topology doesn’t have the capacity to perform 
certain communication operations without serious congestion—all-to-all 
communication or transposes, for example. 

Distilling the observations, (1) means a lot can be transmitted in one “communication 
time,” (2) means that times will be sensitive to the pattern of communication, and (3) 

Applying The Locality Rule. Exploiting locality is the basis of many examples 
showing how parallel programming differs from sequential programming. Scalar 
computation is one:  Imagine a computation in which the processors need a new 
random number r for each iteration of an algorithm.  One approach is for one 
processor to store the seed and generate r on each cycle; then, all other processors 
reference it.  A better approach is for each processor to store the seed locally, and to 
generate r itself on each cycle, that is, redundantly.  Though the second solution 
requires many more instructions to be executed, they are executed in parallel and so 
do not take any more elapsed time than one processor generating r alone.  More 
importantly, the second solution avoids non-local references, and since computing a 
random number is much faster than a single non-local memory reference, the overall 
computation is faster. 
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means some patterns are much worse than others.  (Some parallel computers do not have 
all of these properties, but we will adjust the model for them below.) 
  
The CTA architecture mentions P processors, implying that the machine is intended to 
scale.  Programmers will write code that is independent of the exact number of 
processors, and the actual value will be supplied at runtime.  It is a fact that λ will 
increase as P increases, though probably not as fast; doubling the number of processors 
will usually not double λ in a well engineered computer. 
 
In summary, the CTA is a general purpose parallel computer model that abstracts the key 
features of all scalable (MIMD) parallel computers built in the last few decades.  Though 
there are variations on the theme (discussed below), the properties that the CTA exhibits 
should be expected of any parallel computer. 

Memory Reference Mechanisms 
The CTA model does not specify whether the memory referencing mechanism is by 
shared memory, 1-sided or message passing communication.  All three are commonly 
used and are described in the next sections. 

Shared memory  
The shared memory mechanism is a natural extension of the flat memory of sequential 
computers.  It is widely thought to be easier for programmers to use than the other 
mechanisms, but it has also been frequently criticized as being harder to write a fast 
program.  Shared memory, which presents a single coherent memory image to the 
multiple threads, generally requires some degree of hardware support to make it perform 
well. 
 
In shared memory all data items, except those variables explicitly designated as private to 
a thread, can be referenced by all threads.  This means that if a processor is executing a 
thread with the statement 
 

x = 2*y; 

 
the compiler has generated code so that the processor and shared memory hardware can 
automatically reference x  and y .  Generally, every variable will have its own home 
location, the address where the compiler originally allocated it in some processor’s 
memory.  In certain implementations all references will fetch from and store to this 
location.  In other implementations a value can float around the processor’s caches until it 
is changed.  So, if the processor had previously referenced y , then the value might still be 
cached locally, allowing a local reference to replace a non-local reference.  When the 
value is changed, all of the copies floating around the caches must be invalidated, 
indicating that they are stale values, and the contents of the home location must be 
updated.  There are variations on these schemes, but they share the property of trying to 
use cache hardware to avoid so many non-local references.  
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Notice that although it is easy for any thread to reference a memory location, the risk is 
that two or more threads will attempt to change the same location at the same or nearly 
the same time.  Such “races” have a great potential for introducing difficult-to-find bugs 
and motivate programmers to scrupulously protect all shared memory references with 
some type of synchronization mechanism.  See Chapter 6 for more information.  

1-sided 
One-sided communication, also known on Cray machines by the name shmem, is a 
relaxation of the shared memory concept as follows: It supports a single shared address 
space, that is, all threads can reference all memory locations, but it doesn’t attempt to 
keep the memory coherent. This change places greater burdens on the programmer, 
though it simplifies the hardware because if a processor caches a value and another 
processor changes its home location, the cached value is not updated or invalidated. 
Different threads can see different values for the same variable.  
 
In 1-sided all addresses except those explicitly designated as private can be referenced by 
all processes. References to local memory use the standard load/store mechanism, but 
references to non-local memory use either a get()  or put() . The get()  operation 
takes a memory location, and fetches the value from the non-local processor’s memory. 
The put()  operation takes both a memory location and a value, and deposits the value 
in the non-local memory location. Both operations are performed without notifying the 
processor whose memory is referenced. Accordingly, like shared memory, 1-sided 
requires that programmers protect key program variables with some synchronization 
protocol to assure that no processes mistakenly use stale data. 
 
The term “one-sided” derives from the property that a communication can be initiated by 
only one side of the transfer.  

Message Passing  
The message passing mechanism is the most primitive and requires the least hardware 
support.  Being a “two-sided” mechanism, both ends of a communication must 
participate, which requires greater attention from the programmer.  However, because 
message passing does not involve shared addresses, there is no chance for races or 
unannounced modifications to variables, and therefore less chance of accidentally 
trashing the memory image.  There are other problems, discussed momentarily. 
 
Because there are no shared addresses, processes refer to other processes by number.  
(For convenience, assume one process per processor.)   Processes use the standard 
load/store mechanism for all data references, since the only kind of reference they are 
allowed are local.  To reference non-local data, two basic operations are available, 
send()  and receive, usually abbreviated recv() .  The send()  operation takes as 
arguments a process number and the address in local memory of a message, a sequence of 
data values, and transmits the message to the (non-local) process.  The recv()  
operation takes as arguments a process number and an address in local memory, and 
stores the message from that process into the memory.  If the message from the process 
has not arrived prior to executing the recv() , the receiver process stalls until the 
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message arrives.  There are several variations on the details of the interaction. Both sides 
of the communication must participate.  
 
Notice that message passing is an operation initiated by the owner of the data values, 
implying that a protocol is required for most processing paradigms.  For example, when a 
process pr completes an operation on a data structure and is available to perform another, 
it cannot simply take one from the work queue if the queue is stored on another 
processor.  It must request one from the work queue manager, mgr.  But that manager, to 
receive the request, must anticipate the situation and have an (asynchronous) recv()  
waiting for the request from pr.  Though such protocols are cumbersome, they quickly 
become second nature to message passing programmers. 
 
Programming approaches that build literally upon message passing machines are often 
difficult to use because they provide two distinct mechanisms for moving data:  memory 
references are used with a local memory, and message passing is used across processes.   
Chapter 8 explains how higher level programming languages can be built on top of 
message passing machines. 
 

Brief Overview of Parallel Computers  
Though we will not need to learn the specifics of parallel architectures, we can clarify our 
abstract model by giving examples of real machines.  In this section we consider very 
briefly the following implemented computers: 

• Sun Fire E25K —A symmetric memory processor 
• Red Storm – Commodity processors with engineered interconnect 
• Cell – High performance, but heterogeneous processors 
• Clusters – Building with Myrinet or Infiniband 
• Blue Gene – Snazzy name, weenie processors; top dog on the Top 500 

Alternative Models. On encountering the CTA for the first time, it might seem 
complicated; isn’t there a simpler idealization of a parallel computer? There is. It is 
called the PRAM, parallel random access machine. It is simply a large number of 
processor cores connected to a common, coherent memory; that is, all processors 
operate on the global memory and all observe the (single) sequence of state changes. 
Like the RAM, memory access is “unit time.” One complication of the PRAM model 
is handling the case of two (or more) processors accessing the same memory location 
at the same time. For reading, simultaneous access is often permitted. For writing, 
there is a host of protocols, ranging from “only one processor accesses at a time” to 
“any number can access and some processor wins.” There is a huge literature on all of 
these variations. The problem with the PRAM for programmers intending to write 
practical parallel programs is that by specifying unit time for all memory accesses, the 
model leads programmers to develop the “wrong” algorithms. That is, programmers 
exploit the unimplementable unit cost memory reference and produce inefficient 
programs. For that reason the CTA explicitly separates the inexpensive (local) from 
the expensive (non-local) memory references. Modeling parallel algorithms is a 
complex topic, but the CTA will serve our needs well. 
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Though these machines only begin to show the variety of parallel computer architecture, 
they suggest the origins of our abstract machine model. <To be completed> 

A Closer Look at Communication 
The large non-local memory latency, λ, specified by the CTA model represents an 
extreme cost.  To the extent that we can avoid it, our programs will run faster.  Reducing 
its impact will be at the heart of nearly all of our programming efforts.  We might 
wonder, “Can’t something be done about reducing communication latency?”  It would 
certainly simplify programming. In this section we consider that question. 
 
For P processors to communicate directly with each other, that is, for processor pi to 
make, say, a DMA reference to memory on processor element pj requires that there be 
wires connecting pi and pj.  A quick review of the topologies in Figure 2.3 indicates that 
not all pairs of processors are directly connected.  Technically, no processor is directly 
connected to any other; every processor is at least one hop from any other because it must 
“enter” the network.  However, if in all cases pairs of processors could communicate in 
one hop we could count this as a “direct” connection, that is, not requiring navigation 
through the network.  For the topologies of Figure 2.3 information must be switched 
through the network and is subject to switching delays, collisions, congestion, etc.  These 
phenomena delay the movement of the information. 
 
For sound mathematical reasons, there are essentially two ways to make direct 
connections between all pairs of P processors: a bus and a crossbar; see Figure 2.4.  
 

• In the bus design all processors connect to a common set of wires.  When 
processor pi communicates with processor pj, they transmit information on the 
wires; no other pair of processors can be communicating at that time, because 
their signals would trash the pi-pj communication.  Ethernet is a familiar bus 
design.  Though there is a direct connection, a bus can only be used for one 
communication operation at a time; we say the communication operations are 
serialized. 

 
• The crossbar overcomes the problem of one-at-a-time communication by 

connecting each processor to every other processor, which allows any set of 
distinct pairs of processors to communicate simultaneously.  This is ideal from a 
computational perspective, but it is too expensive.  The number of wires 
necessary to implement a crossbar grows as n2, making it unrealistic except for 
very small computers, say P=16 or fewer.   

 
With just these two basic designs available direct connection is possible only for a small 
number of processors, either to reduce the likelihood that communication operations 
contend (bus) or reduce the cost of the device (crossbar). 
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   (a)     (b) 
 
Figure 2.4.  Schematics for directly connect parallel computers; (a) bus-based, (b) crossbar-based, where a 
solid circle can be set to connect one pair of incident wires. 
 
Because of the difficulties of direct connections, architects have invented many 
communication networks with varying topologies and protocols in order to build 
computers that can scale.  There is a large literature on the subject, and Figure 2.3 
indicates only a few representatives.  All of these interconnection networks provide less 
connectivity than the crossbar with fewer resources, and therefore more delays, but at a 
lower cost.  The greater delays force us to adopt the large λ value. 

Three Special Cases 
Though scalable parallel computers are well modeled by the CTA abstract machine, three 
cases require us to adjust our thinking slightly: 
 

• Symmetric Multiprocessors (SMPs) and other bus architectures 
• Multicore-processor chips  
• Cluster computers built with Ethernet 

 
In all cases the issues concern how the processors are connected. 

SMP Architectures 
Symmetric multiprocessors are bus-based parallel computers that maintain a coherent 
memory image.  Being bus-based implies that they are necessarily small.  SMPs achieve 
high performance in two ways: first, by being small and necessarily clustered near to the 
bus, they tend to be fast; second, by using sophisticated caching protocols, SMPs tend to 
use the shared resource of the bus efficiently, reducing the likelihood that multiple 
communication operations will contend for the bus and possibly be delayed.  
 
The bus-design prevents the SMP from matching the characteristics of the CTA.  For 
example, the serialized use of the bus violates the “parallel communication” property; the 
bus effectively causes high node degree, etc.  However, SMPs are well designed, and 
their non-local memory reference times2 are only a small factor more expensive than their 

                                                 
2 For those familiar with these architectures, non-local reference times here would refer to either a main-
memory reference, or a reference that is dirty in another processor’s cache. 
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cache hit times, which is probably the relevant distinction.  Accordingly, SMPs perform 
better than the CTA model predicts, making it reasonable to treat them as CTA machines: 
The observed performance is unlikely to be worse than that predicted by the CTA model, 
and it will usually be much better; more importantly, algorithms that are CTA-friendly 
exploit locality, a property that is very beneficial to SMPs. 

Multicore Chips 
Being relatively new, multicore processor chips presently show a broad range of designs 
that make it difficult at the moment to generalize.  
 
The Cell processor, mentioned above, has a single, general purpose core together with 
eight specialized cores with more SIMD operation. This architecture, originally designed 
for gaming, has high bandwidth communication among processors making it extremely 
effective at processing image data. The Cell extends to general parallel computation, too, 
but at the moment has not been well abstracted. 
 
The AMD and Intel multi-core processors are more similar to each other than to the Cell, 
though they have significant differences. Each has multiple general purpose processors 
connected via the L2 cache, as illustrated in Figure 1.4. As a first approximation, both 
chips can be modeled as SMPs because of their coherency protocols. Because the cores 
can communicate faster than predicted by the CTA, their performance will tend to better 
than predicated by the CTA. As before, using CTA-friendly algorithms emphasizes 
locality, which is good for all parallel computers. Moreover, as the technology advances 
with more cores and greater on-chip latencies, higher non-local communication times are 
inevitable, making CTA-friendly algorithms even more desirable.   

Cluster Computers 
Cluster computers are a popular parallel computer design because they are inexpensively 
and easily constructed out of commodity parts, and because they scale incrementally.  If 
the cluster is built using networking technologies, for example, Infiniband or Myrinet, to 
create a true interconnection network, we call it a networked cluster and observe that it is 
properly modeled by the CTA abstraction.  If instead the cluster is built using an Ethernet 
for communication, then it is not.  As mentioned above, Ethernet is a bus technology, and 
so it requires that distinct but contending communication operations be serialized. Unlike 
SMPs, however, the departure from the model cannot be ignored. 
 
Specifically, the CTA models computers that have parallel communication capabilities.  
A practical way to think about parallel communication without knowing anything about 
the interconnection network, is to imagine a listing of the P processors p0, p1, p2, …, pP-1, 
and notice that the communication properties of the CTA would permit each processor to 
communicate with the next processor in line simultaneously.  This is possible for all of 
the topologies in Figure 2.3, and for almost all interconnection networks ever proposed; 
at worst, it is possible in as few as three λ times.  A bus does not have this property, of 
course. The P communication operations would have to be serialized.  
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In the SMP case, small P and engineering considerations ensured that the non-local 
communication would only be a small factor slower than local communication time, well 
within out 2-5 orders of magnitude guideline for λ.  For clusters, λ is large. Networked 
clusters are nevertheless well modeled.  Ethernet clusters, however, must serialize their 
contending communication operations, so they do not meet the specifications of the CTA.  
Performance predictions for computations involving considerable communication will be 
low.  
 
We will accept predictions by the CTA in the case of SMPs, because when they are 
wrong, the performance will be better than expected. Further, programs that accord well 
with the CTA will emphasize locality, which the cache-centric SMP design can exploit.  
But the CTA is not a good model for Ethernet clusters.  

Applying the CTA Model 
Recall that in Chapter 1 we solved the Count 3s problem. We began with a 
straightforward solution (Try1), found that it had a race and corrected that (Try 2), found 
that the terrible performance was due to a common count  variable and corrected that 
(Try 3), and found that performance wasn’t yet good enough due to false sharing. The 
final program (Try 4) is achieved our performance goal, though in Chapter 4 we’ll find 
one more improvement to make to it.  
 
Would the CTA have been a good guide to programming Count 3s? Yes. The CTA, being 
independent of the actual communication mechanism (shared memory) or caching, would 
not have guided us with Try 2 or Try 4, but it would have directed us to avoiding the 
mistake that was fixed with Try 3. The problem was the single global variable count , 
and the lock contention caused my making updates to it. The model would have told us 
that using a single global variable means that nearly all references will be non-local, and 
therefore incur λ overhead just to update the count; we would know that a better scheme 
would be to form a local count to be combined later. Guided by the model, the error 
would not have occurred and we would have written a better program in the first place. 
 
Notice that the model predicted the problem (single global variable) and the fix (local 
variables), but not the exact cause. The model worried about the high cost of referencing 
the global variable, while the actual problem was lock contention.  The different 
explanations are not a problem as long as the model identifies the bad cases and directs us 
to the correct remedy, which it did. The CTA is not a real machine. It generalizes a huge 
family of machines, and so cannot possibly match the implementation of each one. But to 
give enough information for writing quality programs, it provides general guidance as to 

Ethernet Clusters. To get good performance from an Ethernet cluster, it is best to 
run programs with the characteristic that each processor is assigned a large amount of 
communication-free computation to perform, say λP instructions worth or more, 
between each communication operation. Such compute-intensive problems are 
common.  They have the property that although there can be contending 
communication, it will be sufficiently infrequent to give good utilization. 
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the operation of a parallel computer. Some implementations do have a memory latency 
problem referencing the global variable; some don’t, but they have other problems, like 
contention or even stranger problems. Different implementations will manifest the 
fundamental behaviors of parallel computation in different ways. The CTA models 
behavior; it doesn’t describe a physical machine.  

Summary 
Parallel computers are quite diverse, as the five computer profiles indicated   It would be 
impossible to know the hardware details of all parallel machines and to write portable 
programs capable of running well on any platform.   To solve the problem, we adopted 
the CTA, an abstract parallel machine, as the basis for our programming activities.   
Thinking of the abstract machine as executing our programs (in the same way we think of 
the RAM (von Neumann machine) executing our sequential programs) lets us write 
programs that can run on all machines modeled by the CTA, which represent virtually all 
multiprocessor computers. 
 

Exercises 
1. Suppose four threads performed the computations illustrated in Figure 1.1 and 

1.2. (Assume a lock protected global variable permanently allocated to one thread 
for 1.1.) What is the communication cost, λ, predicted by the CTA for adding 
1024 numbers for each computation?  

 
Answer. For algorithm 1.1, 256, because three of the threads make non-local 
references. For algorithm 1.2, 2, because all work is local until the final 
combining, which has two levels. 

2. Like Ex. 1, but revising the Figure 1.1 algorithm so each thread keeps a local copy 
of the count. 

 
Answer. For algorithm 1.1, 1, because each three threads must update the global 
count.  
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Chapter 3: Understanding Parallelism  

Introduction 
The advantages of parallelism have been understood since Babbage’s attempts to build a 
mechanical computer. Almost from the beginning of electronic computation parallel 
hardware has been used in the implementation of sequential computers. Efforts to build 
true parallel computers began in the 1970’s and have continued at an accelerating pace, 
driven by advances in silicon technology. Industrial and academic researchers have 
studied every imaginable aspect of parallel computation. There is much to learn, and it 
cannot all be presented in complete detail in a single chapter. So, we begin with an 
informal tour of almost the entire parallel landscape, knowing that many sights will 
demand further attention in later chapters. For now, it suffices to gain an appreciation of 
the opportunities and challenges of parallel computation. 
 
We look at parallelism from different perspectives. The first is performance, since 
improving performance is the point of parallel computation. The second perspective 
concerns the structural features of an algorithm that contribute to or hinder performance. 
Finally, we discuss general parallel problem solving approaches.   

Opportunities For Performance Improvement 
As the add-a-vector-of-numbers example of Chapter 1 indicates, programs can embody 
different amounts of parallelism despite requiring the same amount of work (in that case 
the same number of additions). The naïve summation loop produced a sequential 
specification, which if executed as specified, requires O(n) time because no provision 
was made for other processes to contribute to the solution. The tree summation was 
described in a way that allows sub-computations to be performed simultaneously, which 
with sufficient processing capacity, would lead to an O(log2  n) time execution. Is this the 
best solution available? What limitations might prevent the best performance? Are there 
opportunities that are not being exploited? We discuss such issues in this section.  
 

Parallelism vs. Performance 
Ideally, a problem that takes T time to execute on a single processor can be solved in T/P 
time if we can formulate a solution to the problem that exhibits P-fold parallelism.  Thus, 
it is tempting to think that our goal is simply to maximize parallelism, but this is not true. 
 
Consider again the summation of Chapter 1 chapter.  For n values, we maximize 
parallelism by using P=n/2 processors, which allows us in each step to perform all pair-
wise additions simultaneously.  The total algorithm takes O(log2 n) time using P 
processors.   

Inherently Sequential . There are computations that are inherently sequential, meaning that 
all algorithms to solve them have limited parallelism. One such computation is the circuit 
value problem, which takes a circuit specification over logical operators OR, AND and NOT 
taking m inputs, and an m-length binary sequence, and evaluates the circuit on the input 
sequence.  
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Now consider a variant of the algorithm, which we call the Schwartz algorithm. It makes 
each processor responsible for log2 n data items instead of 2 items.  (In Figure 3.1, the 
leaves, which represent data stored on the parent processor, are a total of log2 n items.)  
The idea is that because the height of the summation tree is log2 n, the tree height defines 
the computation time; by beginning with each processor finding the sum of log2 n local 
elements, the execution time is only doubled over the naïve solution. That is, in 
essentially the same time a significantly larger problem can be solved. 
 
Because we are looking at this idea somewhat “backwards,” let’s put it into numerical 
terms. Adding a 1000 items using the original tree-based summation takes 10 steps (log2 
1000) using 500 threads of concurrency.  If each leaf, rather than being a singleton, were 
a sequence of 10 items, then a 10,000 item summation could be performed by the same 
number of threads in 28 steps (9 for each local sum, and 10 to combine them). Using the 
original summation solution would have required 5,000 threads of concurrency and 
completed the task in 14 steps. Often, the amount of available parallelism is very small 
compared to the amount of data, making the idea very attractive. 
 
Schwartz’s algorithm shows that trying to maximize parallelism is not always smart. In 
our original algorithm to process nlog2 n data, we would use P= (n log2 n)/2 processors, 
and we would get a running time of O(log2 (nlog2 n)) = O(log2 n + loglog2 n) time. In 
essence, we use a larger tree having greater depth with the original algorithm. Schwartz’s 
algorithm is not only a simple way to see that maximizing parallelism is not always 
smart, but it is an excellent solution technique. We will apply it often in Chapter 4. 
 

 
Figure 3.1.  Schwartz’s approach to the summation computation. Processing nodes are indicated by boxes; 
the leaves each represent O(log2 n) items. 
 
Our discussion of Schwartz's algorithm makes two points.  First, parallelism alone is not 
the goal.  Instead, we need to consider the resources used to exploit this parallelism.  
Second, when performance is the goal, we need to understand what performance means.  
The next two sections describe these two topics in turn. 
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Threads and Processes 
To help us reason about the resources needed to exploit parallelism, we will use two 
common abstractions for encapsulating resources—threads and processes. 
 
A thread refers to a thread of control, logically consisting of program code, a program 
counter, a call stack, and some modest amount of thread-specific data including a set of 
general purpose registers.  Threads share access to the memory, so threads can 
communicate with other threads by reading from or writing to memory that is visible to 
them all. (Threads also share access to the file system.)  Programming with threads is 
known as thread-based parallel programming or shared memory parallel programming.  
 
A process is a thread of control that has its own private address space. When multiple 
processes execute concurrently, they require some mechanism for communicating with 
each other, since they do not share memory. One cumbersome mechanism might be to 
communicate through the file system, but a more direct approach is to send messages 
from one process to another.  Parallel programming with processes is often referred to as 
message passing parallel programming or non-shared memory parallel programming.  A 
key issue in message passing parallel programming is problem decomposition, since 
portions of the computation’s data structures must be allocated to the separate process 
memories, that is, they usually cannot be wholly replicated within each process. 
 
In addition to the obvious difference between threads and processes—the distinction 
between shared and separate memory spaces—there are also distinctions of “weight” and 
“agility.” Threads are usually seen as “lighter weight,” being created and completing 
dynamically throughout a computation. Processes, by contrast, are “heavier weight,” 
taking more time to setup and tear down. Though created dynamically, usually in 
response to input conditions, they often persist throughout most or all of a computation. 
Processes can “come and go,” but with the (memory) setup time being much greater, they 
tend to be longer lived. 

Latency and Bandwidth 
Since performance is the goal, it is important to agree upon what performance means.  
We often speak of speeding up a computation, but realize that there are two possible 
goals: latency and bandwidth. 
 
Latency.  Latency refers to the amount of time it takes to complete a given piece of work.   
 
Bandwidth.  Bandwidth instead refers to the amount of work that can be completed per 
unit time. 
 
Thus, latency is measured in terms of time or some derivative of time, such as clock 
cycles.  Bandwidth is measured in terms of work per unit time.  The distinction between 
latency and bandwidth is important because they represent different issues with different 
solutions.  For example, consider a web server that returns web pages.  The web server’s 
bandwidth can be increased by using multiple processors that allow multiple requests to 
be served simultaneously, but such parallelism does not reduce the latency of any 
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individual request.  Alternatively, a web server could employ multiple physically 
distributed caches that can both decrease the latency of individual requests—for clients 
that are close to one of the caches—and increase the server’s overall bandwidth.  In many 
cases, latency can be reduced at the cost of increased bandwidth.  For example, to hide 
long latencies to memory, modern microprocessors often perform data prefetching to 
speculatively bring data to caches, where its latency to processors is lower.  However, 
because prefetching invariably brings in some data that is not used, it increases the 
demand for memory system bandwidth.  This idea of trading bandwidth for latency is not 
new:  The Multics operating system used the idea in the 1960s when it introduced the 
notion of context switching to hide the latency of expensive disk I/O. 
 
The use of latency and bandwidth is common in some, but not all, parallel computation 
subcommunities, so our use of it throughout this book somewhat broadens its application. 
We will use latency to refer to the length of execution time or the duration of the 
computation, and bandwidth to refer to the capacity of a processor, its instruction 
execution rate.  We have slightly expanded the scope of latency and bandwidth to unify 
terminology. There should be little confusion when encountering alternate terms in the 
literature.    

Sources of Reduced Performance 
While we ideally would hope that P processors could speed up a computation by a factor 
of P, there are many reasons why this might not be the case.  We explore these factors in 
this section. 
 
Overhead. Any cost that is incurred in the parallel solution but not in the serial solution is 
considered overhead.  There is overhead in setting up threads and processes to execute 
concurrently and also some for tearing them down, as the following schematic indicates.  

 
Because memory allocation and its initialization are expensive, processes incur greater 
setup overhead than threads. After the first process is set up, all subsequent thread and 
process setups incur overhead not present in a sequential computation. These costs must 
be charged against the benefits of parallelism; see the section, Measuring Performance 
below.  
 
Communication. Communication among threads and processes is a major component of 
overhead. Since a sequential computation doesn’t have to (cannot!) communicate, all 
communication is a charge against the benefits of parallelism. These costs have been 
described in detail in Chapter 2, and though they are different depending on the 
communication mechanism chosen—shared memory, 1-sided or message passing—they 
are all substantial compared to a local memory reference. To be clear, there is always a 

Thread 

Process 

Setup Tear Down 
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communication charge unless the data is local; the components of the charge are given in 
Table 3.1. 
 
Synchronization.  Synchronization is a form of overhead that arises when one thread or 
process must wait for another.  Synchronization is implicit in many forms of message 
passing, while synchronization is often explicit when programming with threads. 
 
 
Table 3.1:  Sources of communication overhead by communication mechanism. 
Mechanism Components of Communication Cost 
Shared Memory Transmission delay, coherency operations, reference protection, 

unavailability 
1-sided Transmission delay, reference protection, unavailability 
Message Passing Transmission delay, data marshalling, message formation, 

demarshalling, unavailability 
   
Contention.  Contention is the degradation of system throughput caused by competition 
for a shared resource.  For example, we saw in Chapter 1 how lock contention can reduce 
network throughput by creating excessive network traffic, and we saw how false sharing 
can degrade performance by causing data values to bounce back and forth among 
different caches. 
 
Idle Time. When we conceptualize a parallel computation, we imagine that the 
processors are all working all of the time, but they might not be. The main reason is that a 
process or thread cannot proceed because there is no work to do or because the needed 
data is not yet available. As the next section on Dependences demonstrates, idle time 
manifests itself in many ways.  
 
Load Imbalance.  One common source of idle time is an uneven distribution of work to 
processors, which is known as load imbalance.  For example, the Schwartz algorithm has 
an advantage over the standard prefix summation because the former keeps all processors 
busy with useful work much of the time, thereby allowing larger (by a factor of log2 n) 
problems to be solved with the same number of processors.  
 
Balancing load is straightforward for easy tasks like summation, but most computations 
are much more complex. We sometimes display the allocation of array computation, 
especially for the process model, by showing the array and its decomposition among 
processors; Figure 3.2 shows a schematic example for the LU Decomposition 
computation, a widely used algorithm for solving systems of linear equations. As shown 
in Figure 3.2(a) the LU computation builds a lower (black) and upper (white) triangle 
beginning at left; the area of the computation is shown in gray, and after every iteration 
of the computation one row and one column are added to the completed portion of the 
array. Figure 3.2(b) shows sixteen processors logically arranged as a grid, and (c) shows 
how the array might be allocated to processor memories in a process model of the 
computation. Though the allocation of data is balanced, i.e. each processor is assigned 
roughly the same number of array elements, the work is not balanced. For example, after 
the first 25% of the rows and columns have been added to the result arrays, there is no 
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more work to do for the seven processors on the left and top sides of the array. That is, 
nearly half of the processors will be idle after one quarter of the rows/columns have been 
processed. Though it is true that the amount of work per iteration diminishes as the active 
(gray) portion of the array shrinks, this allocation of work is still quite unbalanced. 
Indeed, the last 25% of the rows/columns are computed by processor PF. Or putting it 
another way, the last 25% of the rows/columns are computed sequentially. 
 
Redundant Computation. P processors will not speed up a sequential computation by a 
factor of P if the parallel version of the computation requires more instructions. But extra 
instructions are almost always required. For example, if the sequential computation 
requires the program to loop k times, and if the parallel computation also requires each 
process to loop k times, then the loop overhead instructions—initialization, incrementing, 
testing for termination—are not sped up by parallelism. As another example, recall the 
example of generating a random number from Chapter 2; although it was smart to repeat 
the computation to avoid non-local communication, having each process generate its own 
random number means there will be no parallel improvement of that portion of the 
computation. Of course, the programmer’s goal is to make most of the computation non-
redundant. 
 

(a)       (b)    (c) 
Figure 3.2:  Schematic diagram of (a) the LU Decomposition algorithm, (b) sixteen processors (indexed in 
hexadecimal) arranged in a logical grid, and (c) the allocation of the array elements to the processors, e.g. 
processor P0 is assigned that part of the array in the upper left that has completed. 
 

Parallel Structure 
By the end of the chapter we will conclude that the ideal parallel computation is one that 
has large blocks of independent computation that can be executed concurrently. With 
separate parts of the problem being performed on different processors, there will be little 
idle time and the solution will be found fast. To prepare to embrace “blocks of 
independent” computation, we must understand what “dependent” computation is. That 
is, our ideal case will be formed from normal computation in which we avoid certain 
performance limiting characteristics of programming. In this section we discuss such 
features in terms of the concept of dependences. 

Dependences  
A dependence is an ordering relationship between two computations. Dependences can 
arise in different ways in different contexts.  For example, a dependence can occur 
between two processes when one process waits for a message to arrive from another 
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process.  Dependences can also be defined in terms of read and write operations.  
Consider a program that requires that a particular memory location be read after an 
update (write) to the same memory location; as an example, recall the count  variable in 
Figure 1.7.  In this case, there is a dependence between the write operation and the read 
operation.  If the order of the two operations is swapped, the value read would not reflect 
the update, so the dependence would be violated by the swap and the semantics of the 
program would be altered. Any execution ordering that obeys all dependences will 
produce the same result as the originally specified program.  Thus, the notion of 
dependences allows us to distinguish those execution orderings that are necessary for 
preserving program correctness from those that are not. 
 
Dependences provide a general way to describe limits to parallelism, so they are not only 
useful for reasoning about correctness, but they also provide a way to reason about 
potential sources of performance loss.  For example, a data dependence that crosses a 
thread or process boundary creates a need to synchronize or communicate between the 
two threads or processes.  By knowing the data dependence exists we can understand the 
consequences for parallelism even if we don’t know what aspect of the computation 
caused the ordering relationship in the first place.  To make this point more concrete, let 
us consider a specific type of dependence, known as data dependences. 
 
Data dependence.  A data dependence is an ordering on a pair of memory operations that 
must be preserved to maintain correctness.  There are three kinds of data dependences: 

• Flow dependence:  read after write  
• Anti dependence:  write after read 
• Output dependence:  write after write 

 
Flow dependences are also called true dependences because they represent fundamental 
orderings of memory operations.  By contrast, anti and output dependences are 
collectively referred to as false dependences because they arise from the re-use of 
memory rather than from a fundamental ordering of the operations.   
 
To understand the difference between true and false dependences, consider the following 
program sequence: 
 

1.  sum = a + 1; 
2.  first_term = sum * scale1; 
3.  sum = b + 1; 
4.  second_term = sum * scale2; 

 
There are flow dependences (via sum) relating lines 1 and 2, and there are flow 
dependences relating lines 3 and 4. Further, there is an anti dependence on sum between 
line 2 and line 3. This anti dependence prevents the first pair of statements from 
executing concurrently with the second pair.  But we see that by renaming sum in the 
first pair of statements as first_sum  and by renaming the sum in the second pair of 
statements as second_sum ,  
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1.  first_sum = a + 1; 
2.  first_term = first_sum * scale1; 
3.  second_sum = b + 1; 
4.  second_term = second_sum * scale2; 

 
the pairs can execute concurrently.  Thus, at the cost of increasing the memory usage by a 
word, we have increased the program’s concurrency.  By contrast, flow dependences 
cannot be removed by renaming variables.  It may appear that the flow dependences can 
be removed simply by substituting for sum in the second and fourth lines,  
 

1.  first_term = (a + 1) * scale1; 
2.  second_term = (b + 1) * scale2; 

 
but this doesn’t eliminate the dependence because no matter how it is expressed the 
addition must precede the multiplication for both terms. The flow—the write of the sum 
(possibly to an internal register) to the read as an operand (possibly from an internal 
register)—remains. 

Dependences Limit Parallelism 
To understand how dependences limit parallelism, recall the following code from Chapter 
1, which specifies the summation of a set of n numbers: 
 

sum = 0 
for (i=0; i<n; i++) { 
    sum += x[i];  
} 

 
This program, which we described as sequential, is abstracted in Figure 3.3(a); the more 
parallel tree solution is shown in 3.3(b).  In the figure, an edge not involving a leaf 
represents a flow dependence, because the computation of the lower function will write 
into memory, and the upper function will read that memory. The key difference between 
the two algorithms is now evident. In Figure 3.3(a) the sequential solution defines a 
sequence of flow dependences; they are true dependences whose ordering must be 
respected. By contrast Figure 3.3(b) specifies shorter chains of flow dependences, 
imposing fewer ordering constraints and permitting more concurrency. In effect, when 
we gave the C specification for adding the numbers, we were specifying more than just 
which numbers to add. (We needed the extra fact of associativity of addition to know that 
the two solutions produce the same result.) 
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Figure 3.3. Schematic diagram of sequential and tree-based addition algorithms. 
 
The point is that care must be exercised, when programming, to avoid introducing 
dependences that do not matter to the computation, because such dependences will 
unnecessarily limit parallelism. (Knowing that f() is addition allows powerful compiler 
techniques to transform this code into a more parallel form, but such technology has a 
limited scope of application.)  

Granularity 
A key concept for managing the constraints imposed by dependences is the notion of 
granularity. We identify and explain two closely related ways in which this term is used: 

• Granularity of work 
• Granularity of interactions 

Notice that grain size is usually described using terms coarse and fine, though large and 
small are also used. 
 
Granularity of Interaction. Interaction measures the frequency of dependences crossing 
the boundaries of threads or processes, where frequency is measured in number of useful 
instructions separating the interactions. Thus, coarse grain refers to threads and processes 
that only infrequently depend on data or events in other threads or processes, and 
conversely, fine grain interactions are those that occur often. As mentioned earlier 
dependences that cross thread or process boundaries introduce communication with its 
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associated overhead. Further, frequent interactions imply that waiting time can 
accumulate as threads and processes stall. For threads sharing through memory the cost 
for communicating is lower and the amount of work between interactions may be similar, 
suggesting that fine grain interactions may be worthwhile, especially if used in 
abundance. Because the overhead of message passing is typically large, processes work 
best with coarse grain interactions.  
 
Granularity of Work. Work is usually measured by such things as number of instructions 
executed, or number of data values assigned to a thread or process. Accordingly, a coarse 
grain computation has a large time and/or memory footprint. Conversely, a fine grain 
computation has only few values processed locally and contributes mainly by being used 
in large quantity. Consistent with earlier points, threads often support fine grain 
parallelism and processes support course grained parallelism. Other semantic nuances 
include the sense that fine grain computations are more flexible, being available for 
smaller opportunities for parallelism. By contrast, coarse grain computations can provide 
better opportunities for amortizing overhead and hiding latency, as we discuss below.  
 
Applying Granularity Concepts. The key point is that no fixed granularity is best for all 
situations.  Instead, it is important to match the granularity of the computation with both 
the underlying hardware’s available resources and the solution’s particular needs.  For 
example, the original prefix summation described in Chapter 1 was a fine grain 
computation involving a small amount of work and fine grain interactions with the 
adjacent threads. The Schwartz variant of the computation increased the grain size at the 
start of the computation, performing much more work before communicating. This larger 
granularity led to better performance. Notice that the fine grain interaction remains in the 
“accumulation” part of the Schwartz computation. To “coarsen” this part of the 
computation, the degree of the tree must be increased, where the degree, presently 2, is 
the number of children of each parent. For other problems a coarse granularity might lead 
to poor load balance.  
 
In the limit the coarsest computations involve huge amounts of computation and no 
interaction. SETI@home is such an example. Subproblems are distributed to personal 
computers and solved entirely locally; the only communication comes at the end to report 
the results. In this setting the parallel computer can be an Internet-connected collection of 
PCs. Such super-coarse grain is essential because of the huge cost of communication.  
 
At the other end of the spectrum are threads running on Chip Multiprocessors (CMPs) 
that provide low latency communication among processors that reside on the same chip, 
making fine grain threads practical. 
 
Most parallel computation falls between these extremes.  

Locality 
A concept that is closely related to granularity is that of locality.  Computations can 
exhibit both temporal locality—memory references that are clustered in time—and spatial 
locality—memory references that are clustered by address.  Recall that locality is an 
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important phenomenon in computing, being the reason why caches work, so improving 
locality in a program is always a good thing.  Of course, the processors of parallel 
machines also use caches, so all of the benefits of temporal and spatial locality are 
available. Keeping references local to a thread or process ensures that these benefits will 
be realized. Indeed, algorithms like the Schwartz approach that operate on blocks of data 
rather than single items, virtually always exploit spatial locality, and are preferred. 
 
In the parallel context, locality has the added benefit of minimizing dependences among 
threads or processes, thereby reducing overhead and contention. As outlined above, non-
local references imply some form of data communication, which is pure overhead that 
limits parallel performance. Furthermore, by making non-local references, the threads or 
processes will often contend with each other somewhere in the execution, either colliding 
on the shared variable in the case of threads or colliding in the interconnection network in 
the case of processes. Thus, non-locality has the potential of introducing two kinds of 
overhead. 
 
A simple example makes both parts clear: Consider a set of threads Counting 3s in a large 
set of numbers using the scalable algorithm (Try 4 in Chapter 1); by working on a 
contiguous block of memory, a thread exploits spatial locality; by making the 
intermediate additions to a local accumulation variable, it benefits from temporal locality. 
Moreover, by combining with the global variable at the end rather than with each 
addition, it reduces the number of dependences among threads until the communication is 
absolutely necessary to achieve the final result.  With the reduced number of 
dependences, locality is improved while overhead and contention are reduced.  Note that 
this use of a local accumulation variable is another example of using a small amount of 
extra memory to break false dependences. 
 

Forms of Parallelism 
Though we have distinguished between thread-based parallelism and process-based 
parallelism, we have done so to focus on implementation differences, such as granularity 
and communication overhead. Now we are concerned with understanding where the 
parallelism can be found at the algorithmic level. We recognize three general types: 

• data parallelism 
• task parallelism 
• pipelining 

We now consider each, realizing that there is overlap among the categories. 

Data Parallelism 
Data parallelism refers to a broad category of parallelism in which the same computation 
is applied to multiple data items, so the amount of available parallelism is proportional to 
the input size, leading to tremendous amounts of potential parallelism.  For example, the 
first chapter’s “counting the 3s” computation is a data parallel computation: Each element 
must be tested equal to 3, which is a fully parallel operation. Once the individual 
outcomes are known, the number of “trues” can be accumulated using the tree summation 
technique. Notice that the tree add applies to all result elements only for its initial step 
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and has logarithmically diminishing parallelism thereafter. Still, the parallelism is 
generally proportional to the input size, so global sum is considered to be a data parallel 
operation.  
 
As we observed in our discussion of locality and granularity above, the availability of full 
concurrency does not imply that the best algorithms will use it all. The Schwartz 
algorithm showed that foregoing concurrency to increase locality and reduce 
dependences with other threads produces a better result. Indeed, one of the best features 
of data parallelism is that it gives programmers flexibility in writing scalable parallel 
programs: The potential parallelism scales with the size of the input, and since, usually, n 
>> P, programs must be designed to process more data per processor than one item. That 
is, the program should be able to accommodate whatever parallelism is available. (It has 
been claimed that writing programs as if n == P leads to effective programs because 
processors can be virtualized, i.e. the physical processors can simulate any number of 
logical processors, leading to code—it’s claimed—that adapts well to any number of 
processors. This is not our experience. Virtualizing processors leads to extremely fine 
grain specifications that miss both the benefits of locality and the “economies of scale” of 
processing a batch of data. We prefer solutions like Schwartz’s that explicitly handle 
batches of data.)   

Task Parallelism 
The broad classification of task parallelism applies to solutions where parallelism is 
organized around the functions to be performed rather than around the data. The term 
“task” in this case is not to be contrasted necessarily to “thread” as we normally do, 
because the emphasis is on the functional decomposition, which could be implemented 
with either tasks or threads.  
 
For example, a client-server system employs task parallelism by assigning some tasks the 
job of making requests and others the job of servicing requests.  As another example, the 
sub-expressions of a functional program can be evaluated in any order, so functional 
programs naturally exhibit large amounts of task parallelism.  Though it is common for 
task parallel computations to apply an operation to similar data, as data parallel 
computations do, the task parallel approach becomes desirable when the context in which 
the data is evaluate matters significantly.  
 
The challenges to task parallelism are to balance the work and to insure that all the work 
contributes to the result.  In many cases, task parallelism does not scale as well as data 
parallelism. 

Pipelining 
Pipelined parallelism is a special form of task parallelism where a problem is divided into 
sub-problems, which can each be operated on independently, and where there are 
multiple problem instances to be solved.  At any point in time, multiple processes can be 
busy, each working on a sub-problem of a different problem instance.  As is familiar with 
bucket brigades, assembly lines, and pipelined processors, the solution is to run the 
operations concurrently, but on different problem instances. As the pipeline fills and 
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drains, there is less than full parallelism, as the opportunities for concurrency increase 
(fill) and then diminish (drain). A more crucial issue is the balancing of work of each 
operation. For pipelining to be maximally effective, the operations (stages) must 
complete in the same amount of time. Pipeline performance is determined—even for 
pipelines that are not clocked—by the longest running stage. Balancing the stages equals 
out the work, allowing all stages to process at the maximum prevailing rate. 
 
Though pipelining is frequently thought of as a parallelism approach for cases defined by 
only a fixed length sequence of operations, it arises more generally. The number of 
(potential) stages is often determined by the input size. In such cases data dependences 
entail receiving input value(s) from one or more neighbors, computing, and then yielding 
the result(s) to opposite neighbor(s). The schematic in Figure 3.4 illustrates the idea. 
Clearly, in addition to maximizing the use of the processors, such computations are 
challenging in terms of avoiding stalls caused by fine grain interactions.   
 

Figure 3.4. Schematic of a 2-dimensional pipelined computation, showing computation (boxes) and data 
flow (arrows). External data is presumed to be initially present; on the first step only the upper-left 
computation is enabled. 
 

Summary 
In this chapter we have introduced many concepts briefly. The goal has been to become 
aware of opportunities and challenges to parallel programming. Because the concepts 
interact in complex ways, it is not possible to understand them completely when treated 
in isolation. Rather, we have introduced them all in a quick, albeit limited, overview of 
the issues, and have prepared ourselves for the next chapter where we will develop 
algorithms and see first hand the consequences of these complexities.    

Exercises 
1. In transactional memory systems, a thread optimistically assumes that it makes no 

references to shared data.  The transaction either commits successfully if there 
was no shared access detected, or the transaction rolls back if there was.  Identify 
the sources of performance loss in a transactional memory system, classifying 
each as overhead, contention, or idle time.  
 

2. Should contention be considered a special case of overhead?  Can there be 
contention in a single-threaded program?  Explain. 

 
3. Should idle time be considered a special case of overhead?  Can there be idle time 

in a single-threaded program?  Explain. 
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4. Does a chess program provide data parallelism or task parallelism?  

 
5. Does quicksort provide data parallelism or task parallelism? 

 
6. Describe a program whose speedup does not increase with increasing problem 

size. 
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Chapter 4: General Algorithmic Techniques 
 
To become effective programmers, we need to learn a programming language and how to 
use it to express basic problem solving techniques like building data structures. We must 
learn how to analyze programs to determine their running time and memory usage. These 
will be topics for future chapters. For now, perhaps the most important understanding to 
acquire is the ability to “think about the computation ‘right’.”  That is, we want to think 
about solving problems in a way that matches well the languages and computers available 
to us. In this chapter we learn the ‘right’ way to think about parallel computation. 

What Is The Opposite of Sequential? 
Many researchers have claimed that the best way to think about parallel computation is to 
think about the most parallel solution imaginable assuming an unlimited number of 
processors. They acknowledge that unlimited capacity is not realistic, but—their 
argument goes—it is possible to “scale back” parts of the computation to be sequential, 
and arrive at an ideal solution.  
 
So, for example, return to the problem from Chapter 1 in which we want to count the 
number of 3s in an array A. Using the maximum parallelism approach, we expect a 
solution in which one processor initializes the count value 
 

count = 0;       Performed by p0 
 
and then processor i, assigned to the ith  data element, performs the operations 
 

if (A[i] == 3) count = count + 1;    Performed by pi 
 
Such a specification makes sense from an individual data element’s point of view, 
perhaps, but not when viewed more globally, because processors can collide when 
referencing count . Though advocates of the unlimited parallelism approach have 
addressed the issue of collisions with everything from “It’s an error” to “It’s OK, thanks 
to special (Fetch & Add) hardware,” we know from our discussion in Chapters 1 and 2 
that there are difficulties that can arise with existing parallel computers: 

• races can occur caused by the action of other processors changing count  
between the time processor pi accesses it to get its value and the time pi updates it 

• the possibility of races implies that count  must be protected by a lock 
• the need for a lock implies the potential for lock contention when A contains 

many 3s and many processors attempt to update it simultaneously 
• lock contention results in lock access being serialized  
• serializing locks implies that for an array of mostly 3’s the execution time is O(n) 

regardless of the number of processors available. 
There may be different “unlimited parallelism” solutions, but this is an obvious one; it 
does not lead to a very parallel result. 
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The great body of literature on unlimited parallelism comes from a study of parallel 
models of computation collectively known as PRAMs, acronymic for Parallel Random 
Access Machines, though many other unlimited parallelism approaches have been 
invented as well. The problem with these approaches is that finding parallelism is usually 
not the difficult aspect of parallel programming. Rather—and this is our motive for 
introducing the topic here—parallel programming is generally concerned with the 
consequences of parallel threads interacting, as the bulleted items just illustrated. These 
are the dependences discussed in Chapter 3. They arise when processors must access 
shared resources and when processors contend for, and therefore must wait on, shared 
resources. Thread interaction influences performance as much as the amount of 
concurrent work embodied in a problem, often more so. To be effective parallel 
programmers, we need to focus on the right part of the problem, and that is on the 
interactions between parallel threads.   

Blocks of Independent Computation 
If dependences between interacting threads are a significant problem, then the ideal 
parallel computation must be one composed of large blocks of independent computation 
with no interactions at all. Such computations exist: SETI@home, the Search for Extra 
Terrestrial Intelligence, is typical; independent computational tasks are downloaded to 
participants’ idle PCs, computed, and the results returned to the server, which compiles 
the results. Other tasks from Monte Carlo simulations to integer factorization have these 
same features. They may be ideal, but they are not typical; nearly all parallel 
computations require that threads interact, and the amount of interaction is correlated 
with the amount of parallelism.  
 
General parallel computations, though more complicated, still benefit whenever they can 
exploit the blocks-of-independent-computation strategy. Our Count 3s solution from 
Chapter 1 used this approach. The final solution (Try 4) partitioned the array among 
several threads, allocated a local variable private_count  to each thread to record 
intermediate progress, and at the end combined the local results to compute the global 
result. The application of the principle of blocks-of-independent-computation is evident. 
Further, our initial tries at solving the problem were largely aimed at neutralizing the 
consequences of thread-to-thread dependences: races were avoided with locks, contention 
was removed with the private variables, false sharing was avoided with padding, etc. And 
as the experimental data showed, the program performed. This is one example of many 
that we will see of an important principle: 
 
Guideline #1. Parallel programs are better designed when they emphasize (large) blocks 
of independent computation that minimize the interthread dependences (interactions).   
 
Though our final Count 3s result was quite satisfactory, it was not actually scalable; that 
is, capable of executing well for any amount of parallelism. True, the number of threads 
was a parameter, so if the number of parallel processors P is greater than one, then the 
solution partitions the array into blocks, and P of these can execute concurrently. It is 
fully parallel during the scan of the data array. But there is potential for lock contention 
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during the final step of combining the private_count  variables. If P is not likely to 
be a large number, then any serialization due to lock contention is not likely to be a 
serious problem; if P could be large, however, lock contention could harm performance. 
So, to make the solution more scalable, we combine the private_count  variables 
pairwise in a tree, using the tree addition algorithm. This solution gets good performance 
using any number of processors, though when P > n/log n, the final combining tree may 
be deeper than necessary, implying that using so many processors is not making the 
computation faster. (We discuss such tuning issues later in Chapter 5.) 
 
Guideline #2. Just as algorithms are written to be independent of the number of input 
values, n, parallel algorithms should also be written to be independent of the number of 
parallel threads, P, and be capable of improved performance using additional processors. 
 
Finally, reviewing this last version of Count 3s computation, notice that it is really just a 
simple variation of the Schwartz computation. Recall that the Schwartz algorithm was 
designed to add array elements, but testing and tallying those elements that equal 3 is a 
trivial variation. The Schwartz algorithm processes a block of elements locally, as our 
Count 3s program does. And to produce the final result the Schwartz algorithm uses a 
tree to combine the intermediate results, as our revised Count 3s solution does. Finally, 
the range of values over which P can vary is the same, as are the considerations of using 
more or fewer processors.  
 
In summary, as we create parallel algorithms, we will attempt to formulate them as 
blocks of maximally independent computation, where “maximally independent” means 
that we try to reduce the interactions (dependences) among the threads. This is a 
challenging task, and we will often find that our best attempts do not attain our 
performance goals. Fortunately, there are many techniques like Schwartz’s approach that 
give us direction and ideas for solving problems in parallel. 

Assigning Work To Processors Statically 
The basic way to assign work is to statically assign data to processors, and require each 
processor to compute on the data it “owns.”  This technique works for a wide variety of 
situations, and is the subject of this section.  This is the data parallel approach, because 
we use the data as the basis for organizing the computation. 

Basic Block Allocations  
Since our goal is to exploit locality, it follows that contiguous portions of a data structure 
should be allocated together on the same processor. (The exceptions to this thinking are 
treated below.) Thus, 1-dimensional arrays are assigned to processors in blocks of 
consecutive indices. For 2-dimensional arrays, allocating by 2-dimensional blocks, that 
is, consecutive indices in both dimensions, generally leads to efficient solutions.  The 
reason 2-dimensional blocks tend to make more sense than allocating, say, whole rows, is 
that blocks can often reduce communication. For example, for computations that rely on 
neighboring values, the so called stencil computations such as 
 

B[i,j] = (A[i-1,j] + A[i,j+1] + A[i+1,j] + A[i, j-1 ])/ 4.0; 
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there is a surface-to-volume advantage, as can be seen in Figure 4.1. That is, a squarish 
block of array values has the property that the elements that must be referenced by other 
processors for the stencil computation are on the edge (surface), and as the size (volume) 
of the block increases, the number of edge elements grows much more slowly, reducing 
communication costs. This small example isn’t very dramatic, but the difference for a 
32x32 block is 128 versus 2048 values referenced by (communicated to) other 
processors. For higher d-dimensional arrays, allocating as d-dimensional blocks is 
frequently used for the surface to volume advantage, too, but almost as common is to 
allocate only two of the dimensions and keep the other dimension(s) allocated locally. 
The latter choice is often the result insufficiently many processors, or extreme aspect 
ratios.    
 

   (a)     (b) 
Figure 4.1:  Two allocations of a 16x16 array to 16 processors: (a) 2-dimensional blocks and (b) rows. For 
the processor with shaded values to compute a 4-nearest neighbor computation requires communication 
with other processors to transmit the hatched values. The row allocation requires twice as many values to 
be transmitted, and because of the surface to volume advantage, the blocked allocation improves as the 
number of local items increases.   
 

The Specifics of Block Layouts   
Our goal, when allocating the array’s blocks, is to balance the data assigned to each 
processor, because the work tends to be proportional to the number of data items. 
Occasionally, everything “divides perfectly,” and each processor is assigned the identical 
amount of work; and sometimes partitioning can be simplified by making the array 
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dimensions multiples of the number of processors. But more often the problem size and 
therefore the size of the arrays, r × c, is dictated by other considerations. In such cases 
there are various ways to allocate the arrays in blocks. 
 
Assume P = uv, that u does not divide r, and that v does not divide c; that is, the divisions  
 

r = a1u + e1 and e1 > 0 
c = a2v + e2 and e2 > 0 

 
have nonzero remainders. To discuss allocations, let  
 

r = a1'(u-1) + e1' and e1' > 0 
c = a2'(v-1) + e2' and e2' > 0 

 
The two most obvious schemes can be called “Direct Division” and “Ceiling-Floor,” see 
Figure 4.2: 
 

Direct Division: Allocate blocks of a1' × a2' elements to (u-1)(v-1) processors, 
allocate blocks of e1' × a2' to (v-1) processors, allocate blocks of a1' × e2' to (u-1) 
processors, and allocate a block of e1' × e2' to one processor. 
Ceiling - Floor: Allocate blocks of a1' × a2' elements to e1'e2' processors, allocate 
blocks of a1' × (a2' - 1) elements to (v - e2') processors, allocate blocks of (a1' - 1) 
× a2' to (u - e1')  processors, and allocate blocks (a1' - 1) × (a2' - 1) elements to the 
remaining (u - e1')(v - e2') processors.  

 
The allocations are the same in their most important respect, the size of the largest block, 
a1' × a2'. This means that if a computation is strictly proportional to the number of local 
data items, both schemes have the same worst case. However, the Direct Division is 
likely to have u+v-1 processors that have significantly less work to do than the others, 
and so are more likely to be idle, waiting on others to complete. Such imbalance often 
wastes parallel resources. The Ceiling - Floor allocation has the advantage that the 
number of elements in each dimension differs by only one, making the quantity of data 
assigned more balanced compared to the Direct Division approach. The work is 
distributed somewhat better. Without additional information about the characteristics of 
the problem, the Ceiling - Floor is slightly better.  
 
Sensitivity to Processor p0: Independent of which allocation is chosen, it is sensible to 
assign the minimum allocation of data to processor p0. This is because p0 is often given 
additional tasks, such as managing I/O, serving as the root of a combining tree, etc. 
(These can generally be thought of as controller functions, relative to the CTA model of 
Chapter 2.) By allocating it the least work, p0 is available to perform the additional duties.  
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   (a)      (b) 
Figure 4.2:  Two array-to-processor allocations for a 13 × 13 array on 16 processors; (a) Direct Division, 
(b) Ceiling - Floor. 
 
Fluff or Halo Buffers:  Computations like the 4-point nearest neighbor stencil  
 

B[i,j] = (A[i-1,j] + A[i,j+1] + A[i+1,j] + A[i, j-1 ])/ 4.0; 

 
require values stored on other processors. For the block allocations of the type being 
discussed Figure 4.1(a) shows that for i  and j  in the top row of the allocation, references 
to A[i-1,j]  are off processor to the north, and similarly for the other edge elements of 
the block. Such nearest neighbor references, which are quite common in scientific 
computations, are best solved with the following approach: 
 

• get the necessary values of the adjacent array blocks from the other processors 
• store the values in in-position buffers arranged around the local data block  
• perform the computation on the (now) entirely local data values 

 
The buffers are known as fluff or halo buffers, and are allocated in their proper position 
relative to the other elements in the array block; see Figure 4.3.  
 
Several advantages recommend this approach. First, once the fluff is filled, all references 
in the computation are local. This means that the many processor-dependences implied 
by a loop performing the stencil computation over an array block have been merged into 
b dependences, if the computation references b neighboring processors. The result is a 
large block of dependence-free code to execute. Further, the statement uses the same 
index calculations for all references to A; that is, they can be performed in a single loop 
having no special edge cases. Finally, moving non-local data to the local thread at one 
time offers the opportunity (generally available) to batch the data movement; that is, the 
whole row or column of an adjacent processor, perhaps stored in one or few cache lines, 
might be moved at once. This is a significant advantage, as noted in Chapter 2, because 
typically data transmission takes to + dtb seconds to transmit d bytes, where to is overhead 
and tb is the time per byte. Batching communication saves the multiple overhead charges 
from multiple transmissions, and any additional waiting times caused by them.   
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Figure 4.3:  The fluff (shaded) for an array block showing the non-local values on adjacent processors that 
must be moved to fill the fluff; once the fluff is filled, the stencil computation is entirely local. (The 
“missing corners” are not used, but they are allocated to simplify array index calculations.) 

Cyclic and Block Cyclic 
As effective as block allocations are, they are not optimal for all algorithms, because of 
load balancing considerations. For example, as mentioned in Chapter 3, the well-known 
LU decomposition algorithm begins with all rows and columns participating in the initial 
step. As the computation proceeds, however, a row and column are completed with each 
iteration, leading to the schematic shown in Figure 4.4. When all of the rows and columns 
allocated to a processor are completed, it becomes idle. In the figure, 3 of the 4 
processors are idle for half the computation. What should be done? 
 
One solution is to reallocate the data periodically during the computation, but this 
requires moving nearly all of the active values to other processors, which is considered 
extremely expensive. The more practical solution is to use a cyclic or block cyclic 
distribution. The “cyclic” idea is to assign consecutive items to processors in a round-
robin order, or as it’s often described, as if dealing out cards. Thus a cyclic allocation of 
array elements proceeds through the array in, say, row-major order, allocating elements 
to processors. Because keeping track of individual array elements is burdensome, it is 
more common to “deal out” consecutive subarrays, a strategy called block-cyclic 
allocation. 

 
Figure 4.4:  Schematic diagram of the LU Decomposition algorithm block-assigned to four processors; the 
final result is a lower (black) and an upper (white) triangular matrices; active computation is gray; a column 
and row are completed and added to each result matrix, respectively, in each iteration. 
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Figure 4.5 shows a block-cyclic allocation in which consecutive array blocks are assigned 
to separate processors cyclically. The figure shows several features of block-cyclic 
allocations: A block’s dimension (called the chunk size) does not have to divide the 
array’s dimension; the block is simply truncated. Each processor receives blocks from 
throughout the array, implying that as the computation proceeds, completed portions will 
be resident on each processor, as will not-yet-completed portions. Figure 6 shows the 
schematic allocation of Figure 5 as it would appear part way through an LU-type 
computation. Notice how well the remaining work is balanced across the processors. 

 
Figure 4.5:  Block-cyclic allocation of 3 × 2 blocks to a 14 × 14 array distributed to four processors 
(colors). 
 
The block-cyclic approach has the great advantage of balancing the work across the 
processors (see Figure 4.6), but this does not come without costs. The most obvious cost 
is the potential of block-cyclic allocation to complicate the algorithm. If the computation 
uses the spatial properties of an array—for example, rows—then because block-cyclic 
breaks some of these relationships, special cases may have to be added to the algorithm. 
This effect can sometimes be neutralized by picking chunk sizes to create easy-to-work-
with patterns in the allocation. Another common recommendation is to allocate relatively 
large blocks, say 64 × 64, as a means of amortizing the overhead of the special checking. 
Of course, allowing the blocks to become too large probably means that the work will be 
less evenly allocated, and that the unbalanced case at the “end” of the computation will 
occur sooner and last longer. It is a delicate matter to balance the competing goals of a 
block-cyclic allocation.  
 
Finally, notice that the block allocations discussed above and the block-cyclic allocations 
discussed here do not exploit locality equally well, even when block-cyclic uses large 
blocks. In general, for a given number of processors and array size, block-cyclic will use 
many smaller blocks whereas the block approach will use a single larger block per 
processor. This means for computations requiring nearest neighbor communication, e.g. 
stencils, the surface to volume advantage of blocks will result in much less 
communication. (The extremely small blocks of Figure 4.5 emphasize this point since 
every element is on the surface!) Of course, for computations compatible with a single 
allocation strategy, it is an easy matter to choose the right one. But, for cases where 
different phases of the computation would benefit from different allocations, it can be 
difficult to find the right compromise. 
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Figure 4.6:  The block-cyclic allocation of Figure 4.5 midway through the computation; the blocks to the 
right summarize the active values for each processor.  
 

Assigning Work to Processors Dynamically  
In many cases it is not possible to adopt a fixed work assignment and stay with it. 
Examples include algorithms that create tasks as they proceed, algorithms whose tasks 
have highly variable execution times, adaptive algorithms that apply their computing 
power where the solution needs the greatest work, etc. In these and similar cases the work 
queue strategy may lead to the best assignment of computation. 

Work Queue  
A work queue is a first-in first-out list of task descriptors. If as a computation proceeds 
new work is generated, it is packaged into a task descriptor and is appended to the work 
queue; if as computation proceeds work is completed and a processor becomes available, 
it removes a task descriptor from the queue and begins work on it. The commonly used 
names for these two roles are producer and consumer.  
 
As an example of a trivial task that can be expressed in work queue form, consider the 
3n+1 conjecture (or Collatz Conjecture), which proposes an affirmative answer to the 
question “For any positive integer a0, does the process defined by  
 

 3ai-1 + 1 ai-1 odd 
ai = 
 ai-1 / 2  ai-1 even 

 
converge to 1?” (See http://mathworld.wolfram.com/CollatzProblem.html.) Though 
this conjecture is known to be true for all integers less than 3⋅253, we will program a 
search of the integers as an example, because it illustrates several aspects of work queue 
technique.  
 
Our solution postulates a work queue containing the next integers to test. We initialize 
the queue to the first P positive integers:  
 

void init(work_q: q) {     //setup globally-allocat ed queue array  
 int i; 
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      for (i=0; i<P; i++) { 
        q[i] = i+1; 
      } 
) 

 
The integers are our task descriptors. As a general principle, it is wise to make the task 
descriptors as small as possible, while making them self-contained. 
 
A worker thread, of which we assume there are P, will consume the first item from the 
work queue, add P to it, and append the result to the work queue.  The rationale for 
adding P is that P threads will be checking integers at once, so advancing by P has the 
effect of skipping those that are (logically) being processed by other threads. (The other 
threads may not all be computing yet, but they will be.) The worker thread has the 
following logic: 
 

int tester(int: limit) {    //test the conjecture   
int a;      //test number 
int n;      //count number of rounds of testing 

  while (n < limit) { 
              n = 0;      //initialize  

   a = consume();     //remove the first element of  work q 
        produce(a+P);     //place new item on work q 
   while (a != 1 && n < limit) { 
           if (even(a)) 
          a = a / 2; 
           else 
     a = 3*a + 1; 

          n++; 
        }       // exiting w/a==1 confirms converge  
      }       // exiting means limit was exceeded 
 return a;      // tell what number is the culprit 
) 

 
The tester takes a limit  as a parameter. The processing loop is controlled by a != 1  
and by n < limit . Because we think the conjecture is true, we expect the processing 
loop to exit with a == 1 , but if there were an integer for which the conjecture is false, 
the loop will exceed the limit . If the limit  is reached the worker will stop and return; 
otherwise it continues checking until it is eventually preempted by the parent routine. Of 
course, the parent, receiving a number back from a worker, cannot know if it is a counter-
example to the conjecture, but it can test further to see if the number is actually 
convergent, but that the limit  was set too low. This simply requires increasing the size 
of limit  and rechecking.  
 
Consider the behavior of the work queue. First, notice that in effect P subsequences are 
being checked simultaneously, but they will not remain in lock step because the amount 
of work required of each check is different. For example, with four processors the queue 
might transition through the states at the beginning 
 
 
 Work Queue  Active Processors [task] 
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 1, 2, 3, 4  -- 
 2, 3, 4, 5  p0[1] 
 3, 4, 5, 6  p0[2] 
 4, 5, 6, 7  p0[2], p1[3] 
 5, 6, 7, 8  p0[2], p1[3], p2[4] 
 6, 7, 8, 9  p0[5], p1[3], p2[4] 
 7, 8, 9, 10  p0[5], p1[3], p2[4], p3[6] 
 
illustrating that because processing 1 is trivial, p0 might return to the queue to get the next 
value, 2, before any of the other processors start; processing 2 is also easy, so it is back 
again quickly. Further, notice that workers do not necessarily process the same 
subsequence.  Indeed, if the timing works out all of the processors could be working on 
the same subsequence at once. Summarizing, although our work queue is regimented, the 
way its tasks are processed can accommodate any timing characteristics.   
 
One important detail has been ignored in the worker code. It is the matter of races 
resulting from multiple threads referencing the work queue simultaneously. We have 
assumed that the two procedures, consume()  and produce()  contain the appropriate 
synchronization apparatus. Exact details of how to construct the appropriate protection 
are presented in the next chapter. 

The Reduce & Scan Abstractions 
The success of Schwartz’s algorithm for addition and Count 3s computations is not 
accidental. Operations of adding and counting array elements are instances of a general 
form of computation known as reduce and scan. They are well understood, and so, 
efficient solutions are known. By recognizing such computations, we can avoid working 
out their details each time and simply apply standard solutions, such as Schwartz’s 
algorithm. We can save our serious thinking for those parts of a computation that need 
brain power.  
 
Reduce, which can be thought of as short for “reduce the operand data structure to a 
single value by combining with the given operator,” has been a part of programming 
languages since the creation of the array language APL. The operators are often limited 
to the associative and commutative operations add, multiply, and, or, max and min, but 
many operations work. Though some languages have built-in reduce operations, many do 
not, and so we will create our own general routine based on the Schwartz approach. To 
simplify our discussion of reduce, we adopt the notation operator // operand, as in + // 
A, to describe A’s elements being reduced using addition. We might write the Count 3s 
computation + // (A == 3) , and expect to implement it by instantiating a general 
Schwartz solution with implementations of these operations. 
 
Scan is a synonym for “parallel prefix,” mentioned in Chapter 1. Scan is related to reduce 
in that scan is the reduce computation in which the intermediate values are saved, 
assuming a specific order of evaluation. Thus, for array A with values  
 

4   2   5   6   1 
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the plus-scan of A is 
 

4   6   11   17   18  

 
Reduce is simply the final value produced in a scan. (We adopt the notation operator \\ 
operand, as in + \\ A .) As with reduce the associative and commutative operations 
add, multiply, and, or, max and min are common, but many other also computations 
work.  
 
To illustrate using the reduce and scan abstractions to compute the bounding-box 
enclosing points in the plane. Let A be an array of n points of the form, 
 

type planePt = record  
   x : int; 
   y : int; 
     end;  

 
then the sequential computation  
 

maxX = A[0].x; 
for (i = 1, i < n, i++)  
{ 
     if (maxX < A[i].x)  
         maxX = A[i].x; 
} 
maxY = A[0].y; 
for (i = 1, i < n, i++)  
{ 
     if (maxY < A[i].y)  
         maxY = A[i].y; 
} 
minX = A[0].x; 
for (i = 1, i < n, i++)  
{ 
     if (minX > A[i].x)  
         minX = A[i].x; 
} 
minY = A[0].y; 
for (i = 1, i < n, i++)  
{ 
     if (minY > A[i].y)  
         minY = A[i].y; 
} 

 
for computing the four defining values for the bounding box is equivalent to four 
applications of reduce, 
 

maxX = max//A.x 
maxY = max//A.y 
minX = min//A.x 
minY = min//A.y 
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which as we saw in Chapter 1 can be efficiently implemented in parallel. Of course, these 
four can be merged into one implementing procedure, so that there is only one pass over 
the data and only one combining tree.  
 

Generalized Reduce, Scan and Vector Operations 
Because reduce and scan are such effective abstractions for thinking about parallel 
computation, we advocate using them, and developing tools for their convenient 
application. Because there are so many programming systems in use, we describe how to 
construct an implementation, rather than giving a specific one. We begin the section with 
reduce, and move on to scan. Finally, we observe that the concepts can be applied to 
general vector operations.  

Structure for Generalized Reduce 
To build a general reduce or scan implementation, visualize the Schwartz algorithm, as 
abstracted in Figure 4.7. Overall, the figure shows local computation performed at the 
leaves of a combining tree, which emits the reduction result at its root. Looking more 
closely at the diagram, we see that a data structure called the tally is used together with 
four functions, two applied on each processor: 
 

init()  initializes the process on each processor, setting up the tally data 
structure recording the local result as the reduce performs the accumulation 
operation 
accum(tal, val)  performs the actual accumulation by combining the 
running tally with the operand value 

 
Once the local results are found, they must be combined to form the global result, using 
two more functions: 
 

combine(left, right)  combines two tally values to create a new tally 
value 
reduceGen(root)  takes the global tally value and outputs the correct result 
for reduce. 

 
For example, to compute +//A , the init() routine would initialize a tally variable to 
0; the accum()  routine would add its tally to an operand value; the combine()  would 
add two local tallies and reduceGen()  is a noop that simply returns the result. 
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Figure 4.7:  Schematic diagram of the Schwartz algorithm used to implement user-defined reduce. The 
local operations are abstracted in the box; function init() sets up the tally; accum() combines the tally 
and the operand data structure; outside the box, in the combining tree, combine()  forms a new tally from 
two others, and reduceGen()  produces the final answer from the global tally.  
 
 
For the simple operation of +//A , the four-function formulation is excessively general, 
but this structure is essential in more complex (and more powerful) cases, as illustrated in 
a moment. The key to understanding the roles of the four reduce functions is first to 
recognize that the tally data structure need not have the same type as the operand data, 
and second that the four routines take different argument types. So, for example, imagine 
a user-defined secondMin // A  that finds the second smallest element in an array, 
useful perhaps for an array of non-negative numbers with many 0s. In this case the tally 
data structure would have to be a two-element record or array storing the smallest and 
second smallest values. The init()  function would set-up the tally, initialized to the + 
infinity for the operand data type; accum()  would compare an operand value with the 
tally elements recording the two smallest; combine()  would find the two smallest of its 
two tally arguments, and the reduceGen()  would return the second smallest value as 
the result. When called at the right points in a parallel procedure implementing 
Schwartz’s algorithm, they produce a parallel secondMin()  solution. Figure 4.8 makes 
this logic precise. 
 
 
 

combine (left, right) combine (left, right) combine (left, right) combine (left, right) 

combine (left, right) combine (left, right) 

combine (left, right) 

reduceGen (root) 

local local local local local local local local 

tally: 
 
   init()   accum(tal, val)    accum(tal, val)    accum(tal, val)  
... 
 
operand: A               a1                        a2                         a3 
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type tally = record  
  sm1 : float;       //smallest element 
  sm2 : float;       //second smallest 
     end;  

 
void init(tally: tal) {  //setup globally-allocated  tally  
 tal.sm1 = MAX_FLOAT; 
 tal sm2 = MAX_FLOAT; 
) 
void accum(float: elem, tally: tal) {   //local acc umulation 
 if (tal.sm1 > elem) { 
     tal.sm2 = tal.sm1; 
     tal.sm1 = elem; 
 }  

elseif (tal.sm2 > elem) { 
     tal.sm2 = elem; 
      } 
} 
void combine(tally: left, tally: right) { //combine  into "left" 
 accum(right.sm1, left);   //by accumulating right 
 accum(right.sm2, left);   //values one at a time 
} 
float reduceGen(tally: tal) { 
 return tal.sm2; 
} 

 
Figure 4.8:  The four user-defined reduce functions implementing secondMin  reduce. The tally, globally 
defined on each processor, is a two-element record. 
 

Structure for Generalized Scan 
Generalized scan applies the same concepts as generalized reduce.  The primary 
difference is that after the combining is complete the “parallel prefix” values must be 
passed back down the combining tree. That is, in order to complete the prefix 
computation on the local values, an intermediate value from the combining tree will be 
needed by each processor.  (Refer to the parallel prefix discussion in Chapter 1 and 
review Figure 1.2.) 
 
The generalized scan begins like the generalized reduce, and there is no conceptual 
difference in the three functions init() , accum()  and combine()  for the two 
algorithms. However, the scan is not finished when the global tally value has been 
computed. Rather, tally values must be propagated down the tree subject to the constraint 
that  
 

for any node, the value it receives from its parent is the tally for the values that 
are left of its leftmost leaf 

 
which because we are computing on blocks, means the first item in the leftmost leaf’s 
block. This causes us to call init() to create the value as the input from the logical 
parent of the root, because there is no tally for the items to the left of those covered by the 
root. Each node, receiving a value from the parent, relays it to its left child; for its right 
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child, it combines the value received from the left child on the upsweep with the value 
received from the parent, and sends the result to the right. 
 
When the tally value is received at a leaf, it must be combined with the values stored in 
the operand array to compute the prefix totals, which are stored in the operand position. 
In Figure 4.9 these operands are shown schematically in the box at the bottom. Thus, the 
scanGen()  procedure produces the final result. 

 
 
Figure 4.9 : Schematic of the scan operation. The first part of the algortihm is simply the generalized 
reduce, schematized in Figure 4.7. Once the global tally is found, prefixes are propagated down the tree. 
When a prefix arrives at a leaf, the local operation applies the scanGen()  function, and stores the result 
in the operand item. 
 
To illustrate the operation of user-defined scan, imagine an array A of integers from the 
sequence 0, …, k-1. The scan sameAs \\ A  records in position A[i] the number of 
elements in the first i matching A[i] . We use as a tally an array of k elements, which is 
initialized to 0s; the accumulate function increments the array item count for the operand 
value; combine function adds the two arrays; and the scan generator performs an 
accumulate (initialized this time by the prefix received from the parent), and stores the 
count for the item found. Figure 4.10 shows the functions that realize this result. (Notice 
that the tally array at the end is a histogram for the array.) 
 
 
 
 
 

combine (left, right) combine (left, right) combine (left, right) combine (left, right) 

combine (left, right) combine (left, right) 

combine (left, right) 

init() 

local local local local local local local local 

  parent tally: 
 
              scanGen(tal, val)  scanGen(tal, val) scanGen(tal, val)  ... 
 
 
             operand: A      ai                      ai+1                      ai+2 
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void init(tally: tal) {    //setup globally-allocat ed array  
 for (i=0; i<k; i++) { 
    tal[i]= 0; 
      } 
) 
void accum(int: elem, tally: tal) {       //local a ccumulation 
 tal[elem]++; 
} 
void combine(tally: left, tally: right) { //combine  into "left" 
 for (i=0; i<k; i++) { 
           left[i] += right[i]; 
      } 
} 
int scanGen(int: elem, tally: tal) { //finalizing s can 
 accum(elem, tal);    //accum w/parent tally 
      return tal[elem];    //store running count 
} 

 
Figure 4.10:  User-defined scan functions to return the running count of k items; the tally is a globally 
allocated array of k elements. 
 

Structure for Gneralized Vector Operations 
The foregoing discussion shows that instantiating the basic structure of reduce and scan 
with custom functions can create efficient parallel solutions. But the idea is even more 
general. There is no need that the operations “accumulate from left to right;” 
computations that can be performed on blocks of data that can be merge to produce a 
larger solution are good candidates for applying this same structure. We illustrate the idea 
by computing the longest run of positive values stored an array. So, for the sequence  
 

-1.2  0.0  0.5 -0.1 -0.2 0.1  1.1  1.5  2.1  1.0   0.0 -0.1 

 
the computation would return 5. 
 
To formulate a local block computation to find the longest run of positive values, observe 
that the run could straddle the boundary (or boundaries) between local blocks. For that 
reason, we select a tally that has three values 
 

type runLen = record  
  atstart : int; // count of positives from left 
  longest : int; // longest (interior) run found so  far 
  current : int; // length of current run 
     end;  

 
that will count the number of positive values beginning at the start of a block, atstart , 
if any, the longest run properly contained in the block, longest , and the length of the 
current run, current . This last variable will have the effect of recording the length of 
the positive run extending to the right end of the block, if any. Because the block will be 
processed left to right, it will be convenient to treat a sequence that completely spans a 
block as having an undefined longest  and current  values. So for example, dividing 
the foregoing example among four processors 



60 

 

 
results in the tallies 

 
Notice, the third thread has the undefined values in its tally. 
 
To build the four reduce functions, initialize the tally items to undefined (represented as   
-1), but to simplify the combining logic later, set current  to 0. 

 
Accumulating begins by counting positive items in atstart  until the sequence is 
broken; thereafter, it counts positive items in current , and records the length of the 
runs in longest .  Thus, accum()  must separate the initial sequence from the others, 
and for that it requires a cascade of logic as shown in Figure 4.11. 
 
Given two tallies, their combined tally must handle four cases. These are 

• both blocks span only positive elements: the result spans positive elements, so add 
the right block’s atfirst  to the left block’s atfirst , the blocks’ longest  
and current  are the same 

• the left block spans only positive elements: the right block’s atfirst  adds to 
left’s atfirst , and the right block’s longest  and current  apply 

• the right block spans only positive elements: add the right block’s atfirst  to 
the left block’s current , and the left block’s atfirst  and longest  apply 

• both blocks have non-positives; the left block’s current  plus the right block’s 
atfirst  could be longer than either longest , the left block’s atfirst  and 
the right block’s current  apply 

We use longest == -1  as our test for a positive only block. This logic is 
implemented as a cascade of if -statements. 
 
 

-1.2  0.0  -0.5  -0.1 -0.2 0.1    1.1  1.5  2.1    1.0  0.0 -0.1 

atstart: 0 
longest: 1 
current: 0 
 

atstart: 0 
longest: 0 
current: 1 
 

atstart: 3 
longest: - 
current: - 
 

atstart: 1 
longest: 0 
current: 0 
 

atstart: -1 
longest: -1 
current:  0 
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Figure 4.11:  The accumulate logic. The “first time?” test is true when atfirst == -1 ; the “still 1st?” 
test is true when longest == -1 .  
 
Finally, the global result must pick the largest of its atfirst , longest  and current  
values. If the longest sequence starts at the beginning, then the preceding logic ensures 
that atfirst  will record its length; if the longest sequence extends to the end, the 
current  will record the length. Otherwise the longest sequence is somewhere in the 
middle, and longest  will record the value.  
 
See Figure 4.12 for the exact logic. 
 
These are powerful techniques that have efficient parallel implementations.  
 

 
void init(runLen: zero) {  //setup globally-allocat ed record  
 zero.atstart = -1; 
 zero.longest = -1; 
 zero.current = 0; 
) 
void accum(int: elem, runLen: z) {   //local accumu lation 
 if (z.atstart == -1) {   //first time? 
    if (elem > 0)  
             z.atstart = 1; 
         else { 
             z.atstart = 0; 
             z.longest = 0; 
         } 
      }  
      else { 
         if (z.longest == -1) {  //still first time ? 
             if (elem > 0)  
                  z.atstart++; 

N 

Y first time? 

A[i] > 0? still 1st? 

atstart ++ end 1st run atstart ++ A[i]> 0? 

current ++ end run 

longer? 

longest=current  

Y Y 
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Y 
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             else   
                  z.longest = 0; 
         } 
         else { 
            if (elem > 0)  
               z.current++; 
            else { 
              if (z.longest > z.current)  
                  z.longest = z.current;  
              z.current = 0; 
            } 
         } 
      } 
} 
void combine(runLen: left, runLen: right) { //combi ne into "left" 

if ((left.longest == -1) && (right.longest == -1)) //spans 
    left.atstart = left.atstart + right.atstart; 
else { 
   if (left.longest == -1) { 
       left.atstart = left.atstart + right.atstart;  
       left.longest = right.longest; 
       left.current = right.current; 
   } 
   else { 
      if (right.longest == -1)  
          left.current = left.current + right.atfir st; 
      else { 
         left.longest = MAX(left.longest, 
                            left.current + right.at start, 
                            right.longest); 
         left.current = right.current; 
      } 
   } 
} 

      } 
 

int reduceGen(runLen: z)   { 
 if (z.longest < z.atfirst) 
          z.longest = z.atfirst; 
      if (z.longest < z.current) 
          z.longest = z.current; 
      return z.longest; 
} 

 
Figure 4.12:  The four reduce/scan functions for the “longest positive run” computation. 
 
 

Trees 
After arrays, trees must be the most import way to represent a computation.  They present 
challenges in parallel computation for several reasons. First, trees are usually constructed 
using pointers, and in many parallel computation situations, pointers are local only to one 
processor. Second, we typically use trees for their dynamic flexibility, but dynamic 
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behavior often implies performance-bashing communication. Third, trees complicate 
allocation-for-locality. But, challenging or not, trees are too useful to ignore. 

Representation of Trees 
Begin by noticing that we have already used trees in several computations to perform 
accumulation and parallel prefix operations. They were implicit in that they derive from 
the communication patterns used. So, in the reduce and scan primitives above, the 
combine()  operations were performed pairwise, with the intermediate results also 
being combined pairwise, etc. inducing a tree, as shown in Figure 4.13. There are no 
pointers; processors simply perform the appropriate tree roles, and the result is achieved. 
By this technique we use trees to perform global operations even when they are not the 
base data structure of the computation.   
 

Figure 4.13 : Induced tree. Each processor computes on a sequence of values (heavy lines), and then 
combines the results pairwise, inducing a tree; notice processor 0 participates at each level in the tree. 
 
Our Guideline #1 rule, to maximize the number of large blocks of independent 
computation, motivates us to use the implicit tree idea even in cases where the base data 
structure is a tree. This means that we separate the local and the global paradigms: 
Locally, we may choose to use pointers in our implementation, but at the higher levels of 
the tree where the edges are non-local, we use the implicit solution – each node simply 
performs its proper tree role. Though it can be inconvenient to shift processing 
paradigms, the advantage may be that it allows us to write a single-threaded solution to 
the subproblem (it might already exist), and then incorporate those subproblems into the 
global solution. 
 
Breadth First.  Consider first trees that can naturally be enumerated breadth first, that is, 
all nodes of a level can be generated given their parent nodes. In this case we 
conceptually generate the complete tree down to the level, or pair of levels, having P 
nodes, one corresponding to each processor. So, in the binary tree case, if P = 2l, generate 
to level l. For example, for P = 8, we generate a binary tree down to level 3, as shown in 
Figure 4.14(a). When P does not equal the number of nodes on a level, pick the greatest 
level less than P and then expand enough of the nodes to the next level to equal P, as 
shown in Figure 4.14(b). Then, assuming the tree extends much more deeply below each 
of these nodes, allocate to each processor corresponding to a node the entire subtree 
enumerated from the node. The computation is conceptually local for the whole subtree. 
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   (a)             (b) 
Figure 4.14:  Logical tree representations: (a) a binary tree where P = 2l; (b) a binary tree where P = 6. 
 
Example.  This technique works well for problems that can be recursively partitioned 
into subproblems. For example, suppose we are searching a game tree for Tic-Tac-Toe 
(Naughts and Crosses) games on P = 4 processors. When symmetries are considered, 
there are only three initial positions, and we expand one of these to fill out the 4 search 
tasks, see Figure 4.15. That is, each processor will search the game tree descendant from 
the indicated board position. 
 

Figure 4.15:  Enumerating the Tic-Tac-Toe game tree; a processor is assigned to search the games 
beginning with each of the four initial move sequences. 
 
 
Depth First.  Trees that should be enumerated by depth can be implemented in parallel 
using a work queue approach. The queue is initialized with the root; a processor removes 
a node and if that action leaves the queue empty, the processor expands the node, taking 
one descendant as its task and appending the others to the queue. Such an approach 
corresponds to standard iterative depth first traversal, and has a structure as shown in 
Figure 4.16.  

 
Figure 4.16:  Basic depth allocation of a tree to P=4 processors, which are each responsible for the subtree 
rooted at the node; the right-most node remains in the queue.  
 
Having assigned a subtree to each processor, consider the main aspect of depth first 
enumerations, the feedback from the early parts of the enumeration to the later parts. This 
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takes various forms including a list of nodes visited, alpha-beta limits on productive 
subtrees to consider, and other measures of “progress”. A parallel algorithm will have to 
adapt such feedback to the processing of independent subtrees. For example, consider a 
packing algorithm trying to minimize the area occupied by the arrangement of several 
objects. A global variable recording the area of the best arrangement found so far can be 
referenced by all processors and so be used in each subtree to prune the enumeration. 
 
Full Enumeration.  Certain trees must be expanded in their entirety. A common 
example is the family of K-D Trees used in gravitational simulations and the closely 
related Barnes-Hut trees. Such trees are used for rapid lookup of related elements. In the 
case of gravitation simulation, 3D space is partitioned into octants, which are in turn 
partitioned, etc. until each region contains only one point. This allows the points 
physically near a given point to be quickly located by tree traversal. (Advanced 
algorithms allow groups of points acting at a distance to be approximated as a single 
meta-point.) Areas of high concentration can lead to locally deep trees.  
 
Perhaps the best allocation for such a tree is the so-called “cap allocation,” as shown in 
Figure 4.17. In the allocation the P nodes nearest the root, the cap, are redundantly 
allocated to each processor. Additionally, a processor is also allocated one of the subtrees 
rooted at the bottom of the cap. As the computation proceeds, the cap portion of the tree 
must be maintained coherently. That is, all processors must “see” the same state, and a 
locking protocol must be respected. Interaction among the subtrees can use a messaging 
protocol. 

Figure 4.17.  Cap allocation for a binary tree on P=8 processors; the cap (shaded) and one of the “leaf 
subtrees” are allocated to each processor.   
 
The cap allocation is effective primarily because most of the activity takes place in the 
subtrees, and therefore is entirely local to a processor. Further, activity around the root is 
rare, so there is little likelihood for lock contention. Finally, the availability of the root 
means that interactions “crossing the root” can be navigated by percolating up in the local 
tree and crossing the cap locally, so as to identify the correct destination subtree. 
Navigating in the destination subtree is typically assigned as a task to the owner. As an 
additional bonus in the advanced algorithms for gravitational simulations in which large 
regions of the problem are aggregated into meta-points, the points around the root are all 
meta-points, and therefore are read-only, eliminating races and locking as issues. 
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Summary  

Exercises 
 
Exercise 0. Write a sequential program to perform the operations illustrated in Figure 3. 
That is, using an imagined library operation GetIt(<direction>, <buffer>) to transmit the 
data from the neighboring threads, compute a 4-point stencil computation on the interior 
data array A. Assume that GetIt blocks if the data on the other processor isn’t ready; also, 
assume that buffer is a separate block of memory not related to A, i.e. you must include 
the fluff buffers in your portion of the data array and fill them manually.  
 
Exercise 1. Generalize the longest positive run program to return a Boolean mask with a 
1 in the element positions for every positive value in the longest run, and 0s everywhere 
else. This computation uses the existing functions slightly modified, but replaces the 
reduceGen()  with scanGen()  to produce the final values. There is also a revision 
required for the tally data structure. [Hint: Assume in the accumulate function the 
availability of a variable, called index , giving the index of the element being 
processed.] 
 
Exercise 2. Revise the timing assumptions of the work queue example so that all 
processors are working on the subsequence: 4, 8, 12, 16. (There are multiple solutions.) 
 
 
Ex. Revise the tester program so that it exploits the fact that if the threads have 
established that all number less than k converge, then no thread need check further when 
ai < k.  
 

Historical Context 
Need in the historical section a bunch of things about the PRAM, Fetch and Add, and 
other one-point-per processor schemes, such as SIMD. Need to cite Anderson/Snyder to 
emphasize that there are more fundamental reasons to not like PRAMs than lock 
contention. Cite Blelloch. Ladner and Fischer, Deitz; who thought up block-cyclic—
Lennert? 
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Chapter 5: Achieving Good Performance 
 
Typically, it is fairly straightforward to reason about the performance of sequential 
computations.  For most programs, it suffices simply to count the number of instructions 
that are executed.  In some cases, we realize that memory system performance is the 
bottleneck, so we find ways to reduce memory usage or to improve memory locality.  In 
general, programmers are encouraged to avoid premature optimization by remembering 
the 90/10 rule, which states that 90% of the time is spent in 10% of the code.  Thus, a 
prudent strategy is to write a program in a clean manner, and if its performance needs 
improving, to identify the 10% of the code that dominates the execution time.  This 10% 
can then be rewritten, perhaps even rewritten in some alternative language, such as 
assembly code or C. 
 
Unfortunately, the situation is much more complex with parallel programs.  As we will 
see, the factors that determine performance are not just instruction times, but also 
communication time, waiting time, dependences, etc.  Dynamic effects, such as 
contention, are time-dependent and vary from problem to problem and from machine to 
machine.  Furthermore, controlling the costs is much more complicated.  But before 
considering the complications, consider a fundamental principle of parallel computation.  

Amdahl’s Law 
Amdahl's Law observes that if 1/S of a computation is inherently sequential, then the 
maximum performance improvement is limited to a factor of S.  The reasoning is that the 
parallel execution time, TP, of a computation with sequential execution time, TS, will be 
the sum of the time for the sequential component and the parallel component. For P 
processors we have 
 

TP = 1/S ⋅ TS + (1-1/S) ⋅ TS / P 
 
Imagining a value for P so large that the parallel portion takes negligible time, the 
maximum performance improvement is a factor of S.  That is, the proportion of 
sequential code in a computation determines its potential for improvement using 
parallelism.  
 
Given Amdahl's Law, we can see that the 90/10 rule does not work, even if the 90% of 
the execution time goes to 0.  By leaving the 10% of the code unchanged, our execution 
time is at best 1/10 of the original, and when we use many more than 10 processors, a 10x 
speedup is likely to be unsatisfactory.   
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The situation is actually somewhat worse than Amdahl’s Law implies.  One obvious 
problem is that the parallelizable portion of the computation might not be improved to an 

unlimited extent—that is, there is probably an upper limit on the number of processors 
that can be used and still improve the performance—so the parallel execution time is 
unlikely to vanish. Furthermore, a parallel implementation often executes more total 
instruction than the sequential solution, making the (1-1/S) ⋅ TS an under estimate.    
 
Many, including Amdahl, have interpreted the law as proof that applying large numbers 
of processors to a problem will have limited success, but this seems to contradict news 
reports in which huge parallel computers improve computations by huge factors.  What 
gives?  Amdahl’s law describes a key fact that applies to an instance of a computation. 
Portions of a computation that are sequential will, as parallelism is applied, dominate the 
execution time.  The law fixes an instance, and considers the effect of increasing 
parallelism.  Most parallel computations, such as those in the news, fix the parallelism 
and expand the instances.  In such cases the proportion of sequential code diminishes 
relative to the overall problem as larger instances are considered.  So, doubling the 
problem size may increase the sequential portion negligibly, making a greater fraction of 
the problem available for parallel execution.  
 
In summary, Amdahl’s law does not deny the value of parallel computing. Rather, it 
reminds us that to achieve parallel performance we must be concerned with the entire 
program. 

Measuring Performance 
As mentioned repeatedly, the main point of parallel computing is to run computations 
faster. Faster obviously means “in less time,” but we immediately wonder, “How much 
less?”  To understand both what is possible and what we can expect to achieve, we use 
several metrics to measure parallel performance, each with its own strengths and 
weaknesses. 
 
Execution Time 
Perhaps the most intuitive metric is execution time.  Most of us think of the so called 
“wall clock” time as synonymous with execution time, and for programs that run for 
hours and hours, that equivalence is accurate enough.  But the elapsed wall clock time 
includes operating system time for loading and initiating the program, I/O time for 
reading data, paging time for the compulsory page misses, check-pointing time, etc.  For 

Amdahl’s Law. The “law” was enunciated in a 1967 paper by Gene Amdahl, an IBM 
mainframe architect [Amdahl, G.M., Validity of the single-processor approach to 
achieving large scale computing capabilities.  In AFIPS Conference Proceedings, AFIPS 
Press 30:483-485, 1967].  It is a “law” in the same sense that the Law of Supply and 
Demand is a law: It describes a relationship between two components of program 
execution time, as expressed by the equation given in the text.  Both laws are powerful 
tools to explain the behavior of important phenomena, and both laws assume as constant 
other quantities that affect the behavior.  Amdahl’s Law applies to a program instance. 
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short computations—the kind that we often use when we are analyzing program 
behavior—these items can be significant contributors to execution time.  One argument 
says that because they are not affected by the user programming, they should be factored 
out of performance analysis that is directed at understanding the behavior of a parallel 
solution; the other view says that some services provided by the OS are needed, and the 
time should be charged. It is a complicated matter that we take up again at the end of the 
chapter. 
 
In this book we use execution time to refer to the net execution time of a parallel program 
exclusive of initial OS, I/O, etc. charges.  The problem of compulsory page misses is 
usually handled by running the computation twice and measuring only the second one.  
When we intend to include all of the components contributing to execution time, we will 
refer to wall clock time.  
 
Notice that execution times (and wall clock times for that matter) cannot be compared if 
they come from different computers.  And, in most cases it is not possible to compare the 
execution times of programs running different inputs even for the same computer. 
 
FLOPS   
Another common metric is FLOPS, short for floating point operations per second, which 
is often used in scientific computations that are dominated by floating point arithmetic.  
Because double precision floating point arithmetic is usually significantly more 
expensive than single precision, it is common when reporting FLOPS to state which type 
of arithmetic is being measured.  An obvious downside to using FLOPS is that it ignores 
other costs such as integer computations, which may also be a significant component of 
computation time.  Perhaps more significant is that FLOPS rates can often be affected by 
extremely low-level program modifications that allow the programs to exploit a special 
feature of the hardware, e.g. a combined multiply/add operation.  Such “improvements” 
typically have little generality, either to other computations or to other computers.  
 
A limitation of both of the above metrics is that they distill all performance into a single 
number without providing an indication of the parallel behavior of the computation.  
Instead, we often wish to understand how the performance of the program scales as we 
change the amount of parallelism. 
 
Speedup 
Speedup is defined as the execution time of a sequential program divided by the 
execution time of a parallel program that computes the same result.  In particular, 
Speedup = TS / TP, where TS is the sequential time and TP is the parallel time running on P 
processors.  Speedup is often plotted on the y-axis and the number of processors on the x-
axis, as shown in Figure 5.1.  
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Figure 5.1. A typical speedup graph showing performance for two programs.  
 
The speedup graph shows a characteristic typical of many parallel programs, namely, that 
the speedup curves level off as we increase the number of processors.  This feature is the 
result of keeping the problem size constant while increasing the number of processors, 
which causes the amount of work per processor to decrease; with less work per processor 
costs such as overhead—or sequential computation, as Amdahl predicted—become more 
significant, causing the total execution not to scale so well. 
 
Efficiency 
Efficiency is a normalized measure of speedup: Efficiency = Speedup/P.  Ideally, speedup 
should scale linearly with P, implying that efficiency should have a constant value of 1.  
Of course, because of various sources of performance loss, efficiency is more typically 
below 1, and it diminishes as we increase the number of processors.  Efficiency greater 
than 1 represents superlinear speedup. 
 
Superlinear Speedup  
The upper curve in the Figure 5.1 graph indicates superlinear speedup, which occurs 
when speedup grows faster than the number of processors.  How is this possible?  Surely 
the sequential program, which is the basis for the speedup computation, could just 
simulate the P processes of the parallel program to achieve an execution time that is no 
more than P times the parallel execution time.  Shouldn’t superlinear speedup be 
impossible? There are two reasons why superlinear speedup occurs.  
 
The most common reason is that the computation’s working set—that is, the set of pages 
needed for the computationally intensive part of the program—does not fit in the cache 
when executed on a single processor, but it does fit into the caches of the multiple 
processors when the problem is divided amongst them for parallel execution. In such 
cases the superlinear speedup derives from improved execution time due to the more 
efficient memory system behavior of the multi-processor execution.  
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The second case of superlinear speedup occurs when performing a search that is 
terminated as soon as the desired element is found. When performed in parallel, the 
search is effectively performed in a different order, implying that the total amount of data 
searched can actually be less than in the sequential case.  Thus, the parallel execution 
actually performs less work.  
 
Issues with Speedup and Efficiency 
Since speedup is a ratio of two execution times, it is a unitless metric that would seem to 
factor out technological details such as processor speed.  Instead, such details insidiously 
affect speedup, so we must be careful in interpreting speedup figures.  There are several 
concerns. 
 
First, recognize that it is difficult to compare speedup from machines of different 
generations, even if they have the same architecture.  The problem is that different 
components of a parallel machine are generally improved by different amounts, changing 
their relative importance.  So, for example, processor performance has increased over 
time, but communication latency has not fallen proportionately. Thus, the time spent 
communicating will not have diminished as much as the time spent computing. As a 
result, speedup values have generally decreased over time.  Stated another way, the 
parallel components of a computation have become relatively more expensive compared 
to the processing components. 
 
The second issue concerns TS, speedup’s numerator, which should be the time for the 
fastest sequential solution for the given processor and problem size.  If TS is artificially 
inflated, speedup will be greater.  A subtle way to increase TS is to turn off scalar 
compiler optimizations for both the sequential and parallel programs, which might seem 
fair since it is using the same compiler for both programs.  However, such a change 
effectively slows the processors and improves—relatively speaking—communication 
latency.  When reporting speedup, the sequential program should be provided and the 
compiler optimization settings detailed. 
 
Another common way to increase TS is to measure the one-processor performance of the 
parallel program.  Speedup computed on this basis is called relative speedup and should 
be reported as such.  True speedup includes the likely possibility that the sequential 
algorithm is different than the parallel algorithm.  Relative speedup, which simply 
compares different runs of the same algorithm, takes as the base case an algorithm 
optimized for concurrent execution but with no parallelism; it will likely run slower 
because of parallel overheads, causing the speedup to look better.  Notice that it can 
happen that a well-written parallel program on one processor is faster than any known 
sequential program, making it the best sequential program.  In such cases we have true 
speedup, not relative speedup.  The situation should be explicitly identified. 
 
Relative speed up cannot always be avoided.  For example, for large computations it may 
be impossible to measure a sequential program on a given problem size, because the data 
structures do not fit in memory. In such cases relative speedup is all that can be reported. 
The base case will be a parallel computation on a small number of processors, and the y-
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axis of the speedup plot should be scaled by that amount. So, for example, if the smallest 
possible run has P=4, then dividing by the runtime for P=64, will show perfect speedup 
at y=16. 
 
Another way to inadvertently affect TS is the “cold start” problem.  An easy way to 
accidentally get a large TS value is to run the sequential program once and include all of 
the paging behavior and compulsory cache misses in its timing.  As noted earlier it is 
good practice to run a parallel computation a few times, measuring only the later runs.  
This allows the caches to “warm up,” so that compulsory cache miss times are not 
unnecessarily included in the performance measure, thereby complicating our 
understanding of the program’s speedup.  (Of course, if the program has conflict misses, 
they should and will be counted.)  Properly, most analysts “warm” their programs.  But 
the sequential program should be “warmed,” too, so that the paging and compulsory 
misses do not figure into its execution time.  Though easily overlooked, cold starts are 
also easily corrected.  
 
More worrisome are computations that involve considerable off-processor activity, e.g. 
disk I/O.  One-time I/O bursts, say to read in problem data, are fine because timing 
measurements can by-pass them; the problem is continual off-processor operations.  Not 
only are they slow relative to the processors, but they greatly complicate the speedup 
analysis of a computation.  For example, if both the sequential and parallel solutions have 
to perform the same off-processor operations from a single source, huge times for these 
operations can completely obscure the parallelism because they will dominate the 
measurements. In such cases it is not necessary to parallelize the program at all. If 
processors can independently perform the off-processor operations, then this parallelism 
alone dominates the speedup computation, which will likely look perfect.  Any 
measurements of a computation involving off-processor charges must control their effects 
carefully. 

Performance Trade-Offs 
We know that communication time, idle time, wait time, and many other quantities can 
affect the performance of a parallel computation.  The complicating factor is that attempts 
to lower one cost can increase others.  In this section we consider such complications. 

Communication vs. computation   
Communication costs are a direct expense for using parallelism because they do not arise 
in sequential computing.  Accordingly, it is almost always smart to attempt to reduce 
them.  
 
Overlap Communication and Computation.  One way to reduce communication costs is 
to overlap communication with computation.  Because communication can be performed 
concurrently with computation, and because the computation must be performed anyway, 
a perfect overlap—that is, the data is available when it is needed—hides the 
communication cost perfectly.  Partial overlap will diminish waiting time and give partial 
improvement.  The key, of course, is to identify computation that is independent of the 
communication.  From a performance perspective, overlapping is generally a win without 
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costs.  From a programming perspective, overlapping communication and computation 
can complicate the program’s structure. 
 
Redundant Computation.  Another way to reduce communication costs is to perform 
redundant computations.  We observed in Chapter 2, for example, that the local 
generation of a random number, r, by all processes was superior to generating the value 
in one process and requiring all others to reference it.  Unlike overlapping, redundant 
computation incurs a cost because there is no parallelism when all processors must 
execute the random number generator code.  Stated another way, we have increased the 
total number of instructions to be executed in order to remove the communication cost.  
Whenever the cost of the redundant computation is less than the communication cost, 
redundant computation is a win.  
 
Notice that redundant computation also removes a dependence from the original program 
between the generating process and the others that will need the value.  It is useful to 
remove dependences even if the cost of the added computation exactly matches the 
communication cost.  In the case of the random number generation, redundant 
computation removes the possibility that a client process will have to wait for the server 
process to produce it.  If the client can generate its own random number, it does not have 
to wait. Such cases complicate the assessing the trade-off.   

Memory vs. parallelism 
Memory usage and parallelism interact in many ways.  Perhaps the most favorable is the 
“cache effect” that leads to superlinear parallel performance, noted above.  With all 
processors having caches, there is more fast memory in a parallel computer.  But there 
are other cases where memory and parallelism interact.   
 
Privatization.  For example, parallelism can be increased by using additional memory to 
break false dependences. One memorable example is the use of private_count  
variables in the Count 3s program, which removed the need for threads to interact each 
time they recorded the next 3. The effect was to increase the number of count variables 
from 1 to t , the number of threads. It is a tiny memory cost for a big savings in reduced 
dependences 
 
Batching.  One way to reduce the number of dependences is to increase the granularity of 
interaction.  Batching is a programming technique in which work or transmissions are 
performed as a group.  For example, rather than transmitting elements of an array, 
transmit a whole row or column; rather than grabbing one task from the task queue, get 
several.  Batching effectively raises the granularity (see below) of fine-grain interactions 
to reduce their frequency.  The added memory is simply required to record the items of 
the batch, and like privatization, is almost always worth the memory costs. 
 
Memoization.  Memoization stores a computed value to avoid re-computing later.  An 
example is a stencil optimization:  A value is computed based on some combination of 
the scaled values of its neighbors, shown schematically below, 
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where color indicates the scaling coefficient; elements such as the corner elements are 
multiplied by the scale factor four times as the stencil “moves through the array,” and 
memoizing this value can reduce the number of multiplies and memory references. 
[DETAILED EXAMPLE HERE.] It is a sensible program optimization that removes instruction 
executions that, strictly speaking, may not result in parallelism improvements.  However, 
in many cases memoization will result in better parallelism, as when the computation is 
redundant or involves non-local data values. 
 
Padding.  Finally, we note that false sharing—references to independent variables that 
become dependent because they are allocated to the same cache line—can be eliminated 
by padding data structures to push the values onto different cache lines. 

Overhead vs. parallelism   
Parallelism and overhead are sometimes at odds.  At one extreme, all parallel overhead, 
such as lock contention, can be avoided by using just one process.  As we increase the 
number of threads the contention will likely increase.  If the problem size remains fixed 
each processor has less work to perform between synchronizations, causing 
synchronization to become a larger portion of the overall computation.  And a smaller 
problem size implies that there is less computation available to overlap with 
communication, which will typically increase the wait times for data.  
 
It is the overhead of parallelism that is usually the reason why P cannot increase without 
bound.  Indeed, even computations that could conceptually be solved with a processor 
devoted to each data point will be buried by overhead before P=n.  Thus, we find that 
most programs have an upper limit for each data size at which the marginal value of an 
additional processor is negative, that is, adding a processor causes the execution time to 
increase.  
 
Parallelize Overhead.  Recall that in Chapter 4, when lock contention became a serious 
concern, we adopted a combining tree to solve it.  In essence, the threads split up the task 
of accumulating intermediate values into several independent parallel activities.  
 
[THIS SECTION CONTINUES WITH THESE TOPICS] 
 
Load balance vs. parallelism.  Increased parallelism can also improve load balance, as 
it's often easier to distribute evenly a large number of fine-grained units of work than a 
smaller number of coarse-grained units of work. 
 
Granularity tradeoffs.  Many of the above tradeoffs are related to the granularity of 
parallelism.  The best granularity often depends on both algorithmic characteristics, such 
as the amount of parallelism and the types of dependences, and hardware characteristics, 
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such as the cache size, the cache line size, and the latency and bandwidth of the machine's 
communication substrate. 
 
Latency vs. bandwidth.   As discussed in Chapter 3, there are many instances where 
bandwidth can be used to reduce latency. 
 
Scaled speedup vs. Fixed-Size speedup 
Choosing a problem size can be difficult. 

What should we measure?   
The kernel or the entire program? 
Amdahl’s law says that everything is important!  
 
Operating System Costs 
Because operating systems are so integral to computation, it is complicated to assess their 
effects on performance.  
 
Initialization. 
How is memory laid out in the parallel computer? 
 

Summary 
 

Exercises 
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Chapter 6: Programming with Threads  
 
Recall in Chapter 1 that we used threads to implement the count 3's program.  In this 
chapter we'll explore thread-based programming in more detail using the standard POSIX 
Threads interface.  We'll first explain the basic concepts needed to create threads and to 
let them interact with one another.  We'll then discuss issues of safety and performance 
before we step back and evaluate the overall approach. 
 

Thread Creation and Destruction 
 

Consider the following standard code: 
 
 1 #include <pthread.h> 
 2 int err; 
 3 
 4 void main ()  
 5 { 
 6    pthread_t tid[MAX];   /* An array of Thread I D's, one for each */ 
 7             /* thread that is created */ 
 8 
 9    for (i=0; i<t; i++) 
10    { 
11       err = pthread_create (&tid[i], NULL, count 3s_thread, i);  
12    } 
13  
14    for (i=0; i<t; i++) 
15    { 
16       err = pthread_join_(tid[i], &status[i]) 
17    } 
18 } 
 

The above code shows a main() function, which then creates—and launches—t  
threads in the first loop, and then waits for the t  threads to complete in the second loop.  
We often refer to the creating thread as the parent and the created threads as children. 
 
The above code differs from the pseudocode in Chapter 1 in a few details.  Line 1 
includes the pthreads header file, which declares the various pthreads routines and 
datatypes.  Each thread that is created needs its own thread ID, so these thread ID's are 
declared on line 6.  To create a thread, we invoke the pthread_create()  routine 
with four parameters.  The first parameter is a pointer to a thread ID, which will point to a 
valid thread ID when this thread successfully returns.  The second argument provides the 
thread’s attributes; in this case, the NULL value specifies default attributes.  The third 
parameter is a pointer to the start function, which the thread will execute once it’s 
created.  The fourth argument is passed to the start routine, in this case, it represents a 
unique integer between 0 and t-1  that is associated with each thread.  The loop on line 
16 then calls pthread_join() to wait for each of the child threads to terminate.  If 
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instead of waiting for the child threads to complete, the main() routine finishes and 
exits using  pthread_exit() , the child threads will continue to execute. Otherwise, 
the child threads will automatically terminate when main() finishes, since the entire 
process will have terminated. See Code Specs 1 and 2. 
 

 
Code Spec 1. pthread_create().  The POSIX Threads thread creation function.  
 

pthread_join() 
int pthread_join (                 // wait for a th read to terminate 
  pthread_t tid,                   // thread IT to wait for 
  void **status                    // exit status 
); 

 
Arguments: 

• The ID of the thread to wait for. 
• The completion status of the exiting thread will be copied into *status  unless 

status is NULL, in which case the completion status is not copied. 
 
Return value: 

• 0 for success.  Error code from <errno.h> otherwise. 
 
Notes: 

• Once a thread is joined, the thread no longer exists, its thread ID is no longer 
valid, and it cannot be joined with any other thread. 

 

pthread_create() 
int pthread_create (      // create a new thread 
  pthread_t *tid,                 // thread ID 
  const pthread_attr_t *attr,     // thread attribu tes 
  void *(*start_routine) (void *),// pointer to fun ction to execute 
  void *arg                       // argument to fu nction 
  ); 
 

Arguments: 
• The thread ID of the successfully created thread.  
• The thread's attributes, explained below; the NULL value specifies default 

attributes. 
• The function that the new thread will execute once it is created. 
• An argument passed to the start_routine(),  in this case, it represents a 

unique integer between 0 and t-1  that is associated with each thread. 
 
Return value: 

• 0 if successful.  Error code from <errno.h> otherwise. 
 
Notes: 

• Use a structure to pass multiple arguments to the start routine. 
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Code Spec 2. pthread_join().  The POSIX Threads rendezvous function pthread_join(). 
 

Thread ID’s 
Each thread has a unique ID of type pthread_t. As with all pthread data types, a 
thread ID should be treated as an opaque type, meaning that individual fields of the 
structure should never be accessed directly.  Because child threads do not know their 
thread ID, the two routines allow a thread to determine its thread ID, pthread_self(), and 
to compare two thread ID’s, pthread_equal(), see Code Specs 3 and 4. 
 

Code Spec 3. pthread_self().  The POSIX Threads function to fetch a thread’s ID. 
 

 
Code Spec 4. pthread_equal().  The POSIX Threads function to compare two thread IDs for equality. 
 

Destroying Threads 
There are three ways that threads can terminate. 

1. A thread can return from the start routine. 
2. A thread can call pthread_exit().  
3. A thread can be cancelled by another thread. 

In each case, the thread is destroyed and its resources become unavailable.   

pthread_self() 
pthread_t pthread_self ();         // Get my thread  ID 

 
Return value: 

• The ID of the thread that called this function. 
 
 

pthread_equal() 
int pthread_equal (                 // Test for equ ality 
  pthread_t t1,     // First operand thread ID 
  pthread_t t2    // Second operand thread ID 
); 

 
Arguments: 

• Two thread ID’s 
 
Return value: 

• Non-zero if the two thread ID’s are the same (following the C convention). 
• 0 if the two threads are different. 
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Code Spec 5. pthread_exit().  The POSIX Threads thread termination function pthread_exit(). 
 

Thread Attributes 
Each thread maintains its own properties, known as attributes, which are stored in a 
structure of type pthread_attr_t.   For example, threads can be either detached or 
joinable.  Detached threads cannot be joined with other threads, so they have slightly 
lower overhead in some implementations of POSIX Threads. For parallel computing, we 
will rarely need detached threads.  Threads can also be either bound or unbound.  Bound 
threads are scheduled by the operating system, whereas unbound threads are scheduled 
by the Pthreads library.  For parallel computing, we typically use bound threads so that 
each thread provides physical concurrency.  

 
POSIX Threads provides routines to initialize thread attributes, set their attributes, and 
destroy attributes, as shown in Code Spec 6.  
 
Code Spec 6. pthread attributes.  An example of how thread attributes are set in the POSIX Threads 

interface. 

void pthread_exit() 
void pthread_exit (                    // terminate a th read 
  void *status       // completion status 
); 

 
Arguments: 

• The completion status of the thread that has exited.  This pointer value is 
available to other threads. 

 
Return value: 

• None 
 
Notes: 

• When a thread exits by simply returning from the start routine, the thread’s 
completion status is set to the start routine’s return value. 

 

Thread Attributes 
pthread_attr_t  attr;              // Declare a thr ead attribute 
pthread_t       tid;                
 
pthread_attr_init(&attr);          // Initialize a thread attribute 
pthread_attr_setdetachstate(&attr, // Set the threa d attribute 
                            PTHREAD_CREATE_UNDETACH ED); 
 
pthread_create (&tid, &attr, start_func, NULL); // Use the attribute 
                                                // to create a thread 
pthread_join(tid, NULL);            
pthread_attr_destroy(&attr);       // Destroy the t hread attribute  
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Example 
The following example illustrates a potential pitfall that can occur because of the 
interaction between parent and child threads.  The parent thread simply creates a child 
thread and waits for the child to exit.  The child thread does some useful work and then 
exits, returning an error code.  Do you see what’s wrong with this code? 
  
 1 #include <pthread.h> 
 2 
 3 void main () 
 4 { 
 5    pthread_t tid;      
 6    int *status;           
 7 
 8    pthread_create (&tid, NULL, start, NULL);  
 9    pthread_join_(tid, &status); 
10 } 
11  
12 void start()  
13 { 
14    int errorcode; 
15    /* do something useful. . . */ 
16    
17    if (. . . ) 
18       errorcode = something; 
19    pthread_exit(&errorcode); 
20 } 
 

The problem occurs in the call to pthread_exit()  on line 17, where the child is 
attempting to return an error code to the parent.  Unfortunately, because errorcode  is 
declared to be local to the start()  function, the memory for errorcode  is allocated 
on the child thread’s stack.  When the child exits, its call stack is de-allocated, and the 
parent has a dangling pointer to errorcode .  At some point in the future, when a new 
procedure is invoked, it will over-write the stack location where errorcode  resides, 
and the value of errorcode  will change.  
 

Mutual Exclusion 
We can now create and destroy threads, but to allow threads to interact constructively, we 
need methods of coordinating their interaction.  In particular, when two threads share 
access to memory, it is often useful to employ a lock, called a mutex, to provide mutual 
exclusion or mutually exclusive access to the variable. As we saw in Chapter 1, without 
mutual exclusion, race conditions can lead to unpredictable results, because when 
multiple threads execute the following code, the count  variable, which is shared among 
all threads, will not be atomically updated. 
 
 
    for (i=start; i<start+length_per_thread; i+ +) 
    {  
 if (array[i] == 3) 
 { 
     count++; 
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 } 
    } 

 
The solution, of course, is to protect the update of count using a mutex, as shown below:  
     
 1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER ; 
 2 
 3 void count3s_thread (int id) 
 4 { 
 5    /* Compute portion of array that this thread should work on */ 
 6    int length_per_thread = length/t; 
 7    int start = id * length_per_thread; 
 8 
 9    for (i=start; i<start+length_per_thread; i+ +) 
10    { 
11       if (array[i] == 3) 
12    { 
13       pthread_mutex_lock(&lock); 
14       count++; 
15       pthread_mutex_unlock(&lock); 
16    } 
17    } 
18 } 
 
 

Line 1 shows how a mutex can be statically declared.  Like threads, mutexes have 
attributes, and by initializing the mutex to PTHREAD_MUTEX_INITIALIZER, the 
mutex is assigned default attributes.  To use this mutex, its address is passed to the lock 
and unlock routines on lines 13 and 15, respectively.  The appropriate discipline, of 
course, is to bracket all critical sections, that is, code that must be executed atomically by 
only one thread at a time, by the locking of a mutex upon entrance and the unlocking of a 
mutex upon exit.  Only one thread can acquire the mutex at any one time, so a thread will 
block if it attempts to acquire a mutex that is already held by another thread.  When a 
mutex is unlocked, or relinquished, one of the threads that was blocked attempting to 
acquire the lock will become unblocked and granted the mutex.  The POSIX Threads 
standard defines no notion of fairness, so the order in which the locks are acquired is not 
guaranteed to match the order in which the threads attempted to acquire the locks. 
 
It is an error to unlock a mutex that has not been locked, and it is an error to lock a mutex 
that is already held.  The latter will lead to deadlock, in which the thread cannot make 
progress because it is blocked waiting for an event that cannot happen.  We will discuss 
deadlock and techniques to avoid deadlock in more detail later in the chapter. 
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Code Spec 7.  The POSIX Threads routines for acquiring and releasing mutexes. 

Serializability 
It’s clear that our use of mutexes provides atomicity: the thread that acquires the mutex m 

will execute the code in the critical section until it relinquishes the mutex.  Thus, in our 
above example, the counter will be updated by only one thread at a time.  Atomicity is 
important because it ensures serializability:  A concurrent execution is serializable if the 
execution is guaranteed to execute in an order that corresponds to some serial execution 
of those threads. 

Mutex Creation and Destruction 
In our above example, we knew that only one mutex was needed, so we were able to 
statically allocate it.  In cases where the number of required mutexes is not known a 
priori , we can instead allocate and deallocate mutexes dynamically.  Code Spec 8 shows 
how such a mutex is dynamically allocated, initialized with default attributes, and 
destroyed. 

Acquiring and Releasing Mutexes 
 
int pthread_mutex_lock(             // Lock a mutex  
   pthread_mutex_t *mutex);          
 
int pthread_mutex_unlock(           // Unlock a mut ex 
   pthread_mutex_t *mutex); 
 
int pthread_mutex_trylock(          // Non-blocking  lock 
   pthread_mutex_t *mutex);           
 

Arguments: 
• Each function takes the address of a mutex variable. 

 
Return value: 

• 0 if successful.  Error code from <errno.h> otherwise. 
 
Notes: 

• The pthread_mutex_trylock()  routine attempts to acquire a mutex but 
will not block.  This routine returns EBUSY if the mutex is locked. 
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Code Spec 8.  The POSIX Threads routines for dynamically creating and destroying mutexes. 

 
Code Spec 9.  An example of how dynamically allocated mutexes are used in the POSIX Threads interface. 

Synchronization 
Mutexes are sufficient to provide atomicity for critical sections, but in many situations we 
would like a thread to synchronize its behavior with that of some other thread.  For 
example, consider a classic bounded buffer problem in which one or more threads put 

Mutex Creation and Destruction 
 
int pthread_mutex_init(   // Initialize a mutex 
   pthread_mutex_t *mutex, 
   pthread_mutexattr_t *attr); 
 
int pthread_mutex_destroy (    // Destroy a mutex 
   pthread_mutex_t *mutex);   
 
int pthread_mutexattr_init(  // Initialize a mutex attribute 
   pthread_mutexattr_t *attr);           
 
int pthread_mutexattr_destroy ( // Destroy a mutex attribute 
   pthread_mutexattr_t *attr); 
 

Arguments: 
• The pthread_mutex_init()  routine takes two arguments, a pointer to a 

mutex  and a pointer to a mutex attribute.  The latter is presumed to have 
already been initialized. 

• The pthread_mutexattr_init()  and 
pthread_mutexattr_destroy()  routines take a pointer to a mutex 
attribute as arguments. 

 
Notes: 

• If the second argument to pthread_mutex_init()  is NULL, default 
attributes will be used. 

Dynamically Allocated Mutexes 
 
pthread_mutex_t *lock;             // Declare a poi nter to a lock 
 
lock = (pthread_mutex_lock_t *) malloc(sizeof (pthr ead_mutex_t)); 
 
pthread_mutex_init(lock, NULL);           
   /* 
    * Code that uses this lock. 
    */ 
 
pthread_mutex_destroy (lock); 
free (lock);  
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items into a circular buffer while other threads remove items from the same buffer.  As 
shown in Figure 1, we would like the producers to stop producing data—to wait—if the 
consumer is unable to keep up and the buffer becomes full, and we would like the 
consumers to wait if the buffer is empty. 

 
Figure 1.  A bounded buffer with producers and consumers.  The Put and Get cursors indicate where the 
producers will insert the next item and where the consumers will remove its next item, respectively.  When 
the buffer is empty, the consumers must wait.  When the buffer is full, the producers must wait.  
 
Such synchronization is supported by condition variables, which are a more general form 
of synchronization than joining threads.  A condition variable allows threads to wait until 
some condition becomes true, at which point one of the waiting threads is non-
deterministically chosen to stop waiting.  We can think of the condition variable as a gate 
(see Figure 2).  Threads wait at the gate until some condition is true.  Other threads open 
the gate to signal that the condition has become true, at which point one of the waiters is 
allowed to enter the gate and resume execution.  If a thread opens the gate when there are 
no threads waiting, the signal has no effect. 

 
Figure 2.  Condition variables act like a gate.  Threads wait outside the gate by calling 
pthread_cond_wait(),  and threads open the gate by calling pthread_cond_signal().   When 
the gate is opened, one waiter is allowed through.  If there are no waiters when the gate is opened, the  
signal has no effect. 
 

We can solve our bounded buffer problem with two condition variables, nonempty  and 
nonfull , as shown below.   
 
 1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER ; 
 2 pthread_cond_t nonempty = PTHREAD_COND_INITIALIZ ER; 
 3 pthread_cond_t nonfull= PTHREAD_COND_INITIALIZER ; 
 4 Item buffer[SIZE]; 
 5 int in = 0;                      // Buffer index  for next insertion 
 6 int out = 0;                     // Buffer index  for next removal 

Get Put 

Circular Buffer 

Get Put 

Empty Buffer  

Get Put 

Full Buffer  

signaler 

waiter 

signaler 
waiter 

waiter 
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 7     
 8 void put (Item x)                // Producer thr ead 
 9 { 
10    pthread_mutex_lock(&lock); 
11    while (in – out) == SIZE)     // While buffer  is full 
12       pthread_cond_wait(&nonfull, &lock); 
13    buffer[in % SIZE] = x; 
14    in++; 
15    pthread_cond_signal(&nonempty); 
16    pthread_mutex_unlock(&lock); 
17 } 
18 
19 Item get()                       // Consumer thr ead 
20 { 
21    Item x; 
22    pthread_mutex_lock(&lock); 
23    while (out – in)              // While buffer  is empty 
24       pthread_cond_wait(&nonempty, &lock); 
25    x = buffer[out % SIZE]; 
26    out++; 
27    pthread_cond_signal(&nonfull); 
28    pthread_mutex_unlock(&lock); 
29    return x; 
30 } 
 

Of course, since multiple threads will be updating these condition variables, we need to 
protect their access with a mutex, so Line 1 declares a mutex.  The remaining 
declarations define a buffer, buffer , and its two cursors, in  and out , which indicate 
where to insert the next item and where to remove the next item.  The two cursors wrap 
around when they exceed the bounds of buffer , yielding a circular buffer. 
 
Given these data structures, the producer thread executes the put()  routine, which first 
acquires the mutex to access the condition variables.  (This code omits the actual creation 
of the producer and consumer threads, which are assumed to iteratively invoke the 
put()  and get()  routines, respectively.)  If the buffer is full, the producer waits on the 
nonfull  condition so that it will later be awakened when the buffer becomes non-full.  
If this thread blocks, the mutex that it holds must be relinquished to avoid deadlock.  
Because these two events—the releasing of the mutex and the blocking of this waiting 
thread—must occur atomically, they must be performed by pthread_cond_wait(),  
so the mutex is passed as a parameter to pthread_cond_wait().   When the 
producer resumes execution after returning from the wait on Line 12, the protecting 
mutex will have been re-acquired by the system on behalf of the producer.   
 
In a moment we will explain the need for the while  loop on Line 11, but for now 
assume when the producer executes Line 13, the buffer is not full, so it is safe to insert a 
new item and to bump the In  cursor by one.  At this point, the buffer cannot be empty 
because the producer has just inserted an element, so the producer signals that the buffer 
is nonempty, waking one more consumers that may be waiting on an empty buffer.  If 
there are no waiting consumers, the signal is lost.  Finally, the producer releases the 
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mutex and exits the routine.  The consumer thread executes the get()  routine, which 
operates in a very similar manner. 

 
Code Spec 10.  pthread_cond_wait():  The POSIX Thread routines for  waiting on condition variables. 
 

 
Code Spec 11.  pthread_cond_signal().  The POSIX Threads routines for signaling a condition variable. 
 

pthread_cond_signal() 
 
int pthread_cond_signal( 
   pthread_cond_t *cond);  // Condition to signal 
 
int pthread_cond_broadcast ( 
   pthread_cond_t *cond);  // Condition to signal 
 

Arguments: 
• A condition variable to signal. 

 
Return value: 

• 0 if successful.  Error code from <errno.h> otherwise. 
 
Notes: 

• These routines have no effect if there are no threads waiting on cond .  In 
particular, there is no memory of the signal when a later call is made to 
pthread_cond_wait().  

• The pthread_cond_signal()  routine may wake up more than one 
thread, but only one of these threads will hold the protecting mutex. 

• The pthread_cond_broadcast()  routine wakes up all waiting threads.  
Only one awakened thread will hold the protecting mutex. 

pthread_cond_wait() 
 
int pthread_cond_wait( 
   pthread_cond_t *cond,  // Condition to wait on 
   pthread_mutex_t *mutex);  // Protecting mutex 
 
int pthread_cond_timedwait ( 
   pthread_cond_t *cond, 
   pthread_mutex_t *mutex, 
   const struct timespec *abstime); // Time-out value   
 

Arguments: 
• A condition variable to wait on. 

• A mutex that protects access to the condition variable.  The mutex is released 
before the thread blocks, and these two actions occur atomically.  When this 
thread is later unblocked, the mutex is reacquired on behalf of this thread. 

•  

Return value: 
• 0 if successful.  Error code from <errno.h> otherwise. 
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Protecting Condition Variables 
Let us now return to the while  loop on Line 11 of the bounded buffer program.  If our 
system has multiple producer threads, this loop is essential because 
pthread_cond_signal()  can wake up multiple waiting threads3, of which only one 
will hold the protecting mutex at any particular time.  Thus, at the time of the signal, the 
buffer is not full, but when any particular thread acquires the mutex, the buffer may have 
become full again, in which case the thread should call pthread_cond_wait()  
again.  When the producer thread executes Line 13, the buffer is necessarily not full, so it 
is safe to insert a new item and to bump the In  cursor.   
 
We see on Lines 15 and 27 that the call to pthread_cond_signal()  is also 
protected by the lock.  The following example shows that this protection is necessary. 
 

 
Figure 3.  Example of why a signaling thread needs to be protected by a mutex. 
 
In this example, the waiting thread, in this case the consumer, acquires the protecting 
mutex and finds that the buffer is empty, so it executes pthread_cond_wait().   If 
the signaling thread, in this case the producer, does not protect the call to 
pthread_cond_signal()  with a mutex, it could insert an item into the buffer 
immediately after the waiting thread found it empty.  If the producer then signals that the 
buffer is non-empty before the waiting thread executes the call to 
pthread_cond_wait(),  the signal will be dropped and the consumer thread will 
not realize that the buffer is actually not empty.  In the case that the producer only inserts 
a single item, the waiting thread will needlessly wait forever. 
 
The problem, of course, is that there is a race condition involving the manipulation of the 
buffer.  The obvious solution is to protect both the call to pthread_cond_signal()  
with the same mutex that protects the call to pthread_cond_wait (), as shown in the 
code for our bounded buffer solution.  Because both the Put()  and Get()  routines are 
protected by the same mutex, we have three critical sections related to the nonempty 
buffer, as shown in Figure 4, and in no case can the signal be dropped while a waiting 
thread thinks that the buffer is empty. 

                                                 
3 These semantics are due to implementation details.  In some cases it can be expensive to 
ensure that exactly one waiter is unblocked by a signal. 

Signaling Thread Waiting Thread 

 time 

lock (mutex) 
while (out – in) 
 
 
 
  pthread_cond_wait(&nonempty, lock); 
// Will wait forever 

insert(item); 
pthread_cond_signal(&nonempty); 
// Signal is dropped 
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Figure 4.  Proper locking of the signaling code prevents race conditions.  By identifying and protecting 
three critical sections pertaining to the nonempty buffer, we guarantee that each of A, B, and C will execute 
atomically, so our problem from Figure 3 is avoided: There is no way for the Put()  routine’s signal to be 
dropped while a thread executing the Get()  routine thinks that the buffer is empty. 
 
We have argued that the call to pthread_cond_signal() must be protected by the 
same mutex that protects the waiting code.  However, notice that the race condition 
occurs not from the signaling of the condition variable, but with the access to the shared 
buffer.  Thus, we could instead simply protect any code that manipulates the shared 
buffer, which implies that the Put() code could release the mutex immediately after 
inserting an item into the buffer but before calling pthread_cond_signal().   This 
new code is not only legal, but it produces better performance because it reduces the size 
of the critical section, thereby allowing more concurrency. 

lock (mutex) 
while (out – in) 
  pthread_cond_wait(&nonempty, lock); 
remove(item); 
 
 

insert(item); 
pthread_cond_signal(&nonempty); 

Put() 

Get() 

 time 

insert(item); 
pthread_cond_signal(&nonempty); Critical section A 

Critical section B 

Critical section C 

Signaling Thread Waiting Thread 

Case 1: Order A, B, C 

insert(item); 
pthread_cond_signal(&nonempty); 

Case 2: Order B, A, C 

lock (mutex) 
while (out – in) 
  pthread_cond_wait(&nonempty, lock); 
remove(item); 
 
 
 

Case 3: Order B, C, A 

 time 

insert(item); 
pthread_cond_signal(&nonempty); 

 time 

lock (mutex) 
while (out – in) 
  pthread_cond_wait(&nonempty, lock); 
 

remove(item); 

lock (mutex) 
while (out – in) 
  pthread_cond_wait(&nonempty, lock); 
 
remove(item); 
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Creating and Destroying Condition Variables  
Like threads and mutexes, condition variables can be created and destroyed either 
statically or dynamically.  In our bounded buffer example above, the static condition 
variables were both given default attributes by initializing them to 
PTHREAD_COND_INITIALIZER. Condition variables can be dynamically allocated as 
indicated in Code Spec 12. 

 
Code Spec 12.  The POSIX Threads routines for dynamically creating and destroying condition variables. 
 

Waiting on Multiple Condition Variables 
In some cases a piece of code cannot execute unless multiple conditions are met.  In these 
situations the waiting thread should test all conditions simultaneously, as shown below. 
 
 1 EatJuicyFruit()   
 2 {                                 
 3    pthread_mutex_lock(&lock); 
 4    while (apples==0 && oranges==0)   
 5    {      
 6       pthread_cond_wait(&more_apples, &lock); 
 7       pthread_cond_wait(&more_oranges, &lock); 
 8    } 
 9    /* Eat both an apple and an orange */ 
10    pthread_mutex_unlock(&lock); 
11 } 

 
By contrast, the following code, which waits on each condition in turn, fails because 
there is no guarantee that both conditions will be true at the same time.  That is, after 
returning from the first call to pthread_cond_wait()  but before returning from the 
second call to pthread_cond_wait (), some other thread may have removed an apple, 
making the first condition false. 
 
 1 EatJuicyFruit()   
 2 {                                 

Dynamically Allocated Condition Variables 
 
int pthread_cond_init( 
   pthread_cond_t *cond,  // Condition variable 
   const pthread_condattr_t *attr); // Condition at tribute 
 
int pthread_cond_destroy ( 
   pthread_cond_t *cond);  // Condition to destroy 
 

Arguments: 
• Default attributes are used if attr  is NULL. 

 
Return value: 

• 0 if successful.  Error code from <errno.h> otherwise. 
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 3    pthread_mutex_lock(&lock); 
 4    while (apples==0)       
 5       pthread_cond_wait(&more_apples, &lock); 
 6    while (oranges==0) 
 7       pthread_cond_wait(&more_oranges, &lock); 
 8    
 9    /* Eat both an apple and an orange */ 
10    pthread_mutex_unlock(&lock); 
11 } 

Thread-Specific Data 
It is often useful for threads to maintain private data that is not shared.  For example, we 
have seen examples where a thread index is passed to the start function so that the thread 
knows what portion of an array to work on.  This index can be used to give each thread a 
different element of an array, as shown below: 
  
 1  . . . 
 2 
 3    for (i=0; i<t; i++) 
 4       err = pthread_create (&tid[i], NULL, start _function, i);  
 5 
 6 void start_function(int index) 
 7 { 
 8    private_count[index] = 0; 
 9 . . . 
 

A problem occurs, however, if the code that accesses index  occurs in a function, 
foo(),  which is buried deep within other code.  In such situations, how does foo()  
get the value of index ?  One solution is to pass the index  parameter to every 
procedure that calls foo(),  including procedures that call foo()  indirectly through 
other procedures.  This solution is cumbersome, particularly for those procedures that 
require the parameter but do not directly use it. 
 
Instead, what we really want is a variable that is global in scope to all code but which can 
have different values for each thread.  POSIX Threads supports such a notion in the form 
of thread-specific data, which uses a set of keys, which are shared by all threads in a 
process, but which map to different pointer values for each thread.  (See Figure 4.) 

 
 

Thread 0 

Thread 1 

Memory 

key1 

key2 
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Figure 5.  Example of thread-specific data in POSIX Threads.  Thread-specific data are accessed by keys, 
which map to different memory locations in different threads. 
 
As a special case, the error values for POSIX Threads routines are returned in thread-
specific data, but such data does not use the interface defined by Code Specs 13-17.  
Instead, each thread has its own value of errno . 
 

 
Code Spec 13.  Example of how thread-specific data is used.  Once initialized with this code, any 
procedure can access the value of my_index . 
 

 
Code Spec 14.  pthread_key_create.  POSIX Thread routine for creating a key for thread-specific data. 
 

pthread_key_create 
 
int pthread_key_create ( 
   pthread_key_t *key,              // The key to c reate 
   void (*destructor) (void*));     // Destructor f unction 
 

Arguments: 
• A pointer to the key to create. 
• A destructor function.  NULL indicates no destructor. 

 
Return value: 

• 0 if successful.  Error code from <errno.h> otherwise. 
  
Notes: 

• Avoid accessing index in a tight inner loop because each access requires a 
procedure call. 

Thread-Specific Data 
 
pthread_key_t *my_index; 
#define index (pthread_getspecific (my_index)) 
 
main()  
{ 
   . . . 
   pthread_key_create(&my_index, 0); 
   . . . 
} 
 
void start_routine(int id) 
{   
   pthread_setspecific (my_index, id); 
   . . . 
} 
 

Notes: 
• Avoid accessing index in a tight inner loop because each access requires a 

procedure call. 
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Code Spec 15.  pthread_key_delete.  POSIX Thread routine for deletin a key. 
 

 
Code Spec 16.  pthread_setspecific.  POSIX Thread routine for setting the value of thread-specific data. 

pthread_setspecific 
 
int pthread_setspecific ( 
   pthread_key_t *key,              // Key to set 
   void *value));                   // Value to set  
 

Arguments: 
• A pointer to the key to be set. 
• The value to set. 

 
Return value: 

• 0 if successful.  Error code from <errno.h> otherwise. 
  
Notes: 

• It is an error to call pthread_setspecific()  before the key has been 
created or after the key has been deleted. 

pthread_key_delete 
 
int pthread_key_delete ( 
   pthread_key_t *key);              // The key to delete 
 

Arguments: 
• A pointer to the key to delete. 

 
Return value: 

• 0 if successful.  Error code from <errno.h> otherwise. 
  
Notes: 

• Destructors will not be called. 
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Code Spec 17.  pthread_getspecific.  POSIX Thread routine for getting the value of some  thread-specific 
data. 
 

Safety Issues 
 
Many types of errors can occur from the improper use of locks and condition variables.  
We’ve already mentioned the problem of double-locking, which occurs when a thread 
attempts to acquire a lock that it already holds.  Of course, problems also arise if a thread 
accesses some shared variable without locking it, or if a thread acquires a lock and does 
not relinquish it.  One particularly important problem is that of avoiding deadlock.  This 
section discusses various methods of avoiding deadlock and other potential bugs. 
 

Deadlock 
There are four necessary conditions for deadlock: 

1. Mutual exclusion:  a resource can be assigned to at most one thread. 
2. Hold and wait: a thread that holds resources can request new resources. 
3. No preemption:  a resource that is assigned to a thread can only be released by the 

thread that holds it. 
4. Circular wait: there is a cycle in which each thread waits for a resource that is 

assigned to another thread.  (See Figure 6.) 
 
Of course, for threads-based programming, mutexes are resources that can cause 
deadlock.  There are two general approaches to dealing with deadlock: (1) prevent 
deadlocks, and (2) allow deadlock to occur, but detect their occurrence and then break the 
deadlock.  We will focus on the deadlock avoidance, because POSIX Threads does not 
provide a mechanism for breaking locks. 

pthread_getspecific 
 
int pthread_getspecific ( 
   pthread_key_t *key);             // Key to value  
 

Arguments: 
• Key whose value is to be retrieved. 

 
Return value: 

• Value of key  for the calling thread. 

  
Notes: 

• The behavior is undefined if a thread calls pthread_getspecific() 
before the key is created or after the key is deleted. 
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Figure 6.  Deadlock example.  Threads T1 and T2 hold locks L1 and L2, respectively, and each thread 
attempts to acquire the other lock, which cannot be granted. 

Lock Hierarchies 
A simple way to prevent deadlocks is to prevent cycles in the resource allocation graph.  
We can prevent cycles by imposing an ordering on the locks and by requiring all threads 
to acquire their locks in the same order.  Such a discipline is known as a lock hierarchy. 
 
One problem with a lock hierarchy is that it requires programmers to know a priori what 
locks a thread needs to acquire.  Suppose that after acquiring locks L1, L3, and L7, a 
thread finds that it needs to also acquire lock L2, which would violate the lock hierarchy.  
One solution would be for the thread to release locks L3 and L7, and then reacquire locks 
L2, L3, and L7 in that order.  Of course, this strict adherence to the lock hierarchy is 
expensive.  A better solution would be to attempt to lock L2 using 
pthread_mutex_trylock() (see Code Spec 7), which either obtains the lock or 
immediately returns without blocking.  If the thread is unable to obtain lock L2, it must 
resort to the first solution. 
 

Monitors 
The use of locks and condition variables is error prone because it relies on programmer 
discipline.  An alternative is to provide language support, which would allow a compiler 
to enforce mutual exclusion and proper synchronization.  A monitor is one such language 
construct, and although almost no modern language provides such a construct, it can be 
implemented in an object oriented setting, as we will soon see.  A monitor encapsulates 
code and data and enforces a protocol that ensures mutual exclusion.  In particular, a 
monitor has a set of well-defined entry points, its data can only be accessed by code that 
resides inside the monitor, and at most one thread can execute the monitor’s code at any 
time.  Monitors also provide condition variables for signaling and waiting, and they 
ensure that the use of these condition variables obeys the monitor’s protocol.  Figure 7 
shows a graphical depiction of a monitor. 

T1 

T2 

L1 L2 

Resource Allocation Graph 

acquired requested 

requested acquired 
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Figure 7.  Monitors provide an abstraction of synchronization in which only one thread can access the 
monitor’s data at any time.  Other threads are blocked either waiting to enter the monitor or waiting on 
events inside the monitor. 
 
We can implement monitors in an object oriented language, such as C++, as shown 
below. 
 
 1 class BoundedBuffer 
 2 {                                // Emulate a mo nitor 
 3 private: 
 4    pthread_mutex_t lock;         // Synchronizat ion variables  
 5    pthread_cond_t nonempty, nonfull;     
 6    Item *buffer;                 // Shared data 
 7    int in, out;                  // Cursors 
 8    CheckInvariant(); 
 9  
10 public: 
11    BoundedBuffer(int size);      // Constructor 
12    ~BoundedBuffer();             // Destructor 
13    void put(Item x); 
14    Item get(); 
15 } 
16      
17 // Constructor and Destructor 
18 BoundedBuffer::Bounded (int size) 
19 { 
20    // Initialize synchronization variables 
21    pthread_mutex_init(&lock, NULL); 
22    pthread_cond_init(&nonempty, NULL); 
23    pthread_cond_init(&nonfull, NULL); 
24 
25    // Initialize the buffer 
26    buffer = new Item[size]; 
27    in = out = 0; 
28 } 
29 
30 BoundedBuffer::~BoundedBuffer() 
31 { 
32    pthread_mutex_destroy(&lock); 
33    pthread_cond_destroy(&nonempty); 
34    pthread_cond_destroy(&nonfull); 

Monitor 

Data 

Entry1() Entry2() 

Waiting threads 

Entering threads 
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35    delete buffer; 
36 } 
37  
38 // Member functions 
39 BoundedBuffer::Put(Item x) 
40 { 
41    pthread_mutex_lock(&lock); 
42    while (in – out == size)      // while buffer  is full 
43       pthread_cond_wait(&nonfull, &lock); 
44    buffer[in%size] = x; 
45    in++; 
46    pthread_cond_signal(&nonempty); 
47    pthread_mutex_unlock(&lock); 
48 } 
49 
50 Item BoundedBuffer::Get() 
51 { 
52    pthread_mutex_lock(&lock); 
53    while (in = out)              // while buffer  is empty 
54       pthread_cond_wait(&nonempty, &lock); 
55    x = buffer[out%size]; 
56    out++; 
57    pthread_cond_signal(&nonfull); 
58    pthread_mutex_unlock(&lock); 
59    return x; 
60 } 

 
Monitors not only enforce mutual exclusion, but they provide an abstraction that can 
simplify how we reason about concurrency.  In particular, the limited number of entry 
points facilitates the preservation of invariants.  Monitors have internal functions and 
external functions.  Internal functions assume that the monitor lock is held.  By contrast, 
external functions must acquire the monitor lock before executing, so external functions 
cannot invoke each other.  In this setting invariants are properties that can are assumed to 
be true upon entry and which must be restored upon exit.  These invariants may be 
violated while the monitor lock is held, but they must be restored before the monitor lock 
is released.  This use of invariants is graphically depicted in Figure 8. 

 
Figure 8.  Monitors and invariants.  The red circles represent program states in which the invariants may be 
violated.  The blue circles represent program states in which the invariants are assumed to be maintained. 
 
For example, in our bounded buffer example, we have two invariants: 

1. The distance between the In and Out cursors is at most the size of the buffer. 

invariants are true 

invariants may be 
violated 

state transition 
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2. The In cursor is not left of the Out cursor.  (In Figure 1, the Put arrow is not left of 
the Get arrow.) 

Once we have identified our invariants, we can write a routine that checks all invariants, 
and this routine can be invoked before every entrance to the monitor and after every exit 
from the monitor.  The use of such invariants can be a significant debugging tool.  For 
example, the following code checks these invariants to help debug the monitor’s internal 
routines. 
 
 1 BoundedBuffer::CheckInvariant()  
 2 {                                 
 3    if (in – out > size)           // Check invar iant (1) 
 4       return (0);  
 5    if (in < out)                  // Check invar iant (2)     
 6       return (0); 
 7    return (1); 
 8 } 
 9   
10 Item BoundedBuffer::Get() 
11 { 
12    pthread_mutex_lock(&lock); 
13    assert(CheckInvariant());     // Check on every ent rance  
14    while (in = out)              // while buffer  is empty 
15    { 
16       assert(CheckInvariant());  // Check on every exit 
17       pthread_cond_wait(&nonempty, &lock); 
18       assert(CheckInvariant());  
19    } 
20    x = buffer[out%size]; 
21    out++; 
22    pthread_cond_signal(&nonfull); 
23    assert(CheckInvariant());  
24    pthread_mutex_unlock(&lock); 
25    return x; 
26 } 

 
As we have mentioned before, the call to pthread_cond_wait()  may implicitly 
release the lock, so it is a potential monitor exit, and the return from 
pthread_cond_wait()  will implicitly re-acquire the lock, so it is a monitor 
entrance. 

Re-entrant Monitors 
While monitors help enforce a locking discipline, they do not ensure that all concurrency 
problems go away.  For example, if a procedure in a monitor attempts to re-enter the 
monitor by calling an entry procedure, deadlock will occur.  To avoid this problem, the 
procedure should first restore all invariants, release the monitor lock, and then try to re-
enter the monitor.  Of course, such a structure means that atomicity is lost.  This same 
problem occurs if a monitor procedure attempts to re-enter the monitor indirectly by 
calling some external procedure that then tries to enter the monitor, so monitor 
procedures should invoke external routines with care. 
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Monitor functions that take a long time or wait for some outside event will prevent other 
threads from entering the monitor.  To avoid such problems, such functions can often be 
rewritten to wait on a condition, thereby releasing the lock and increasing parallelism.  As 
with re-entrant routines, such functions will need to restore invariants before releasing the 
lock. 
 

Performance Issues 
We saw in Chapter 3 that dependences among threads constrain parallelism. Because 
locks dynamically impose dependences among threads, the granularity of our locks can 
greatly affect parallelism.  At one extreme, the coarsest locking scheme uses a single lock 
for all shared variables, which is simple but severely limits concurrency when there is 
sharing.  At the other extreme, fine-grained locks may protect small units of data.  For 
example, in our Count 3’s example, we might use a different lock to protect each node of 
the accumulation tree.  As an intermediate point, we might use one lock for the entire 
accumulation tree.  As we reduce the lock granularity, the overhead of locking increases 
while the amount of available parallelism increases. 
 

Readers and Writers Example: Granularity Issues 
Just as there are different granularities for locking, there are different granularities of 
condition variables.  Consider a resource that can be shared by multiple readers or 
accessed exclusively by a single writer.  To coordinate access to such a resource, we can 
provide four routines—AcquireExclusive() , ReleaseExclusive() , 
AcquireShared() , and ReleaseShared() —that readers and writers can invoke.  
These routines are each protected by a single mutex, and they collectively use two 
condition variables.  To acquire the resource in exclusive mode, a thread waits on the 
wBusy condition variable, which ensures that no readers are still accessing the resource.  
When the last reader is done accessing a resource in shared mode, it signals the wBusy 
condition to allow the writer to proceed.  Likewise, when a writer is done accessing the 
resource in exclusive mode, it signals the rBusy  condition to allow any readers to have 
access to the resource; and before accessing the shared resource, threads wait on the 
rBusy  condition variable. 
 
 1 int readers;                     // Negative val ue => active writer 
 2 pthread_mutex_t lock; 
 3 pthread_cond_t rBusy, wBusy;     // Use separate  condition variables 
 4                                  // for readers and writers 
 5 AcquireExclusive()      
 6 {   
 7    pthread_mutex_lock(&lock); 
 8    while (readers != 0) 
 9       pthread_cond_wait(&wBusy, &lock); 
10    readers = -1; 
11    pthread_mutex_unlock(&lock); 
12 } 
13    
14 AcquireShared() 
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15 { 
16    pthread_mutex_lock(&lock);    
17    readWaiters++; 
18    while (readers<0) 
18       pthread_cond_wait(&rBusy, &lock); 
19    readWaiters--; 
20    pthread_mutex_unlock(&lock);    
21 }   
22   
23 ReleaseExclusive() 
24 { 
25    pthread_mutex_lock(&lock);    
26    readers = 0; 
27    pthread_cond_broadcast(&rBusy);  // Only wake  up readers 
28    pthread_mutex_unlock(&lock);     
29 } 
30 
31 ReleaseShared( 
32 { 
33    int doSignal; 
34     
35    pthread_mutex_lock(&lock); 
36    readers--; 
37    doSignal = (readers==0) 
38    pthread_mutex_unlock(&lock); 
39    if (doSignal)                    // Signal is  performed outside  
40       pthread_cond_signal(&wBusy);  // of critic al section 
41 } 
 

Two points about this code are noteworthy.  
 
First, the code uses two condition variables, but it’s natural to wonder if one condition 
variable would suffice.  In fact, one condition variable could be used, as shown below, 
and the code would be functionally correct.  Unfortunately, by using a single condition 
variable, the code suffers from spurious wakeups in which writers can be awoken only to 
immediately go back to sleep.  In particular, when ReleaseExclusive()  is called 
both readers and writers are signaled, so writers will suffer spurious wakeups whenever 
any reader is also waiting on the condition.  Our original solution avoids spurious 
wakeups by using two condition variables, which forces exclusive access and shared 
access to alternate as long as there is demand for both types of access. 
 
 1 int readers;                     // Negative val ue => active writer 
 2 pthread_mutex_t lock; 
 3 pthread_cond_t busy;             // Use one cond ition variable to 
 4                                  // indicate whe ther data if busy 
 5 AcquireExclusive()      
 6 {   
 7    pthread_mutex_lock(&lock);    // This code su ffers from spurious 
 8    while (readers != 0)          // wakeups!!! 
 9       pthread_cond_wait(&busy, &lock); 
10    readers = -1; 
11    pthread_mutex_unlock(&lock); 
12 } 
13    
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14 AcquireShared() 
15 { 
16    pthread_mutex_lock(&lock);    
17    while (readers<0) 
18       pthread_cond_wait(&busy, &lock); 
19    readers++; 
20    pthread_mutex_unlock(&lock);    
21 }   
22   
23 ReleaseExclusive() 
24 { 
25    pthread_mutex_lock(&lock);    
26    readers = 0; 
27    pthread_cond_broadcast(&busy); 
28    pthread_mutex_unlock(&lock);     
29 } 
30  
31 ReleaseShared( 
32 { 
33    pthread_mutex_lock(&lock); 
34    readers--; 
35    if (readers==0) 
36       pthread_cond_signal(&busy); 
37    pthread_mutex_unlock(&lock);    
38 } 

 
Second, the ReleaseShared() routine signals the wBusy condition variable outside 
of the critical section to avoid the problem of spurious lock conflicts, in which a thread is 
awoken by a signal, executes a few instructions, and then immediately blocks in attempt 
to acquire the lock.  If the ReleaseShared() were instead to execute the signal inside 
of the critical section, as shown below, then any writer that would be awakened would 
almost immediately block trying to acquire the lock.   
 
31 ReleaseShared( 
32 { 
33    pthread_mutex_lock(&lock); 
34    readers--; 
35    if (readers==0) 
36       pthread_cond_signal(&wBusy);  // Wake up w riters inside of 
37    pthread_mutex_unlock(&lock);     // the criti cal section 
38 } 

 
The decision to move the signal outside of the critical section represents a tradeoff, 
because it allows a new reader to enter the critical section before the 
ReleaseShared()  routine is able to awaken a waiting writer, allowing readers to 
again starve out writers, albeit with much less probability than would occur with a single 
condition variable. 
  

Thread Scheduling 
[This might be out of place—perhaps it belongs much earlier.] 
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POSIX Threads supports two scheduling scopes.  Threads in system contention scope are 
called bound threads because they are bound to a particular processor, and they are 
scheduled by the operating system.  By contrast, threads in process contentions scope are 
called unbound threads because they can execute on any of the Pthreads library’s set of 
processors.  These unbound threads are scheduled by the Pthreads library.  For parallel 
computing, we typically use bound threads.  
 
[Need a few more details: what is the default scope?  
 Are scheduling priorities an optional feature of POSIX Threads? 
 If not, talk here about scheduling attributes and priority inversion.] 

Overlapping Synchronization with Computation 
As we mentioned in Chapter 4, it is often useful to overlap long-latency operations with 
independent computation.  For example, in Figure 9 Thread 0 reaches the barrier well 
before Thread 1, so would be profitable for Thread 0 to do some useful work rather than 
simply sit idle.   

 
Figure 9.  It’s often useful to do useful work while waiting for some long-latency operation to complete. 
 
To take advantage of such opportunities, we often need to create split-phase operations, 
which separate a synchronization operation into two phases: initiation and completion, as 
shown in Figure 10. 

 
Figure 10.  Split-phase barrier allows a thread to do useful work while waiting for other threads to arrive at 
a barrier. 
 
To see a concrete example of how split-phase operations can help, consider a 2D 
successive relaxation program, which is often used—often in 3D form—to solve systems 
of differential equations, such as the Navier-Stokes equations for fluid flow.  This 

// Initiate synchronization 
barrier.arrived(); 
 
// Do useful work 
 
// Complete synchronization 
barrier.wait(); 
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computation starts with an array of n+2 values: n interior values and 2 boundary values.  
At each iteration, it replaces each interior value with the average of its 2 neighbor values, 

 
Figure 11.  A 2D relaxation replaces, on each iteration, all interior values by the average their two nearest 
neighbors. 
 
The code for computing a 2D relaxation with a single-phase barrier is shown below.  
Here, we assume that we have t  threads, each of which is responsible for computing the 
relaxation of n/t  values. 
 
 1 double *val, *new;               // Hold n value s 
 2 int n;                           // Number of in terior values 
 3 int t;                           // Number of th reads 
 4 int iterations                   // Number of it erations to perform 
 5       
 6 thread_main(int index)  
 7 {    
 8    int n_per_thread = n / t; 
 9    int start = index * n_per_thread; 
10     
11    for (int i=0; i<iterations, i++) 
12    { 
13       // Update values 
14       for (int j=start; j<start+n_per_thread; j+ +) 
15       { 
16          new[j] = (val[j-1] + val[j+1]) / 2.0;   // Compute average    
17       } 
 
18       swap(new, val); 
19       // Synchronize  
20       barrier(); 
21    } 
22 }   
 

With a split-phase barrier, the main routine is changed as follows: 
 
 6 thread_main(int index)  
 7 {    
 8    int n_per_thread = n / t; 
 9    int start = index * n_per_thread; 
10  
11    for (int i=0; i<iterations, i++) 
12    { 
13       // Update local boundary values 
14       int j = start; 
15       val[j] = (val[j-1] + val[j+1]) / 2.0; 

0.00 0.34 0.21 0.86 0.65 0.11 0.43 0.97 0.51 1.00 

n = 8  

boundary value interior values boundary value 
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16       j = start+n_pre_thread -1; 
17       val[j] = (val[j-1] + val[j+1]) / 2.0; 
18 
19       // Start barrier 
20       barrier.arrived(); 
21     
22       // Update local interior values 
23       for (j=start+1; j<start+n_per_thread-1; j+ +) 
24       { 
25          new[j] = (val[j-1] + val[j+1]) / 2.0;   // Compute average 
26       } 
27       swap(new, val); 
28 
29       // Complete barrier  
30       barrier.wait(); 
31    } 
32 } 
 

The code to implement the split-phase barrier seems straightforward enough.  As shown 
below, we can implement a Barrier class that keeps a counter of the number of threads 
that should arrive at the barrier.  To initiate the synchronization, each thread calls the 
arrived()  routine, which increments the counter.  The last thread to arrive at the 
barrier (line 30) then signals all waiters to wakeup and resume execution; the last thread 
also sets the counter to 0 in preparation for the next use of the barrier.  To complete the 
synchronization, the wait()  routine checks to see if the counter is non-zero, in which 
case it waits for the last thread to arrive.  Of course, a lock is used to provide mutual 
exclusion, and a condition variable is used to provide synchronization. 
 
 1 class Barrier  
 2 { 
 3    int nThreads;                 // Number of th reads 
 4    int count;                    // Number of th reads participating 
 5    pthread_mutex_t lock;  
 
 6    pthread_cond_t all_here; 
 7 public:    
 8    Barrier(int t); 
 9    ~Barrier(void); 
10    void arrived(void);          // Initiate a ba rrier 
11    int done(void);              // Check for com pletion 
12    void wait(void);             // Wait for comp letion 
13 } 
14    
15 int Barrier::done(void) 
16 {           
17    int rval; 
18    pthread_mutex_lock(&lock);   
19     
20    rval = !count;               // Done if the c ount is zero 
21     
22    pthread_mutex_unlock(&unlock);  
23    return rval; 
24 } 
25  
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26 void Barrier::arrived(void) 
27 { 
28    pthread_mutex_lock(&lock); 
29    count++                      // Another threa d has arrived 
30     
31    // If last thread, then wake up any waiters 
32    if (count==nThreads) 
33    { 
34       count = 0; 
35       pthread_cond_broadcast (&all_here); 
36    } 
37     
38    pthread_mutex_unlock(&lock); 
39 } 
40 
41 void Barrier::wait(void) 
42 { 
43    pthread_mutex_lock(&lock); 
44 
45    // If not done, then wait 
46    if (count != 0) 
47    { 
48       pthread_cond_wait(&all_here, &lock); 
49    } 
50 
51    pthread_mutex_lock(&lock); 
52 } 
 

Unfortunately, the code presented above does not work correctly!  In particular, consider 
an execution with two threads and two iterations, as shown in Figure 12.  Initially, the 
counter is 0, and Thread 0’s arrival increments the value to 1.  Thread 1’s arrival 
increments the counter to 2, and because Thread 1 is the last thread to arrive at the 
barrier, it resets the counter to 0 and wakes up any waiting threads, of which there are 
none.  The problem arises when Thread 1 gets ahead of Thread 0 and executes its next 
iteration—and hence its next calls to arrive()  and wait() —before Thread 0 invokes 
wait()  for its first iteration.  In this case, Thread 1 will increment the counter to 1, and 
when Thread 0 arrives at the wait, it will wait block.  At this point, Thread 0 is blocked 
waiting for the completion of the barrier in the first iteration, while Thread 1 is blocked 
waiting for the completion of the second iteration, resulting in deadlock. Of course, the 
first barrier has completed, but Thread 0 is unaware of this important fact. 
 

 
Figure 12.  Deadlock with our initial implementation of a split-phase barrier. 
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Of course, we seem to have become quite unlucky to have Thread 0 execute so slowly 
relative to Thread 1, but because our barrier needs to work in all cases, we need to handle 
this race condition. 
 
The problem in Figure 12 occurs because Thread 0 was looking at the state of the counter 
for the wrong invocation of the barrier.  A solution then is to keep track of the current 
phase of the barrier.  In particular, the arrived()  method returns a phase number, 
which is then passed to the done()  and wait()  methods.  The correct code is shown 
below. 
 
 1 class Barrier  
 2 { 
 3    int nThreads;                 // Number of th reads 
 4    int count;                    // Number of th reads participating 
 5    int phase;                    // Phase # of t his barrier 
 6    pthread_mutex_t lock;  
 7    pthread_cond_t all_here; 
 8 public:    
 9    Barrier(int t); 
10    ~Barrier(void); 
11    void arrived(void);          // Initiate a ba rrier 
12    int done(int p);             // Check for com pletion of phase p  
13    void wait(int p);            // Wait for comp letion of phase p 
13 } 
14    
15 int Barrier::done(int p) 
16 {           
17    int rval; 
18    pthread_mutex_lock(&lock); 
19 
20    rval = (phase != p)          // Done if the p hase # has changed 
21     
22    pthread_mutex_unlock(&unlock);  
23    return rval; 
24 } 
25  
26 void Barrier::arrived(void) 
26 { 
27    int p; 
28    pthread_mutex_lock(&lock); 
29     
30    p = phase;                   // Get phase num ber 
31    count++                      // Another threa d has arrived 
32     
33    // If last thread, then wake up any waiters, go to next phase 
34    if (count==nThreads) 
35    { 
36       count = 0; 
37       pthread_cond_broadcast (&all_here); 
38       phase = 1 – phase; 
39    } 
40     
41    pthread_mutex_unlock(&lock); 
42    return p; 
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43 } 
44 
45 void Barrier::wait(int p) 
46 { 
47    pthread_mutex_lock(&lock); 
48 
49    // If not done, then wait 
50    while (p == phase) 
51    { 
52       pthread_cond_wait(&all_here, &lock); 
53    } 
54 
55    pthread_mutex_lock(&lock); 
56 } 

 
Since the interface to the barrier routines have changed, we need to modify our relaxation 
code as shown below. 
 
 6 thread_main(int index)  
 7 {    
 8    int n_per_thread = n / t; 
 9    int start = index * n_per_thread; 
10    int phase; 
11  
12    for (int i=0; i<iterations, i++) 
13    { 
14       // Update local boundary values 
15       int j = start; 
16       val[j] = (val[j-1] + val[j+1]) / 2.0; 
17       j = start+n_pre_thread -1; 
18       val[j] = (val[j-1] + val[j+1]) / 2.0; 
19 
20       // Start barrier 
21       phase = barrier.arrived(); 
22     
23       // Update local interior values 
24       for (j=start+1; j<start+n_per_thread-1; j+ +) 
25       { 
26          new[j] = (val[j-1] + val[j+1]) / 2.0;   // Compute average 
27       } 
28       swap(new, val); 
29 
30       // Complete barrier  
31       barrier.wait(phase); 
32    } 
33 } 

 
With this new barrier implementation, the situation in Figure 12 no longer results in 
deadlock.  As depicted in Figure 13, Thread 0’s invocation of wait(0)  explicitly waits 
for the completion of the first invocation of the barrier, so when it executes line 50 in the 
wait()  routine, it falls out of the while loop and never calls 
pthread_cond_wait().   Thus, deadlock is avoided. 
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Figure 13.  Deadlock does not occur with our new split-phase barrier. 
 

 
Figure 14.  Performance benefit of split-phase barrier on a Sun E4000. n=10,000,000, 10 iterations. 

 

Java Threads 
 
[Discussion of Java threads and a larger discussion of hiding concurrency inside of 
libraries.   

• Nice model:  explicit and convenient support for some common cases, but 
provides the freedom to use lower-level locks and condition variables where 
necessary.  Can also hide concurrency inside of specific classes. 

• Synchronized methods and synchronized classes 
• Wait() and Notify() 

 
Can we come up with examples where modular decisions about locking and 
synchronization are sub-optimal?  In particular, we need examples where the context in 
which the data structure is used affects the synchronization policies.] 
 

Critique 
 
[What’s good about threads.  What’s bad about threads.] 
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Exercises 
 

1. Our bounded buffer example uses a single mutex to protect both the nonempty  
and nonfull  condition variables.  Could we instead use one mutex for each 
condition variable?  What are the tradeoffs? 

  
A: Yes, but this would not be a good tradeoff because both the producer and 
consumer access both condition variables, so both routines would have to acquire 
both locks instead of just one lock.  Thus, there is added locking overhead but no 
greater concurrency. 
 

2. The pthread_cond_wait() routine takes the address of the protecting mutex as a 
parameter so that the routine can atomically block the waiting thread and release 
the lock that is held by the waiting thread.  Explain why these two operations 
must be performed atomically. 
 
A: If the two operations are not atomic, there are two cases: either (1) the thread is 
blocked first or (2) the lock is released first.  In case (1), we have deadlock.  In 
case (2), the code that blocks the waiting thread must first acquire the lock so that 
it knows that it is the only thread that is manipulating the queues associated with 
the condition variable, so the solution is possible but increases the latency of the 
operation.  [Perhaps need to think about this answer some more.] 

 
 

 
3.  
 
 

Shared virtual memory.  Why can’t threads-based programs execute on 
machines that do not support shared memory?  Why can’t we use software to 
provide a virtually shared address space on top of such machines?  This question 
was heavily studied in the 1980’s and 1990’s.  The basic issue is that the Shared 
Virtual Memory system needs to handle all data movement, and it is difficult to 
do this efficiently without knowledge of the application’s sharing behavior.  In 
particular, there is a tradeoff regarding the granularity of sharing:  Large units of 
sharing can amortize inter-processor communication costs, at the expense of false 
sharing.  Small units of sharing reduce false sharing but increase the overhead of 
moving data.  In general, we’d ideally like the shared virtual memory system’s 
granularity of sharing to match the application’s logical granularity of sharing.  
Of course, even if the underlying shared virtual memory system were extremely 
efficient, there is still the question of whether threads-based programming is the 
right programming model. 
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