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Chapter 1: Approaching Parallelism

In March of 2005, as techies eagerly awaited thgarof the first dual core processor
chips, Herb Sutter wrote an article in Dr. Dobloslrdal titled, "The Free Lunch is Over:
Fundamental Turn Towards Concurrency in Softwakéis point was that for 35 years,
programmers have ridden the coattails of exponlegtiavth in computing power.
During that time, the software community has hadltixury of dealing mainly with
incremental conceptual changes. The vast majofiprogrammers have been able to
maintain the same abstract von Neumann model ofrgoater and the same basic
notions of performance-- count instructions, somes worrying about memory usage.
The community occasionally welcomes a new langusggh as Java, and it only rarely
changes the programming model, as with the movetoerrds the object-oriented
paradigm. For the most part, however, the communas been spoiled to believe that
business will continue as usual except that neveiggions of microprocessors will arrive
every 18 months, providing more computing power i@agde memory.

What has caused the move to multi-core chips? Over the past 20 years,
microprocessors have seen incredible performanios fizeled largely by
increased clock rates and deeper pipelines. Unfately, these tricks are now
showing diminishing returns. As silicon featureesi have shrunk, wire delay—
the number of cycles it takes a signal to propagatess a wire—has increased,
discouraging the use of large centralized strustwsech as those required for
super-pipelined processors. Moreover, as trangigiosity has increased
exponentially, so has power density. Power disgipdas thus become a large
issue, and the use of multiple simpler slower coféers one method of limiting
power utilization. All of these trends point towarthe use of multiple, simpler
cores, so multi-core chips have become a commegadity. Intel and IBM's
latest high end products package 2 CPU's per &hip's Niagara has 8 multi-
threaded CPU's; the STI Cell processor has 9 CRbisfuture chips will likely
have many more CPU's.

The advent of dual core chips, however, signifieisaanatic change for the software
community. The existence of parallel computersosnew. Parallel computers and
parallelism have been around for many years, hatllphprogramming has traditionally
been reserved for solving a small class of harlpros, such as computational fluid
dynamics and climate modeling, which require largmputational resources. Thus,
parallel programming was limited to a small grod@ip@roic programmers. What's
significant is that parallelism will now become @gramming challenge for a much
larger segment of programmers, as transparentrpgaface improvements from single-
core chips are now a relic of the past. In otherds, the Free Lunch is over.



The Characteristics of Parallelism

Why does parallel programming represent such aahiarohange for programmers?
Here are a few reasons.

< Explicitly parallel algorithms are fundamentallyifdrent from sequential
algorithms, because they embody multiple pointsxafcution.
* Programs with concurrent interactions are hardeeason about and harder to
debug.
e It's harder to achieve good performance with algrarogram.
o Small inefficiencies can lead to large performapablems.
o It's harder to ignore low-level details.
e The performance model is different and more complex
o Counting instructions is insufficient.
o Focusing on communication is insufficient.
0 The performance problem is instead an inseparabldgm with multiple
dimensions.
e The joint goals of portability and performance hagder to achieve.
e Tools and languages are immature.

In this book, we will explore these topics and moAes a first glimpse, the next two
sections address the first two bullets, as we ghaivparallelism requires us to look at
problems differently, and as we show that parafelgramming is considerably more
challenging than sequential programming.

A Paradigm Shift

Expressing a computation in parallel requires ithia¢ thought about differently. In this
section we consider several tiny computationsltistilate some of the issues involved in
changing our thinking.

Summation
To begin the illustration, consider the task ofiadch sequence ofdata values:

X01 le X21 ---,Xn-l

Perhaps the most intuitive solution is to initializ variable, call isum, to 0 and then
iteratively add the elements of the sequence. &ummputation is typically
programmed using a loop with an index value toresfee the elements of the sequence,
asin

sum =0
for (i=0; i<n; i++) {
sum += X]il;



This computation can be abstracted as a graph sgdhe order in which the numbers
are combined; see Figure 1.1. Such solutions araatural way to think of algorithms.
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Figure 1.1. Summing in sequence. The order of combining aesecpiof numbers (6, 4, 16, 10, 12, 14, 2,
8) when adding them to an accumulation variable.

Of course, addition over the real numbers is an@atve and commutative operation,
implying that its values need not be summed irotiger specified, least index to greatest
index. We can add them in another order, perhapgtat admits more parallelism, and
get the same answer.

Nonassociativity Strictly speaking, addition is not associativefloating point
number’s fixed precision representation. For soemriences of values, adding the
numbers in different orders will produce differamswers, because floating point
representations only approximate real numbers.gifere such issues and reorder
computations to improve performance, reasoning(#)ainder most circumstances the
sequence’s order was arbitrary in the first placel, (b) in those cases where it is not
arbitraryand numerical precision is a potential issue, erronaggment is required
throughout the computation anyway.

Another, more parallel, order of summation is td aslen/odd pairs of data values
yielding intermediate sums,

Xo + X1, X2 + X3, Xg4 + X5, Xg + X7, ...
which are added in pairs,
(X 0+ X1) + (X2 +X3), (Xa+X5) + (X6 +X7), ...
yielding more intermediate sums, etc. This solutian be visualized as inducing a tree

on the computation, where the original data vahredeaves, the intermediate nodes are
the sum of the leaves below them, and the rotteoverall sum; see Figure 1.2.
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Figure 1.2. Summing in pairs. The order of combining a seqaaimumbers (6, 4, 16, 10, 12, 14, 2, 8)
by (recursively) combining pairs of values, theirpaf results, etc.

Comparing Figures 1.1 and 1.2, we see that bet¢hageo solutions produce the same
number of computations and the same number ofn@eiate sums, there is no time
advantage to either solution when using one pracekowever, with a parallel
computer that haB=n/2 processors, all of the additions at the samel lefvithe tree can
be computed simultaneously, yielding a solutiorhvtitne complexity that is
proportional to log. Like the sequential solution this is a very ititg way to think
about the computation.

The crux of the advantage of summing by pairsas tihe approach uses separate and
independent subcomputations, which can be perfoimpdrallel.

Prefix Summation
A closely related computation is the prefix sunspaknown as scan in many
programming languages. It begins with the sameesezpiofn values,
X0, X1, X2, +.vy Xp-1
but the desired computation is the sequence

YooY, Y2 -y Y01

such that each; is the sum of the firgtelements of the input, that is,

yi= Zisi Xj

Solving the prefix sum in parallel is less obvidlian summation, because all of the
intermediate values of the sequential solutiomaexded. It seems as though there is no
advantage of, nor much possibility of, finding ketsolutions. But the prefix sum can be
improved.

The observation is that the summing by pairs amtrean be modified to compute the
prefix values. The idea is that each leaf processwingx; could compute the valug, if



it only knew the sum of all elements to its lefg, iits prefix; in the course of summing by
pairs, we know the sum of all substrees, and ibaxe that information, we can figure
out the prefixes, starting at the root, whose grefihat is, the sum of all elements before
the first one in sequence—is 0. This is also tlediypof its left subtree, and the total for
its left subtree is the prefix for the right sulstrépplying this idea inductively, we get
the following set of rules:

e Compute the grand total by summing pairs, as before

e On completion, imagine the root receiving a 0 fritgr(nonexistent) parent.

< All non-leaf nodes receiving a value from theirgyar relay that value to their left
child, and send their right child the sum of thegp&'s value and their left child’s
value; these are the prefixes of their child nodes.

e Leaves add the value—the prefix—received from above

The values moving down the tree are the prefixeshi® child nodes. (See Figure 1.3,
where downward moving prefix values are in red.)
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Figure 1.3. Computing the prefix sum. The black values, coreggoing up the tree, are from the
summing by pairs algorithm; the red values, théixes, are computed going down the tree by a simple
rule: send the value from the parent to the leftl the node’s intermediate sum to the value froenpidrent
and send it to the right.

The computation is known as the parallel prefix patation. It requires an up sweep and
a down sweep in the tree, but all operations at &a®l can be performed concurrently.
At most two add operations are required at eacle hae going up and one coming
down, plus the routing logic. Thus, the parallefpealso has logarithmic time
complexity.

Many seemingly sequential operations yield to theltel prefix approach.

Parallel Programming is Challenging

Though the algorithms are different, they remataitive. The programming, even
knowing the algorithm can be challenging.

To understand the difficulty of writing correct aefficient parallel programs, consider
the problem of counting the number of 3's in aaarmhis computation can be trivially



expressed in most sequential programming languagésis instructive to see what its
parallel counterpart looks like.

To simplify matters, let's assume that we will axecour parallel program on a multi-
core chip with two processors, see Figure 1.4.s Thip has two independent
microprocessors that share access to an on-chgatl2e. Each processor has its own L1
cache. The processors also share an on-chip meraotoller so that all access to
memory is equidistant” from each processor.

Memory

l

L1 L1

PO P1

Figure 1.4. Organization of a multi-core chip. Two process&@,and P1, have a private L1 cache and
share an L2 cache.

We will use a threads programming model in whicthethread executes on a dedicated
processor, and the threads communicate with onthanthrough shared memory (L2).
Thus, each thread has its own process state, llithtedds share memory and file state.
The serial code to count the number of 3's is shioglow:

1 int *array;

2 int length;

3int count;

4

5 int count3s ()

6 {

7 inti;

8 count=0;

9 for (i=0; i<length; i++)
10 {

11 if (array[i] == 3)
12 {

13 count++;

14 }

15 }

16 return count;

17}

To implement a parallel version of this code, we partition the array so that each
thread is responsible for counting the number ®f81f of the array, whereis the
number of threads. Figure 1.5 shows graphically tve might divide the work foi=4
threads antength=16.
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Figure 1.5. Schematic diagram of data allocation to threadiscAtions are consecutive indices.

We can implement this logic with the functittmead_create() , which takes two
arguments—the name of a function to execute andteger that identifies the thread's
ID—and spawns a thread that executes the spefifietion with the thread ID as a
parameter. The resulting program is shown in Fiduée

lintt; /* number of threads */
2 int *array;

3int length;

4 int count;

5

6 void count3s ()

74

8 inti;

9 count=0;

10 /* Create t threads */
11 for (i=0; i<t; i++)

13 thread_create (count3s_thread, i);
14 }

16 return count;

19 void count3s_thread (int id)

20 {

21 /* Compute portion of the array that this thre ad should work on */
22 intlength_per_thread = lengthft;

23 intstart =id * length_per_thread;

25 for (i=start; i<start+length_per_thread; i+)
{
27 if (array[i] == 3)
{

29 count++;
30 }

Figure 1.6 . The first try at a Count 3s solution using threads

Unfortunately, this seemingly straightforward caodé not produce the correct answer
because there israce conditionin the statement that increments the valueooint on

line 29. A race condition occurs when multiplestimis can access the same memory
location at the same time. In this case, the prolarises because the statement that



incrementsount is typically implemented on modern machines asrigs of primitive
machine instructions:

e Loadcount into a register
* Incrementount
e Storecount back into memory

Thus, when two threads execute @munt3s_thread() code, these instructions
might be interleaved as shown in Figure 1.7. Teltef the interleaved executions is
thatcount < 1 rather than 2. Of course, many other intertegwican also produce
incorrect results, but the fundamental problenha the increment afount is not an

atomic operationthat is, uninterruptible.
Figure 1.7. One of several possible interleaving in time dérences to the unprotected variabdeint

Thread 1 Thread 2
count = 0
load
load
increment | time
increment
store

count < 1 store
count = 1 v

illustrating a race.

We can solve this problem by usingnaitexto providemutual exclusion A mutex is an
object that has two states—locked and unlocked—t&ndnethods—eck() and
unlock() . The implementation of these methods ensuresithen a thread attempts
to lock a mutex, it checks to see if it is presgtidtked our unlocked. If locked, it waits
until the mutex is in an unlocked state, befordilog it, that is, setting it to the locked
state. By using a mutex to protect code that vehio execute atomically—often
referred to as a critical section—we guaranteedhbt one thread accesses the critical
section at any time. For the Count 3s problemsingly lock a mutex before
incrementingcount , and we unlock the mutex after incrementogint , resulting in
our second try at a solution, see Figure 1.8.

1 mutex m;

2

3 void count3s_thread (int id)

4{

5 /* Compute portion of the array that this thre ad should work on */
6 int length_per_thread = length/t;

7 int start =id * length_per_thread,;

8
9 for (i=start; i<start+length_per_thread; i+)
10 {

10



11 if (array[i] == 3)
{

13 mutex_lock(m);
14 count++;
15 mutex_unlock(m);

Figure 1.8. The second try at a Count 3s solution showingcthent3s_thread() with mutex
protection for theeount variable.

With this modification, our second try is a corrpatallel program. Unfortunately, as we
can see from the graph in Figure 1.9, our parphegram is much slower than our
original serial code. With one thread, executiaretis five times slower than the
original serial code, so the overhead of usingiiiéexs is harming performance
drastically. Worse, when we use two threads, eaching on its own processor, our
performance is even worse than with just one thriea lock contention further
degrades performance, as each thread spends adblitine waiting for the critical
section to become unlocked.

Performance
i2
t=1 t=2

Try 2

serial

Figure 1.9. Performance of the second Count 3gisnlu

Recognizing the problem of lock overhead and lamktention, we can try implementing
a third version of our program that operates arger granularity of sharing. Instead of
accessing a critical section every tiomunt must be incremented, we can instead
accumulate the local contribution to count in aate variableprivate count and
only access the critical section of updatiogint once per thread. Our new code for
this third solution is shown in Figure 1.10.

1 private_count[MaxThreads];

2 mutex m;

3

4 void count3s_thread (int id)

5{

6 /* Compute portion of the array that this thre ad should work on */
7 int length_per_thread = length/t;

8 int start =id * length_per_thread;

9

11



10 for (i=start; i<start+length_per_thread; i++)
{
12 if (array[i] == 3)
{
14 private_count[t]++;
17 mutex_lock(m);

18 count += private_count[t];
19 mutex_unlock(m);

Figure 1.10. Thecount3s_thread() for the third Count 3s solution usingdvate_count array
elements.

In exchange for a tiny amount of extra memory, r@sulting program now executes
considerably faster, as shown by the graph in Eigut1.

Performance
Y OO
=1 t=2
serial Try 3

Figure 1.11. Performance results for the third G&srsolution.

We see that with one thread our execution is theeshe serial code, so our latest
changes have effectively removed locking overhgddwever, with two threads there is
still performance degradation. This time, the parfance problem is more difficult to
identify by simply inspecting the source code. &ll&o need to understand some details
of the underlying hardware. In particular, ourdwaare uses a protocol to maintain the
coherence of its caches, that is, to assure ttiatdrocessors “see” the same memory
image: If processor 0 modifies a value at a givemory location, the hardware will
invalidate any cached copy of that memory locatit resides in processor 1's L1
cache, thereby preventing processor 1 from acapssatale value of the data. This
cache coherence protocol becomes costly if twogasars take turns repeatedly
modifying the same data, because the data will portg between the two caches.

In our code, there does not seem to be any shawddied data. However, the unit of
cache coherence is known asaghe ling and for our machine the cache line size is 128
bytes. Thus, although each thread has exclusie&sado eitheprivate _count[0]

or private_count[1] , the underlying machine places them on the sar@é§ie
cache line, and this cache line ping pongs betwleecaches gxivate_count[0]
and private_count[1] are repeatedly updated. (See Figure 1.12.) This

phenomenon in which logically distinct data shargghysical cache line is known as
false sharing To eliminate false sharing, we can pad our aofgyrivate counters so that
each resides on a distinct cache line. See Figtf®e 1

12
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Thread modifying Thread modifying
private_count[0] private_count[1]

Figure 1.12. False Sharing. A cache line ping-pongs betweeh theaches and the L2 cache, because
although the references to private_count don’iadellthey use the same cache line.

1 struct padded_int

24

3 intvalue;

4 char padding[32];

5 } private_count[MaxThreads];
6

7 void count3s_thread (int id)
8{
9 /*Compute portion of the array this thread shoul d work on */
10 intlength_per_thread = lengthft;
11 int start = id * length_per_thread;
13 for (i=start; i<start+length_per_thread; i++)
{
15 if (array[i] == 3)
17 private_count[t]++;
20 mutex_lock(m);

21 count += private_count][t].value;
22 mutex_unlock(m);

Figure 1.13. Thecount3s_thread() for the fourth solution to the Count 3s computasishowing the
private count elements padded to force them tdlbeaged to different cache lines.

With this padding, the fourth solution removes bitith overhead and contention of using
mutexes, and we have finally achieved success)@grsin Figure 1.14.

13



Performance

Hl

Figure 1.14. Performance for the fourth solutiohte Count 3s problem shows that one processor has
performance equivalent to the standard sequentiafisn, and two processors improve the computation
time by a factor off 2.

From this example, we can see that obtaining cbamed efficient parallel programs can
be considerably more difficult than writing correatd efficient serial programs. The use
of mutexes illustrates the need to control theradton among processors carefully. The
use of private counters illustrates the need teaeabout the granularity of
parallelism—that is, the frequency with which preges interact with one another. The
use of padding shows the importance of understgnaizchine details, as sometimes
small details can have large performance implicatiolt is this non-linear aspect of
parallel performance that often makes parallelgretince tuning difficult. Finally, we
have seen two examples where we can trade off bh@maunt of memory for increased
parallelism and increased performance.

The larger lesson from this example is more sulilecause small details can have large
performance implications, there is a tendency faixdetails of the specific underlying
hardware. However, because performance tunindpeatifficult, it is wise to take a
longer term view of the problem. By creating paogs that perform well across a wide
variety of platforms, we can avoid much of the exqeeof re-writing parallel programs.
For example, solutions that rely on the fact thattirtore chips have only a few cores
with low latency communication among cores will dée be re-thought when future
hardware provides systems with larger communicdttencies.

Looking Ahead

We began this chapter by lamenting the demiseeoFtlee Lunch, which was phrased as
a steady sequence of performance improvementsgadwiansparently to programmers
by the hardware. In fact much of this performaimggrovement has come from
parallelism. The first ALU's were bit-serial, whiquickly gave way to bit-parallel

ALUs. Additional parallelism in the form of furthécreases in data-path width
produced additional performance improvements.hénlt990's we saw the introduction
of pipelined processors, which used parallelisim¢oease instruction throughput,
followed by superscalar processors that could issuiéiple instructions per cycle. Most
recently, processors have improved instructionughput by executing instructions
simultaneously and out of order. A key point iattall of these forms of parallelism have
been hidden from the programmer. They were availabplicitly for no programmer
effort.

14



Since there are obvious benefits to hiding the derily of parallelism, an obvious
question is whether we can implement parallelissoate level above the hardware,
thereby extending the Free Lunch to higher leveotiware? For example, we could
imagine a parallelizing compiler that transformggrg sequential programs and map
them to new parallel hardware; we could imaginéngjgarallelism inside of carefully
parallelized library routines; or we could imaghrding parallelism by using a functional
language, which admits copious amounts of parsitebecause of its language
semantics. All of these techniques have been, thednone has solved the problem to
date.

The costs and benefits of hiding parallelism depamthe setting, the type of problem to
be solved, etc. In some settings, a parallelizmgpiler is sufficient, in others libraries
may be sufficient, and in others, parallelism withply have to be exposed to the
programmer at the highest level. One goal oftibisk is to help readers understand
parallelism so that they can answer such questindsothers based on their specific
needs.

Summary

This book provides a foundation for those who wshinderstand parallel computing.
Part 1 (Foundations) focuses on fundamental coacdpdrt 2 (State of the Art) then
provides a few approaches to parallel programniiag riepresent the current state of the
art. The goal is not to espouse these approactesiescribe these languages in
exhaustive detail, but to provide a grounding in taw-level approaches and one high
level approach so that practitioners can use th&nmather goal of Part 2 is to allow
researchers to appreciate the limitations of tlaggeoaches so that they can help invent
the solutions that will replace them in the futuRart 3 (Hot Themes) discusses in more
detail various trends in parallel computing, and B4Capstone Project) puts everything
together to help instructors create a capstonetoj

Exercises

1. Revise the original Summation computation alondities of Count 3s to make it
parallel.

2. Using the binary encoding of the process ID, usectincepts illustrated in the
Count 3s program to Sum Pairs algorithm.

15



Chapter 2: Parallel Computers

If we're going to write good parallel programss ithportant to understand what parallel
computers are. Unfortunately, there is considerdblersity among parallel machines,
from multi-core chips with a few processors to tdugomputers with many thousands of
processors. How much do we need to know aboutdhgware to write good parallel
programs? At one extreme, intimate knowledge wiaahine's details can yield
significant performance improvements. For example,Goto BLAS, basic linear
algebra subroutines (BLAS) are machine specifigmams for core computations hand-
optimized by Kazushige Goto that demonstrate enosnperformance improvements.
However, because hardware typically has a fairprtdifetime, it is important that our
programs not become too wedded to any particul@hima, for then they will simply
have to be re-written when the next machine corttegya This goal of portability thus
tempts us to ignore certain machine details.

To resolve this dilemma of needing to know the praps of parallel machines without
embedding specifics into our programs, we will takeintermediate approach. We will
first discuss essential features that we expeqtaalillel computers to possess, with the
view that these features are precisely those thdalple parallel algorithms should
exploit. We then take a look at various featuhes &re characteristic of various classes
of parallel computers. We close this chapter pplaing in more detail five very
different parallel computers.

First There is the RAM Model

To design parallel algorithms, we need to undedstaur target parallel machine. If we
are to have any hope of writing portable paraltelgpams—specificallyperformance
portable programshat runwell across a widgariety of parallel machines—then we
need a single, accurate model of a parallel compUte reason by analogy, notice that
sequential computing has long benefited from suetodel: The random access machine
(RAM) model is an abstract machine that stores padigram and data in its memory and
allows one instruction to be fetched and executeery cycle. We will use an
analogous idea for the parallel case, but firss leview how we apply the RAM model
in sequential programming.

The simplicity of the RAM model is essential, besait allows programmers to estimate
overall performance based on instruction counthherRAM model. For example, if we
want to find an itemgearchee ) that might be in an array of sorted items, we could
use a sequential search or a binary search; saeeFigl. Knowing the RAM model, we
know that the sequential search will take an averdg/2 iterations of théor -loop to

find the desired item, and that each iteration tyjically require executing fewer than a
dozen machine instructions. The binary searctslgghtly more complex algorithm to
write, but its expected performance is approxinydta, n iterations of thavhile -loop,
which will take fewer than two dozen machine instiens. Fom < 10 or so, sequential
search is likely to be fastest; binary search beéllbest for larger values of

16



1 location = -1; 1 location = -1;

2for(j=0;j<n;j++) 2 hi=n-1;
3{ 3lo=0;
4 if (A[j] == searchee) 4 while (lo != hi)
5 { 5 {
6 location = j; 6 mid=lo+floor((hi-lo+1) 12);
7 break; 7 if (A[mid] == searchee)
8 } 8 break;
9} 9 if (A[mid] < searchee)
10 hi=mid
11 else
12 lo = mid+ 1;
13}

Figure 2.1 . Two searching computations; (a) linear searchbidry search.

The applicability of the RAM model to actual hardeés also essential, because if we
had to constantly invent new models, we would Heveonstantly re-evaluate our
algorithms. Instead, this single long-lasting nddes allowed algorithm design to
proceed for many years without worrying about theiad details of each particular
computer. This feat is impressive considering ktizatiware has enjoyed 35 years of
exponential performance improvement and 35 yeaiscoéased hardware complexity.

We note, of course, that the RAM model is unrealisEor example, the single cycle cost
of fetching data is clearly a myth for current mssors, as is the illusion of infinite
memory, yet the RAM model works because for mosgppses, these abstract costs
capture those properties that are really impoitasequential computers. We also note
that significant performance improvements can Haiobd by customizing
implementations of algorithms to machine details.

And of course, the model does not apply to all varé. In particular vector processors
which can fetch long vectors of data in a singleleylo not fit the RAM model, so
conventional programs written with the RAM do nattef well on vector machines. It
was not until programmers learned to develop avestor model of programming that
vector processors realized their full potential.

A Parallel Computer Model

To translate the success of sequential algoritionpsitallel computers, we need an
idealized parallel computer that corresponds tdRA& model. Like the RAM, this
model should be minimal and as universal as passibhe model that we will present is
known for historical reasons as the Candidate Pghitecture, or simply the CTA.

The CTA Model

A schematic of the CTA parallel computer modelhiswsn in Figure 2.2. It is composed
of P standard sequential computers, cafleacessorsr processor elementsonnected
together by aimterconnection networlkalso called @ommunication networkThe
processors, described by the RAM model, are congpaan execution engine and a
random access memory, which stores both prograchgaa. Thé>+1st processor
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(denoted by dashed lines) is ttantroller. Its purpose is to assist with various
operations such as initialization, synchronizatieurekas, etc. Many parallel computers
do not have an explicit controller, and in suchesgsrocessqm, serves that purpose.

' I' - Processor

Memory

N.I.C

Interconnection Network

() (b)

Figure 2.2. The CTA parallel computer mode{a) The schematic shows the CTA as composédd of
sequential computers connected by a interconnengbmork; the distinguished (by dashed lines) compu
is the controller, and serves such clerical fumgias initiating the processingb) Detail of a RAM
processor elementSee the text for further details.

The processors are connected to each other bytdreonnection network. These
networks are built from wires and routers in a tagtopology. Figure 2.3 shows several
common topologies used for interconnection netwoikse best topology for a parallel
computer is a design-decision made by architecedan a variety of technological
considerations. The topology is of no interegtrimagrammers.
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Figure 2.3. Common topologies used for interconnection netwdte interconnection network’s
topology is of little concern to programmers.
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A network interface chiNIC) mediates the processor/network connectibime Figure
2.2 schematic shows processors connected to themeby four wires, known as the
node degreegbut the actual number of connections is a prgpErthe topology and the
network interface design; it could be as few as (bidirectional) connection, but
typically no more than a half dozen. Data goingiteoming from the network is stored
in the memory and usually read or written by threcimemory access (DMA)
mechanism.

Though the processors are capable of synchronandgcollectively stopping for
barriers, they generally execute autonomously,ingntheir own local programs. If the
programs are the same in every processor, the dafiguis often referred to angle
program, multiple dataor SPMDcomputation. The designation is of limited use,
because even though the code is the same in akgsors, the fact that they can each
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execute different parts of it (they each have ayaiffthe code and their own program
counter) allows them complete autonofy.

Data references can be made to a processor’damahmemory which is supported by
caches and performs analogously to standard seguemmputers. Additionally,
processors can reference non-local memory, thitesnemory of some other processor
element. (The model has no global memory.) Thesghree widely used mechanisms
to make non-local memory references: shared-memaomrsided communication, which
we abbreviate 1-sided, and message passing. M@ rtechanisms, described in a
moment, place different burdens on programmershandware, but from the CTA
machine model perspective, they are interchangeable

A key aspect of parallel computers is that refeiremthe local and the non-local memory
requires different amounts of time to complete e @elay required to make a memory
reference is callechemory latency Memory latency cannot be specified in seconds,
because the model generalizes over many differehitactures built of different design
elements from different technologies. So, lateiscgpecified relative to the processor’s
local memory latency, which is taken to be unitinThis implies local memory latency
roughly tracks processor rate, and we (optimidiitalssume that local (data) memory
can be referenced at the rate of one word pewictsin. Of course, local memory
reference is influenced by cache behavior and raapgcts of processor and algorithm
design, making it quite variable. An exact vals@dt needed, however.

The non-local memory latency is designated in thé @odel by the Greek lettey.
Non-local memory references are much more expenisax@ngA values 2-5 orders of
magnitude larger than local memory reference tinfeswith local memory reference,
non-local references are influenced by many fadtaisiding technology,
communication protocols, topology, node degreeyort congestion, distance between
communicating processors, caching, algorithms, Btd. the numbers are so huge that
knowing them exactly is unnecessary.

Properties of the CTA

To summarize the characteristics of our abstrachima, we have:
e There aréP processors, which are standard sequential congpexecuting local
instructions
* Local memory access time is the usual memory adisaesor the sequential
processor

! Two classifications commonly referred to in ther@ture, but not particularly relevant to the Cihadel
or our study are SIMD and MIMD. In single instrrtistream, multiple data stream (SIMD) computers,
there is a single program aall processors must execute saménstruction or no instruction at all. In
multiple instruction stream, multiple data streaiiNID) computers, each processor potentially has a
different program to execute. Thus, MIMD and SPE&i® logically equivalent: The separate MIMD
programs can be conceptually unioned togetheraneo(MIMD SPMD); conversely, optimize the
SPMD code so each processor’s copy eliminates et it never executes (SPMIOMIMD).
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< Non-local memory access tinfe>> 1, can be between 2-5 orders of magnitude
larger than local memory access time.
e The low node degree implies a processor cannot imave than a few (typically
one or two) transfers in flight at once.
« A global controller (often only logical) assiststwbasic operations like initiation,
synchronization, etc.
Further observations will result from a more contwleok at the interconnection
network below.

The consequences of these properties for progragnparellel computers can be
encapsulated into a simple rule:

Locality Rule. Fast programs tend to maximize the number ofl locamory
references and minimize the number of non-local ongmneferences.

This guideline must remain foremost in every patarogrammer’s thinking while
designing algorithms.

Applying The Locality Rule. Exploiting locality is the basis of many examples
showing how parallel programming differs from seugfisd programming. Scalar
computation is one: Imagine a computation in whiehprocessors need a new
random number for each iteration of an algorithm. One approiadior one
processor to store the seed and generateeach cycle; then, all other processors
reference it. A better approach is for each preget® store the seed locally, and tg
generate itself on each cycle, that is, redundantly. ThHotlge second solution
requires many more instructions to be executed, @ne executed in parallel and sg
do not take any more elapsed time than one procgsserating alone. More
importantly, the second solution avoids non-loe&érences, and since computing i
random number is much faster than a single nornl-roeanory reference, the overal
computation is faster.

0

Though interprocessor communication is extremepeasive, it is helpful if
programmers are aware of the effects of certaitepet of communication:

1. All processors can transmit at once; that is, comination is a parallel activity.
Referring to the topologies of Figure 2.3 noticattthere can in principle be a
transmission along each edge simultaneously.

2. The processor graph is not complete, that is,ult onnected. Thus, some
communication operations will be indirect, prognegghrough a series of
routers.

3. Processors are ongparsely connectedvhich is a graph theoretic term implying
(among other things) that the topology doesn’t itheecapacity to perform
certain communication operations without seriousgestion—all-to-all
communication or transposes, for example.

Distilling the observations, (1) means a lot cariraasmitted in one “communication
time,” (2) means that times will be sensitive te gattern of communication, and (3)
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means some patterns are much worse than othevse(Barallel computers do not have
all of these properties, but we will adjust the eiddr them below.)

The CTA architecture mentiofsprocessors, implying that the machine is intertded
scale. Programmers will write code that is indejegr of the exact number of
processors, and the actual value will be suppliedraime. It is a fact that will
increase aP increases, though probably not as fast; doubhiegiumber of processors
will usually not double\ in a well engineered computer.

In summary, the CTA is a general purpose paratieiputer model that abstracts the key
features of all scalable (MIMD) parallel computbtslt in the last few decades. Though
there are variations on the theme (discussed bethe/properties that the CTA exhibits
should be expected of any parallel computer.

Memory Reference Mechanisms

The CTA model does not specify whether the memefgrencing mechanism is by
shared memory, 1-sided or message passing comrtionicdll three are commonly
used and are described in the next sections.

Shared memory

The shared memory mechanism is a natural extewsitre flat memory of sequential
computers. It is widely thought to be easier faagpammers to use than the other
mechanisms, but it has also been frequently aéttias being harder to write a fast
program. Shared memory, which presents a singlerent memory image to the
multiple threads, generally requires some degrdanfware support to make it perform
well.

In shared memory all data items, except those bl@saexplicitly designated @sivateto
a thread, can be referenced by all threads. Tha&nsthat if a processor is executing a
thread with the statement

X =2%y;

the compiler has generated code so that the prmcasd shared memory hardware can
automatically reference andy. Generally, every variable will have its olvame
location, the address where the compiler originally alledat in some processor’s
memory. In certain implementations all referenwéisfetch from and store to this
location. In other implementations a value caatflaround the processor’s caches until it
is changed. So, if the processor had previousgreacedy, then the value might still be
cached locally, allowing a local reference to repla non-local reference. When the
value is changed, all of the copies floating arothedcaches must lievalidated
indicating that they arstalevalues, and the contents of the home location imeist
updated. There are variations on these schemethdyushare the property of trying to
use cache hardware to avoid so many non-localeefes.
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Notice that although it is easy for any threadei@rence a memory location, the risk is
that two or more threads will attempt to changesiéé®e location at the same or nearly
the same time. Such “races” have a great potdotidhtroducing difficult-to-find bugs
and motivate programmers to scrupulously protdéctered memory references with
some type of synchronization mechanism. See Chégte more information.

1-sided

One-sided communication, also known on Cray mashiyethe namshmemis a
relaxation of the shared memory concept as folldtsupports a single sharaddress
space that is, all threads camferenceall memory locations, but it doesn’t attempt to
keep the memory coherent. This change places giaatgens on the programmer,
though it simplifies the hardware because if a essor caches a value and another
processor changes its home location, the cache@ i@hot updated or invalidated.
Different threads can see different values forstame variable.

In 1-sided all addresses except those explicitsigiated aprivate can be referenced by
all processes. References to local memory usedhdard load/store mechanism, but
references to non-local memory use eithgetf) orput() .Theget() operation
takes a memory location, and fetches the value fremon-local processor’'s memory.
Theput() operation takes both a memory location and a yalne deposits the value
in the non-local memory location. Both operatiores gerformed without notifying the
processor whose memory is referenced. Accordiriggly shared memory, 1-sided
requires that programmers protect key program bkesawith some synchronization
protocol to assure that no processes mistakenlgtagedata.

The term “one-sided” derives from the property th@bmmunication can be initiated by
only one side of the transfer.

Message Passing

The message passing mechanism is the most priraitidgeequires the least hardware
support. Being a “two-sided” mechanism, both esfds communication must
participate, which requires greater attention ftbmprogrammer. However, because
message passing does not involve shared addréssesis no chance for races or
unannounced modifications to variables, and theedfss chance of accidentally
trashing the memory image. Theme other problems, discussed momentarily.

Because there are no shared addresses, procdssés oeher processes by number.
(For convenience, assume one process per progesBaocesses use the standard
load/store mechanism for all data references, dmeenly kind of reference they are
allowed are local. To reference non-local data, bassic operations are available,
send() and receive, usually abbreviatetv() . Thesend() operation takes as
arguments a process number and the address imhecabry of anessagea sequence of
data values, and transmits the message to thel@oah-process. Theecv()

operation takes as arguments a process humbenaadteess in local memory, and
stores the message from that process into the nyentfahe message from the process
has not arrived prior to executing tfeev() , the receiver process stalls until the
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message arrives. There are several variationseoddtails of the interaction. Both sides
of the communication must participate.

Notice that message passing is an operation mitiny the owner of the data values,
implying that a protocol is required for most presieg paradigms. For example, when a
procesgpr completes an operation on a data structure aakbitable to perform another,

it cannot simply take one from the work queue & tfueue is stored on another
processor. It must request one from the work queargagermgr. But that manager, to
receive the request, must anticipate the situatfmhhave an (asynchronousgv()

waiting for the request fromr. Though such protocols are cumbersome, they tyuick
become second nature to message passing programmers

Programming approaches that build literally uporssage passing machines are often
difficult to use because they provide two distimeichanisms for moving data: memory
references are used with a local memory, and megsagsping is used across processes.
Chapter 8 explains how higher level programmingjlemges can be built on top of
message passing machines.

Alternative Models. On encountering the CTA for the first time, it fmiggeem
complicated; isn’t there a simpler idealizatioragbarallel computer? There is. It is
called the PRAM, parallel random access machirie.dimply a large number of
processor cores connected to a common, coherenbmgthat is, all processors
operate on the global memory and all observe tihglé sequence of state change
Like the RAM, memory access is “unit time.” One g@itation of the PRAM model
is handling the case of two (or more) processocessing the same memory location
at the same time. For reading, simultaneous adéeesten permitted. For writing,
there is a host of protocols, ranging from “onlye@rocessor accesses at a time” to
“any number can access and some processor wineréTf a huge literature on all pf
these variations. The problem with the PRAM forggeanmers intending to write
practical parallel programs is that by specifyimgt time for all memory accesses, the
model leads programmers to develop the “wrong” /@igms. That is, programmers
exploit the unimplementable unit cost memory refeecsand produce inefficient
programs. For that reason the CTA explicitly sefgardhe inexpensive (local) from
the expensive (non-local) memory references. Madgdarallel algorithms is a
complex topic, but the CTA will serve our needslwel

o

Brief Overview of Parallel Computers
Though we will not need to learn the specifics afgtlel architectures, we can clarify our
abstract model by giving examples of real machirieghis section we consider very
briefly the following implemented computers:

e Sun Fire E25K —A symmetric memory processor

¢ Red Storm — Commaodity processors with engineereddannect

e Cell - High performance, but heterogeneous procgsso

e Clusters — Building with Myrinet or Infiniband

¢ Blue Gene — Snazzy name, weenie processors; toprdtdte Top 500
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Though these machines only begin to show the yaoiigparallel computer architecture,
they suggest the origins of our abstract machindain&To be completed>

A Closer Look at Communication

The large non-local memory laten@y,specified by the CTA model represents an
extreme cost. To the extent that we can avombit,programs will run faster. Reducing
its impact will be at the heart of nearly all ofrqurogramming efforts. We might
wonder, “Can’t something be done about reducingmamnication latency?” It would
certainly simplify programming. In this section wensider that question.

For P processors to communicate directly with each otihert is, for processq to

make, say, a DMA reference to memory on procedsanentp; requires that there be
wires connecting; andp;. A quick review of the topologies in Figure 2riglicates that

not all pairs of processors are directly connecfgelchnically, no processor is directly
connected to any other; every processor is at ashop from any other because it must
“enter” the network. However, if in all cases gaif processors could communicate in
one hop we could count this as a “direct” conneéctibat is, not requiring navigation
through the network. For the topologies of Figlui@ information must be switched
through the network and is subject to switchingage| collisions, congestion, etc. These
phenomena delay the movement of the information.

For sound mathematical reasons, there are es$gttialways to make direct
connections between all pairs®frocessors: a bus and a crossbar; see Figure 2.4.

< In thebusdesign all processors connect to a common seirebwWhen
processop; communicates with procesgmr they transmit information on the
wires; no other pair of processors can be commtingat that time, because
their signals would trash thge-p; communication. Ethernet is a familiar bus
design. Though there is a direct connection, achasonly be used for one
communication operation at a time; we say the comoation operations are
serialized

e Thecrossharovercomes the problem of one-at-a-time commurunaty
connecting each processor to every other procesbish allows any set of
distinct pairs of processors to communicate simeltaisly. This is ideal from a
computational perspective, but it is too expensiVee number of wires
necessary to implement a crossbar grows asaking it unrealistic except for
very small computers, sa=16 or fewer.

With just these two basic designs available dicectnection is possible only for a small

number of processors, either to reduce the likelihthat communication operations
contend (bus) or reduce the cost of the devicesétyar).
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Figure 2.4. Schematics for directly connect parallel compuytésbus-based, (b) crossbar-based, where a
solid circle can be set to connect one pair ofdest wires.

Because of the difficulties of direct connectioaghitects have invented many
communication networks with varying topologies g@ndtocols in order to build
computers that can scale. There is a large litezain the subject, and Figure 2.3
indicates only a few representatives. All of thieséerconnection networks provide less
connectivity than the crossbar with fewer resouraes therefore more delays, but at a
lower cost. The greater delays force us to aduptarge\ value.

Three Special Cases

Though scalable parallel computers are well modejethe CTA abstract machine, three
cases require us to adjust our thinking slightly:

e Symmetric Multiprocessors (SMPs) and other busitectures
e Multicore-processor chips
e Cluster computers built with Ethernet

In all cases the issues concern how the proceaseinnected.

SMP Architectures

Symmetric multiprocessors are bus-based paralfapaders that maintain a coherent
memory image. Being bus-based implies that theyhacessarily small. SMPs achieve
high performance in two ways: first, by being snaaitl necessarily clustered near to the
bus, they tend to be fast; second, by using sapaistl caching protocols, SMPs tend to
use the shared resource of the bus efficientlyaied the likelihood that multiple
communication operations will contend for the bad possibly be delayed.

The bus-design prevents the SMP from matching lilaeacteristics of the CTA. For
example, the serialized use of the bus violatesghgrallel communication” property; the
bus effectively causes high node degree, etc. Meww&MPs are well designed, and

their non-local memory reference timese only a small factor more expensive than their

2 For those familiar with these architectures, noral reference times here would refer to eitheminm
memory reference, or a reference that is dirtyniotlaer processor’s cache.
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cache hit times, which is probably the relevantimiision. Accordingly, SMPs perform
better than the CTA model predicts, making it readde to treat them as CTA machines:
The observed performance is unlikely to be worae that predicted by the CTA model,
and it will usually be much better; more importgndlgorithms that are CTA-friendly
exploit locality, a property that is very benefldia SMPs.

Multicore Chips

Being relatively new, multicore processor chipssprely show a broad range of designs
that make it difficult at the moment to generalize.

The Cell processor, mentioned above, has a siggleral purpose core together with
eight specialized cores with more SIMD operatiohnisTarchitecture, originally designed
for gaming, has high bandwidth communication amoregessors making it extremely
effective at processing image data. The Cell exdéodjeneral parallel computation, too,
but at the moment has not been well abstracted.

The AMD and Intel multi-core processors are monailsir to each other than to the Cell,
though they have significant differences. Eachrhatiple general purpose processors
connected via the L2 cache, as illustrated in Fedud. As a first approximation, both
chips can be modeled as SMPs because of theiramatyeprotocols. Because the cores
can communicate faster than predicted by the Chiéir performance will tend to better
than predicated by the CTA. As before, using CTiardly algorithms emphasizes
locality, which is good for all parallel computeMoreover, as the technology advances
with more cores and greater on-chip latencies,driglon-local communication times are
inevitable, making CTA-friendly algorithms even raatesirable.

Cluster Computers

Cluster computers are a popular parallel compusigrh because they are inexpensively
and easily constructed out of commodity parts, lzewhuse they scale incrementally. If
the cluster is built using networking technologfes,example, Infiniband or Myrinet, to
create a true interconnection network, we calliedvorked cluster and observe that it is
properly modeled by the CTA abstraction. If instél@e cluster is built using an Ethernet
for communication, then it is not. As mentionedady Ethernet is a bus technology, and
so it requires that distinct but contending commation operations be serialized. Unlike
SMPs, however, the departure from the model calp@dagnored.

Specifically, the CTA models computers that havelbsl communication capabilities.

A practical way to think about parallel communioatwithout knowing anything about
the interconnection network, is to imagine a ligtof theP processorgo, p1, P2, .-, Pp-1,
and notice that the communication properties ofGfé would permit each processor to
communicate with the next processor in line sinmdtausly. This is possible for all of
the topologies in Figure 2.3, and for almost atinonnection networks ever proposed;
at worst, it is possible in as few as thieemes. A bus does not have this property, of
course. Thé®> communication operations would have to be segdliz
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In the SMP case, smadtland engineering considerations ensured that thdaoal
communication would only be a small factor sloweart local communication time, well
within out 2-5 orders of magnitude guideline for For clusters) is large. Networked
clusters are nevertheless well modeled. Ethetosters, however, must serialize their
contending communication operations, so they damest the specifications of the CTA.
Performance predictions for computations involviogsiderable communication will be
low.

We will accept predictions by the CTA in the ca§&MPs, because when they are
wrong, the performance will be better than expedtedther, programs that accord well
with the CTA will emphasize locality, which the t@ecentric SMP design can exploit.
But the CTA is not a good model for Ethernet clisste

Ethernet Clusters To get good performance from an Ethernet clugtes best to
run programs with the characteristic that eachgssar is assigned a large amount of
communication-free computation to perform, a&instructions worth or more,
between each communication operation. Such comiptgasive problems are
common. They have the property that although tharebe contending
communication, it will be sufficiently infrequerd give good utilization.

Applying the CTA Model

Recall that in Chapter 1 we solved the Count 3blpra. We began with a
straightforward solution (Tryl), found that it hadace and corrected that (Try 2), found
that the terrible performance was due to a comomamt variable and corrected that
(Try 3), and found that performance wasn’t yet gendugh due to false sharing. The
final program (Try 4) is achieved our performanoalgthough in Chapter 4 we’ll find
one more improvement to make to it.

Would the CTA have been a good guide to programr@iognt 3s? Yes. The CTA, being
independent of the actual communication mechanssraréd memory) or caching, would
not have guided us with Try 2 or Try 4, but it wdhlave directed us to avoiding the
mistake that was fixed with Try 3. The problem whes single global variableount ,

and the lock contention caused my making updatésThe model would have told us
that using a single global variable means thatlpedirreferences will be non-local, and
therefore incuA overhead just to update the count; we would krizat & better scheme
would be to form a local count to be combined laBarided by the model, the error
would not have occurred and we would have writtbetter program in the first place.

Notice that the model predicted the problem (simgidal variable) and the fix (local
variables), but not the exact cause. The modeliaeabout the high cost of referencing
the global variable, while the actual problem waklcontention. The different
explanations are not a problem as long as the nideletifies the bad cases and directs us
to the correct remedy, which it did. The CTA is aakeal machine. It generalizes a huge
family of machines, and so cannot possibly matehirtiple mentation of each one. But to
give enough information for writing quality progranit provides general guidance as to
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the operation of a parallel computer. Some impleat@ans do have a memory latency
problem referencing the global variable; some ddnit they have other problems, like
contention or even stranger problems. Differentl@émgntations will manifest the
fundamental behaviors of parallel computation fifiedeént ways. The CTA models
behavior; it doesn’t describe a physical machine.

Summary

Parallel computers are quite diverse, as the freputer profiles indicated It would be
impossible to know the hardware details of all paraachines and to write portable
programs capable of running well on any platforifio solve the problem, we adopted
the CTA, an abstract parallel machine, as the asisur programming activities.
Thinking of the abstract machine as executing eogm@ms (in the same way we think of
the RAM (von Neumann machine) executing our sedalgotograms) lets us write
programs that can run on all machines modeled ®LiRA, which represent virtually all
multiprocessor computers.

Exercises
1. Suppose four threads performed the computatiamnstiidited in Figure 1.1 and
1.2. (Assume a lock protected global variable peenéy allocated to one thread
for 1.1.) What is the communication castpredicted by the CTA for adding
1024 numbers for each computation?

Answer. For algorithm 1.1, 256, because three ®thiheads make non-local
references. For algorithm 1.2, 2, because all wehical until the final
combining, which has two levels.

2. Like Ex. 1, but revising the Figure 1.1 algorithmesach thread keeps a local copy
of the count.

Answer. For algorithm 1.1, 1, because each threatls must update the global
count.
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Chapter 3: Understanding Parallelism

Introduction

The advantages of parallelism have been undersiood Babbage’s attempts to build a
mechanical computer. Almost from the beginninglet&onic computation parallel
hardware has been used in the implementation efeseigl computers. Efforts to build
true parallel computers began in the 1970’s an& lcantinued at an accelerating pace,
driven by advances in silicon technology. Industiizd academic researchers have
studied every imaginable aspect of parallel contmrtaThere is much to learn, and it
cannot all be presented in complete detail in glgiohapter. So, we begin with an
informal tour of almost the entire parallel landseaknowing that many sights will
demand further attention in later chapters. For,ribsuffices to gain an appreciation of
the opportunities and challenges of parallel cojor.

We look at parallelism from different perspectivéke first is performance, since
improving performance is the point of parallel cartgiion. The second perspective
concerns the structural features of an algoritha ¢ontribute to or hinder performance.
Finally, we discuss general parallel problem saj\approaches.

Opportunities For Performance Improvement

As the add-a-vector-of-numbers example of Chapteditates, programs can embody
different amounts of parallelism despite requirihg same amount of work (in that case
the same number of additions). The naive summédmmproduced a sequential
specification, which if executed as specified, isggO(n) time because no provision
was made for other processes to contribute todheien. The tree summation was
described in a way that allows sub-computatiorisetperformed simultaneously, which
with sufficient processing capacity, would leacattO(log, n) time execution. Is this the
best solution available? What limitations mightyenet the best performance? Are there
opportunities that are not being exploited? Weusiscsuch issues in this section.

Inherently Sequential . There are computations that are inherently sequential, meaning that
all algorithms to solve them have limited parallelism. One such computation is the circuit
value problem, which takes a circuit specification over logical operators OR, AND and NOT
taking m inputs, and an m-length binary sequence, and evaluates the circuit on the input
sequence.

Parallelism vs. Performance

Ideally, a problem that takdstime to execute on a single processor can be ¢aivE/P
time if we can formulate a solution to the problgrat exhibitsP-fold parallelism. Thus,
it is tempting to think that our goal is simplyr@aximize parallelism, but this is not true.

Consider again the summation of Chapter 1 chatern values, we maximize
parallelism by using=n/2 processors, which allows us in each step to pertdr pair-
wise additions simultaneously. The total algorittakesO(log, n) time usingP
processors.
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Now consider a variant of the algorithm, which vedl the Schwartzalgorithm. It makes
each processor responsible ffmy, n data items instead of 2 items. (In Figure 3.&, th
leaves, which represent data stored on the pareoggsor, are a total ffg, n items.)
The idea is that because the height of the summage idog. n, the tree height defines
the computation time; by beginning with each prsoesinding the sum dbg, n local
elements, the execution time is only doubled okemaive solution. That is, in
essentially the same time a significantly largeem can be solved.

Because we are looking at this idea somewhat “badksy”’ let’s put it into numerical
terms. Adding a 1000 items using the original fnesed summation takes 10 stdpgA
1000) using 500 threads of concurrency. If eaah lather than being a singleton, were
a sequence of 10 items, then a 10,000 item summedtiold be performed by the same
number of threads in 28 steps (9 for each local sund 10 to combine them). Using the
original summation solution would have requiredd®,éhreads of concurrency and
completed the task in 14 steps. Often, the amduanailable parallelism is very small
compared to the amount of data, making the idep attractive.

Schwartz’s algorithm shows that trying to maximgegallelism is not always smart. In
our original algorithm to procesgog, n data, we would use= (n log, n)/2 processors,
and we would get a running time ©flog, (nlog: n)) = O(log n + loglog n) time. In
essence, we use a larger tree having greater déptthe original algorithm. Schwartz's
algorithm is not only a simple way to see that maxing parallelism is not always
smart, but it is an excellent solution technique Will apply it often in Chapter 4.

+ + + + + + + +
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Figure 3.1. Schwartz’s approach to the summation computaticocd3sing nodes are indicated by boxes;
the leaves each representddf n) items.

Our discussion of Schwartz's algorithm makes twiatgo First, parallelism alone is not
the goal. Instead, we need to consider the resswsed to exploit this parallelism.
Second, when performance is the goal, we needderstand what performance means.
The next two sections describe these two topi¢srim
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Threads and Processes

To help us reason about the resources needed lmtgarallelism, we will use two
common abstractions for encapsulating resourcesadisrand processes.

A threadrefers to a thread of control, logically consigtof program code, a program
counter, a call stack, and some modest amount@hdhspecific data including a set of
general purpose registers. Threads share acctss noemory, so threads can
communicate with other threads by reading from ting to memory that is visible to
them all. (Threads also share access to the fiesy) Programming with threads is
known aghread-based parallel programmiray shared memory parallel programming

A processs a thread of control that has its own privatdrads space. When multiple
processes execute concurrently, they require soeahanism for communicating with
each other, since they do not share memory. Ondersmme mechanism might be to
communicate through the file system, but a moreatiapproach is to send messages
from one process to another. Parallel programmiitiy processes is often referred to as
message passing parallel programmirgnon-shared memory parallel programming
key issue in message passing parallel programraipgoblem decomposition, since
portions of the computation’s data structures rbesallocated to the separate process
memories, that is, they usually cannot be wholplicated within each process.

In addition to the obvious difference between tiseand processes—the distinction
between shared and separate memory spaces—theals@rbstinctions of “weight” and
“agility.” Threads are usually seen as “lighter gigi” being created and completing
dynamically throughout a computation. Processegoyrast, are “heavier weight,”
taking more time to setup and tear down. Thoughtetedynamically, usually in
response to input conditions, they often persistughout most or all of a computation.
Processes can “come and go,” but with the (mengatgp time being much greater, they
tend to be longer lived.

Latency and Bandwidth

Since performance is the goal, it is importantgcea upon what performance means.
We often speak of speeding up a computation, lalizesthat there are two possible
goals: latency and bandwidth.

Latency. Latency refers to the amount of time it takesdmplete a given piece of work.

Bandwidth. Bandwidth instead refers to the amount of woek ttan be completed per
unit time.

Thus, latency is measured in terms of time or sdem&vative of time, such as clock
cycles. Bandwidth is measured in terms of workupet time. The distinction between
latency and bandwidth is important because thesesgmt different issues with different
solutions. For example, consider a web serverr#itatns web pages. The web server’s
bandwidth can be increased by using multiple premesthat allow multiple requests to
be served simultaneously, but such parallelism doeseduce the latency of any
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individual request. Alternatively, a web serveulcbemploy multiple physically
distributed caches that can both decrease theclatdrindividual requests—for clients
that are close to one of the caches—and increassetiver’'s overall bandwidth. In many
cases, latency can be reduced at the cost of senldzandwidth. For example, to hide
long latencies to memory, modern microprocessdengierform data prefetching to
speculatively bring data to caches, where its ateéo processors is lower. However,
because prefetching invariably brings in some trahis not used, it increases the
demand for memory system bandwidth. This ideaanfihg bandwidth for latency is not
new: The Multics operating system used the ideherl 960s when it introduced the
notion of context switching to hide the latencyeapensive disk 1/0O.

The use of latency and bandwidth is common in sdrenot all, parallel computation
subcommunities, so our use of it throughout thiskbeomewhat broadens its application.
We will use latency to refer to the length of exemutime or the duration of the
computation, and bandwidth to refer to the capadfity processor, its instruction
execution rate. We have slightly expanded thesodpatency and bandwidth to unify
terminology. There should be little confusion whetountering alternate terms in the
literature.

Sources of Reduced Performance

While we ideally would hope th& processors could speed up a computation by arfacto
of P, there are many reasons why this might not bedlse. We explore these factors in
this section.

Overhead. Any cost that is incurred in the parallel soluttwut not in the serial solution is
considereaverhead There is overhead in setting up threads andegsas to execute
concurrently and also some for tearing them dowriha following schematic indicates.

N \q Threat E‘\\\:‘ﬂ
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Because memory allocation and its initializatioa expensive, processes incur greater
setup overhead than threads. After the first poceset up, all subsequent thread and
process setups incur overhead not present in &sgglucomputation. These costs must
be charged against the benefits of parallelismilsesection, Measuring Performance
below.

Communication. Communication among threads and processes is@ o@jponent of
overhead. Since a sequential computation doeswé tta(cannot!) communicate, all
communication is a charge against the benefitaddlfelism. These costs have been
described in detail in Chapter 2, and though theyd#ferent depending on the
communication mechanism chosen—shared memory ettsidmessage passing—they
are all substantial compared to a local memoryreefee. To be clear, there is always a
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communication charge unless the data is localgtimeponents of the charge are given in
Table 3.1.

Synchronization. Synchronization is a form of overhead that angksn one thread or

process must wait for another. Synchronizatiamicit in many forms of message
passing, while synchronization is often explicitemhprogramming with threads.

Table 3.1: Sources of communication overhead by communicatienhanism.

Mechanism Components of Communication Cost

Shared Memory Transmission delay, coherency opaigtreference protection,
unavailability

1-sided Transmission delay, reference protectinayailability

Message Passing Transmission delay, data marshattessage formation,

demarshalling, unavailability

Contention. Contention is the degradation of system throughbpused by competition
for a shared resource. For example, we saw in €ha&ghow lock contention can reduce
network throughput by creating excessive netwaKitr, and we saw how false sharing
can degrade performance by causing data valuesutaick back and forth among
different caches.

Idle Time. When we conceptualize a parallel computation, megine that the

processors are all working all of the time, buth@ght not be. The main reason is that a
process or thread cannot proceed because thepenisrik to do or because the needed
data is not yet available. As the next section epéhdences demonstrates, idle time
manifests itself in many ways.

Load Imbalance. One common source of idle time is an unevemidigton of work to
processors, which is known as load imbalance.ekample, the Schwartz algorithm has
an advantage over the standard prefix summatioausecthe former keeps all processors
busy with useful work much of the time, therebywaiing larger (by a factor dbg, n)
problems to be solved with the same number of gsms.

Balancing load is straightforward for easy taske Bummation, but most computations
are much more complex. We sometimes display tloeation of array computation,
especially for the process model, by showing thayaand its decomposition among
processors; Figure 3.2 shows a schematic exampteé¢d U Decomposition
computation, a widely used algorithm for solvingteyns of linear equations. As shown
in Figure 3.2(a) the LU computation builds a lo&ack) and upper (white) triangle
beginning at left; the area of the computatiorhisven in gray, and after every iteration
of the computation one row and one column are atiwidte completed portion of the
array. Figure 3.2(b) shows sixteen processors dtlgiarranged as a grid, and (c) shows
how the array might be allocated to processor mesan a process model of the
computation. Though the allocation of data is bedai) i.e. each processor is assigned
roughly the same number of array elements, the vgankt balanced. For example, after
the first 25% of the rows and columns have beemrddal the result arrays, there is no
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more work to do for the seven processors on thiatef top sides of the array. That is,
nearly half of the processors will be idle afteeauarter of the rows/columns have been
processed. Though it is true that the amount okwer iteration diminishes as the active
(gray) portion of the array shrinks, this allocatiaf work is still quite unbalanced.
Indeed, the last 25% of the rows/columns are coetphy processd?e. Or putting it
another way, the last 25% of the rows/columns areputed sequentially.

Redundant Computation. P processors will not speed up a sequential compuatay a
factor of P if the parallel version of the computation reqsimore instructions. But extra
instructions are almost always required. For exairipthe sequential computation
requires the program to loop k times, and if thejbel computation also requires each
process to loop k times, then the loop overheauduicsons—initialization, incrementing,
testing for termination—are not sped up by parnslel As another example, recall the
example of generating a random number from Ch&ptaithough it was smart to repeat
the computation to avoid non-local communicaticavihg each process generate its own
random number means there will be no parallel img@neent of that portion of the
computation. Of course, the programmer’s goal iméie most of the computation non-
redundant.

Po[ Pif Pof Ps
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I
(@) (b) (©)
Figure 3.2: Schematic diagram of (a) the LU Decomposition atbar, (b) sixteen processors (indexed in
hexadecimal) arranged in a logical grid, and (e)dhocation of the array elements to the processog.
processoPy is assigned that part of the array in the upgéthat has completed.

Parallel Structure

By the end of the chapter we will conclude thatitteal parallel computation is one that
has large blocks of independent computation thateaexecuted concurrently. With
separate parts of the problem being performed fbereint processors, there will be little
idle time and the solution will be found fast. Tepare to embrace “blocks of
independent” computation, we must understand wigpéndent” computation is. That
is, our ideal case will be formed from normal cotagpion in which we avoid certain
performance limiting characteristics of programmilmgthis section we discuss such
features in terms of the concept of dependences.

Dependences

A dependences an ordering relationship between two computeti®ependences can
arise in different ways in different contexts. eaample, a dependence can occur
between two processes when one process waitshfiesaage to arrive from another
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process. Dependences can also be defined in térraad and write operations.
Consider a program that requires that a particulmory location be read after an
update (write) to the same memory location; asxamgle, recall theount variable in
Figure 1.7. In this case, there is a dependenwecka the write operation and the read
operation. If the order of the two operationsviggped, the value read would not reflect
the update, so the dependence would be violatedebgwap and the semantics of the
program would be altered. Any execution orderirag tibeys all dependences will
produce the same result as the originally specgredram. Thus, the notion of
dependences allows us to distinguish those execatiterings that are necessary for
preserving program correctness from those thatatre

Dependences provide a general way to describeslimiparallelism, so they are not only
useful for reasoning about correctness, but th&y pfovide a way to reason about
potential sources of performance loss. For exanagpliata dependence that crosses a
thread or process boundary creates a need to yrizéror communicate between the
two threads or processes. By knowing the datardbgree exists we can understand the
consequences for parallelism even if we don't kndvat aspect of the computation
caused the ordering relationship in the first pla€e make this point more concrete, let
us consider a specific type of dependence, knovdatsdependences.

Data dependence. A data dependence is an ordering on a pair of mgoperations that
must be preserved to maintain correctness. Therthieee kinds of data dependences:
¢ Flow dependenceread after write
e Anti dependencewrite after read
e Output dependencewrite after write

Flow dependences are also caliett dependencdsecause they represent fundamental
orderings of memory operations. By contrast, antl output dependences are
collectively referred to afalse dependencémcause they arise from the re-use of
memory rather than from a fundamental orderindefdperations.

To understand the difference between true and épendences, consider the following
program sequence:

1. sum=a+1;

2. first_term = sum * scalel;

3. sum=b+1;

4. second_term = sum * scale2;

There are flow dependences (giam) relating lines 1 and 2, and there are flow
dependences relating lines 3 and 4. Further, ikexe anti dependence sum between
line 2 and line 3. This anti dependence preverditht pair of statements from
executing concurrently with the second pair. Batsge that by renamirsgim in the
first pair of statements dgst_ sum  and by renaming th&um in the second pair of
statements asecond_sum ,

35



first sum=a+1;

first_term = first_sum * scalel;
second_sum =b + 1;

second_term = second_sum * scale2,;

PwbdpE

the pairs can execute concurrently. Thus, at disé af increasing the memory usage by a
word, we have increased the program’s concurreBgycontrast, flow dependences
cannot be removed by renaming variables. It m@geapthat the flow dependences can
be removed simply by substituting for sum in theosel and fourth lines,

1. first_term = (a + 1) * scalel;
2. second_term = (b + 1) * scale2;

but this doesn’t eliminate the dependence becaniseatter how it is expressed the
addition must precede the multiplication for bathmts. The flow—the write of the sum
(possibly to an internal register) to the readrasferand (possibly from an internal
register)—remains.

Dependences Limit Parallelism

To understand how dependences limit parallelisoalir¢he following code from Chapter
1, which specifies the summation of a seh@oumbers:

sum =0

for (i=0; i<n; i++) {
sum += X]i;

}

This program, which we described as sequentiabstracted in Figure 3.3(a); the more
parallel tree solution is shown in 3.3(b). In flgare, an edge not involving a leaf
represents a flow dependence, because the congoutdtine lower function will write
into memory, and the upper function will read thregmory. The key difference between
the two algorithms is now evident. In Figure 3.3 sequential solution defines a
sequence of flow dependences; they are true depeesl@hose ordering must be
respected. By contrast Figure 3.3(b) specifiesteshahains of flow dependences,
imposing fewer ordering constraints and permitiimgre concurrency. In effect, when
we gave the C specification for adding the numbegesywere specifying more than just
which numbers to add. (We needed the extra faassdciativity of addition to know that
the two solutions produce the same result.)
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Figure 3.3. Schematic diagram of sequential and tree-basedi@udigorithms.

The point is that care must be exercised, whenrprmming, to avoid introducing
dependences that do not matter to the computdiemause such dependences will
unnecessarily limit parallelism. (Knowing tHéx is addition allows powerful compiler
techniques to transform this code into a more fEralrm, but such technology has a
limited scope of application.)

Granularity

A key concept for managing the constraints impdsedependences is the notion of
granularity. We identify and explain two closelyated ways in which this term is used:
e Granularity of work
e Granularity of interactions
Notice that grain size is usually described usergiscoarseandfine, though large and
small are also used.

Granularity of Interaction. Interaction measures the frequency of dependamossing

the boundaries of threads or processes, wherednegis measured in number of useful
instructions separating the interactions. Thustsmsgrain refers to threads and processes
that only infrequently depend on data or eventstlirer threads or processes, and
conversely, fine grain interactions are those dlcatr often. As mentioned earlier
dependences that cross thread or process bounitergskice communication with its
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associated overhead. Further, frequent interactioply that waiting time can
accumulate as threads and processes stall. Fadthsharing through memory the cost
for communicating is lower and the amount of wogkvieen interactions may be similar,
suggesting that fine grain interactions may be eliile, especially if used in
abundance. Because the overhead of message pastyipigally large, processes work
best with coarse grain interactions.

Granularity of Work. Work is usually measured by such things as nurobistructions
executed, or number of data values assigned teeadlor process. Accordingly, a coarse
grain computation has a large time and/or memooypfint. Conversely, a fine grain
computation has only few values processed localtly@ntributes mainly by being used
in large quantity. Consistent with earlier poiritgeads often support fine grain
parallelism and processes support course graimadlgdesm. Other semantic nuances
include the sense that fine grain computationsraee flexible, being available for
smaller opportunities for parallelism. By contrasiarse grain computations can provide
better opportunities for amortizing overhead ardirty latency, as we discuss below.

Applying Granularity Concepts. The key point is that no fixed granularity is bies all
situations. Instead, it is important to matchghenularity of the computation with both
the underlying hardware’s available resources bhadolution’s particular needs. For
example, the original prefix summation describe@apter 1 was a fine grain
computation involving a small amount of work angefigrain interactions with the
adjacent threads. The Schwartz variant of the cdatipn increased the grain size at the
start of the computation, performing much more waekore communicating. This larger
granularity led to better performance. Notice thatfine grain interaction remains in the
“accumulation” part of the Schwartz computation.“€oarsen” this part of the
computation, the degree of the tree must be inetkashere the degree, presently 2, is
the number of children of each parent. For otheblems a coarse granularity might lead
to poor load balance.

In the limit the coarsest computations involve hageunts of computation and no
interaction. SETI@home is such an example. Subpenablare distributed to personal
computers and solved entirely locally; the only camnication comes at the end to report
the results. In this setting the parallel compuater be an Internet-connected collection of
PCs. Such super-coarse grain is essential becétise ftuge cost of communication.

At the other end of the spectrum are threads rgnoamChip Multiprocessors (CMPs)
that provide low latency communication among preoesthat reside on the same chip,
making fine grain threads practical.

Most parallel computation falls between these eng®

Locality

A concept that is closely related to granularitjhiat of locality. Computations can
exhibit both temporal locality—memory referenceattaire clustered in time—and spatial
locality—memory references that are clustered lresk. Recall that locality is an
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important phenomenon in computing, being the reagoncaches work, so improving
locality in a program is always a good thing. ©tise, the processors of parallel
machines also use caches, so all of the benefiesmgdoral and spatial locality are
available. Keeping references local to a thregorocess ensures that these benefits will
be realized. Indeed, algorithms like the Schwapizreach that operate on blocks of data
rather than single items, virtually always expkpgtial locality, and are preferred.

In the parallel context, locality has the addeddfi¢iof minimizing dependences among
threads or processes, thereby reducing overheadamtention. As outlined above, non-
local references imply some form of data commurocatwhich is pure overhead that
limits parallel performance. Furthermore, by makmnup-local references, the threads or
processes will often contend with each other soneegvin the execution, either colliding
on the shared variable in the case of threadslbdiog in the interconnection network in
the case of processes. Thus, non-locality hasdtenpal of introducing two kinds of
overhead.

A simple example makes both parts clear: Considet af threads Counting 3s in a large
set of numbers using the scalable algorithm (Tiry @hapter 1); by working on a
contiguous block of memory, a thread exploits sppadicality; by making the

intermediate additions to a local accumulationalalg, it benefits from temporal locality.
Moreover, by combining with the global variablelta end rather than with each
addition, it reduces the number of dependences gittwaads until the communication is
absolutely necessary to achieve the final redMith the reduced number of
dependences, locality is improved while overheatiGimtention are reduced. Note that
this use of a local accumulation variable is anogxample of using a small amount of
extra memory to break false dependences.

Forms of Parallelism

Though we have distinguished between thread-baasediglism and process-based
parallelism, we have done so to focus on implentemtalifferences, such as granularity
and communication overhead. Now we are concerntdumiderstanding where the
parallelism can be found at the algorithmic leVge recognize three general types:

e data parallelism

e task parallelism

e pipelining
We now consider each, realizing that there is @apeaimong the categories.

Data Parallelism

Data parallelism refers to a broad category of lfgism in which the same computation
is applied to multiple data items, so the amoura\w@ilable parallelism is proportional to
the input size, leading to tremendous amounts te@mgi@al parallelism. For example, the
first chapter’s “counting the 3s” computation idata parallel computation: Each element
must be tested equal to 3, which is a fully palaleration. Once the individual
outcomes are known, the number of “trues” can lseraclated using the tree summation
technique. Notice that the tree add applies teealllt elements only for its initial step
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and has logarithmically diminishing parallelismrbafter. Still, the parallelism is
generally proportional to the input size, so glahah is considered to be a data parallel
operation.

As we observed in our discussion of locality anangitarity above, the availability of full
concurrency does not imply that the best algorithitisuse it all. The Schwartz
algorithm showed that foregoing concurrency toease locality and reduce
dependences with other threads produces a betidt.imdeed, one of the best features
of data parallelism is that it gives programmeesifdility in writing scalable parallel
programs: The potential parallelism scales withgize of the input, and since, usuatly,
>> P, programs must be designed to process more dafagmessor than one item. That
is, the program should be able to accommodate wliaparallelism is available. (It has
been claimed that writing programs as =P leads to effective programs because
processors can be virtualized, i.e. the physicatgssors can simulate any number of
logical processors, leading to code—it’s claimedatt#mdapts well to any number of
processors. This is not our experience. Virtuatjzinocessors leads to extremely fine
grain specifications that miss both the benefitohlity and the “economies of scale” of
processing a batch of data. We prefer solutiores$ikhwartz’s that explicitly handle
batches of data.)

Task Parallelism

The broad classification of task parallelism apptie solutions where parallelism is
organized around the functions to be performeceratan around the data. The term
“task” in this case is not to be contrasted necégga “thread” as we normally do,
because the emphasis is on the functional decotigrgsivhich could be implemented
with either tasks or threads.

For example, a client-server system employs taskllpism by assigning some tasks the
job of making requests and others the job of sergicequests. As another example, the
sub-expressions of a functional program can beuetadl in any order, so functional
programs naturally exhibit large amounts of tastalpelism. Though it is common for
task parallel computations to apply an operatiosiralar data, as data parallel
computations do, the task parallel approach beca®gsable when the context in which
the data is evaluate matters significantly.

The challenges to task parallelism are to balalneeviork and to insure that all the work
contributes to the result. In many cases, tas#ligtism does not scale as well as data
parallelism.

Pipelining

Pipelined parallelism is a special form of taskgtlatism where a problem is divided into
sub-problems, which can each be operated on indepdly, and where there are
multiple problem instances to be solved. At aninpio time, multiple processes can be
busy, each working on a sub-problem of a diffegrnblem instance. As is familiar with
bucket brigades, assembly lines, and pipelinedga®ars, the solution is to run the
operations concurrently, but on different problestances. As the pipeline fills and
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drains, there is less than full parallelism, asdpportunities for concurrency increase
(fill) and then diminish (drain). A more cruciabise is the balancing of work of each
operation. For pipelining to be maximally effectitiee operations (stages) must
complete in the same amount of time. Pipeline perémce is determined—even for
pipelines that are not clocked—nby the longest mgsitage. Balancing the stages equals
out the work, allowing all stages to process atntla&imum prevailing rate.

Though pipelining is frequently thought of as agtlatism approach for cases defined by
only a fixed length sequence of operations, itegrimiore generally. The number of
(potential) stages is often determined by the igmé. In such cases data dependences
entail receiving input value(s) from one or morgghbors, computing, and then yielding
the result(s) to opposite neighbor(s). The schenmatrigure 3.4 illustrates the idea.
Clearly, in addition to maximizing the use of thegessors, such computations are
challenging in terms of avoiding stalls causedibg fjrain interactions.

PP L
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Figure 3.4. Schematic of a 2-dimensional pipelined computatstrowing computation (boxes) and data
flow (arrows). External data is presumed to beahit present; on the first step only the uppet-lef
computation is enabled.

Summary

In this chapter we have introduced many concefslyor The goal has been to become
aware of opportunities and challenges to paralieamming. Because the concepts
interact in complex ways, it is not possible to erstand them completely when treated
in isolation. Rather, we have introduced themrah iquick, albeit limited, overview of
the issues, and have prepared ourselves for theehagter where we will develop
algorithms and see first hand the consequencémsé tcomplexities.

Exercises

1. Intransactional memory systems, a thread optioaillyi assumes that it makes no
references to shared data. The transaction @timemitssuccessfully if there
was no shared access detected, or the transacti®ibackif there was. Identify
the sources of performance loss in a transactimeatory system, classifying
each as overhead, contention, or idle time.

2. Should contention be considered a special caseashead? Can there be
contention in a single-threaded program? Explain.

3. Should idle time be considered a special case efh@ad? Can there be idle time
in a single-threaded program? Explain.
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4. Does a chess program provide data parallelisms&rgarallelism?
5. Does quicksort provide data parallelism or taslajpalism?

6. Describe a program whose speedup does not inongismcreasing problem
size.

Bibliographic Notes
Schwartz’s algorithm has been discovered latehbgreticians who have given it a

different name. [Need to look up this namkT. Schwartz, "Ultracomputers”, ACM
Transactions on Programming Languages and Sys&#)s484-521, 1980
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Chapter 4. General Algorithmic Techniques

To become effective programmers, we need to le@nogramming language and how to
use it to express basic problem solving technidjigesbuilding data structures. We must
learn how to analyze programs to determine theining time and memory usage. These
will be topics for future chapters. For now, perhi#ige most important understanding to
acquire is the ability to “think about the compidat‘right’.” That is, we want to think
about solving problems in a way that matches virglllanguages and computers available
to us. In this chapter we learn the ‘right’ waythink about parallel computation.

What Is The Opposite of Sequential?

Many researchers have claimed that the best wtnjrtkh about parallel computation is to
think about the most parallel solution imaginatdsuaming an unlimited number of
processors. They acknowledge that unlimited cap#&citot realistic, but—their
argument goes—it is possible to “scale back” pafthe computation to be sequential,
and arrive at an ideal solution.

So, for example, return to the problem from Chafter which we want to count the
number of 3s in an arrad. Using the maximum parallelism approach, we expect
solution in which one processor initializes the movalue

count = 0; Performed bypg
and then processagrassigned to thid' data element, performs the operations
if (A[i] == 3) count = count + 1; Performed by

Such a specification makes sense from an individatd element’s point of view,
perhaps, but not when viewed more globally, becauseessors can collide when
referencingcount . Though advocates of the unlimited parallelismrapph have
addressed the issue of collisions with everythiogf“It's an error” to “It's OK, thanks
to special (Fetch & Add) hardware,” we know fronr discussion in Chapters 1 and 2
that there are difficulties that can arise withséirig parallel computers:
e races can occur caused by the action of other gsoce changingount
between the time procesgpraccesses it to get its value and the timgpdates it
» the possibility of races implies thedunt must be protected by a lock
» the need for a lock implies the potential for l@datention whem\ contains
many 3s and many processors attempt to updataultsineously
¢ lock contention results in lock access being segdl
» serializing locks implies that for an array of mg&'s the execution time i©(n)
regardless of the number of processors available.
There may be different “unlimited parallelism” stiduns, but this is an obvious one; it
does not lead to a very parallel result.
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The great body of literature on unlimited parafielicomes from a study of parallel
models of computation collectively known as PRAMs;onymic for Parallel Random
Access Machines, though many other unlimited paliath approaches have been
invented as well. The problem with these approach#sat finding parallelism is usually
notthe difficult aspect of parallel programming. Rath@nd this is our motive for
introducing the topic here—parallel programmingémnerally concerned witihe
consequences of parallel threads interactiag the bulleted items just illustrated. These
are the dependences discussed in Chapter 3. Tiseydren processors must access
shared resources and when processors contendébth@refore must wait on, shared
resources. Thread interaction influences performascmuch as the amount of
concurrent work embodied in a problem, often maxel® be effective parallel
programmers, we need to focus on the right pattt@problem, and that is on the
interactions between parallel threads.

Blocks of Independent Computation

If dependences between interacting threads agnéisant problem, then the ideal
parallel computation must be one composed of lalgeks of independent computation
with no interactions at all. Such computations ®X8&TI@home, the Search for Extra
Terrestrial Intelligence, is typical; independeotputational tasks are downloaded to
participants’ idle PCs, computed, and the reselisrned to the server, which compiles
the results. Other tasks from Monte Carlo simuregito integer factorization have these
same features. They may be ideal, but they aréypmtal; nearly all parallel
computations require that threads interact, anéitheunt of interaction is correlated
with the amount of parallelism.

General parallel computations, though more comf@itastill benefit whenever they can
exploit the blocks-of-independent-computation siggt Our Count 3s solution from
Chapter 1 used this approach. The final solutiaw @) partitioned the array among
several threads, allocated a local varigisleate_count to each thread to record
intermediate progress, and at the end combinelbtiaéresults to compute the global
result. The application of the principle of bloaksindependent-computation is evident.
Further, our initial tries at solving the problerens largely aimed at neutralizing the
consequences of thread-to-thread dependences:wacesvoided with locks, contention
was removed with the private variables, false siganias avoided with padding, etc. And
as the experimental data showed, the program peefbr This is one example of many
that we will see of an important principle:

Guideline #1.Parallel programs are better designed when th@hasize (large) blocks
of independent computation that minimize the imtesad dependences (interactions).

Though our final Count 3s result was quite sattsfac it was not actuallgcalable that
is, capable of executing well for any amount ofgtlatism. True, the number of threads
was a parameter, so if the number of parallel me@eP is greater than one, then the
solution partitions the array into blocks, dnof these can execute concurrently. It is
fully parallel during the scan of the data arrayt Biere is potential for lock contention
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during the final step of combining tipeivate_count variables. IfP is not likely to

be a large number, then any serialization duedk émntention is not likely to be a
serious problem; iP could be large, however, lock contention couldvhaerformance.
So, to make the solution more scalable, we comthi@private _count variables
pairwise in a tree, using the tree addition alganit This solution gets good performance
using any number of processors, though wem/log n the final combining tree may
be deeper than necessary, implying that using sty pdcessors is hot making the
computation faster. (We discuss such tuning iskesin Chapter 5.)

Guideline #2.Just as algorithms are written to be independetiteonumber of input
values,n, parallel algorithms should also be written tarmependent of the number of
parallel threads?, and be capable of improved performance usingiaddl processors.

Finally, reviewing this last version of Count 3srgautation, notice that it is really just a
simple variation of the Schwartz computation. Rttt the Schwartz algorithm was
designed to add array elements, but testing ahlyingthose elements that equal 3 is a
trivial variation. The Schwartz algorithm procesadsock of elements locally, as our
Count 3s program does. And to produce the finalltéise Schwartz algorithm uses a
tree to combine the intermediate results, as oased Count 3s solution does. Finally,
the range of values over whiéhcan vary is the same, as are the considerationsiiog
more or fewer processors.

In summary, as we create parallel algorithms, weattempt to formulate them as
blocks of maximally independent computation, wHanaximally independent” means
that we try to reduce the interactions (dependgram@sng the threads. This is a
challenging task, and we will often find that owsbattempts do not attain our
performance goals. Fortunately, there are manyntgaks like Schwartz’'s approach that
give us direction and ideas for solving problempanallel.

Assigning Work To Processors Statically

The basic way to assign work is to statically assigta to processors, and require each
processor to compute on the data it “owns.” Tachhique works for a wide variety of
situations, and is the subject of this sectionis Tithe data parallel approach, because
we use the data as the basis for organizing theuatation.

Basic Block Allocations

Since our goal is to exploit locality, it followkdt contiguous portions of a data structure
should be allocated together on the same procg3dw .exceptions to this thinking are
treated below.) Thus, 1-dimensional arrays aregasslito processors in blocks of
consecutive indices. For 2-dimensional arrayscatiag by 2-dimensional blocks, that
is, consecutive indices in both dimensions, geheledds to efficient solutions. The
reason 2-dimensional blocks tend to make more dbaseallocating, say, whole rows, is
that blocks can often reduce communication. Fomgte, for computations that rely on
neighboring values, the so callstncil computationsuch as

B[i,jl = (A[i-1,j] + A[i,j+1] + Afi+1,j] + A[i, j-1 N/ 4.0;
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there is a surface-to-volume advantage, as caeéeis Figure 4.1. That is, a squarish
block of array values has the property that thenelgs that must be referenced by other
processors for the stencil computation are on dye ésurface), and as the size (volume)
of the block increases, the number of edge elenggntgs much more slowly, reducing
communication costs. This small example isn’t \@ngmatic, but the difference for a
32x32 block is 128 versus 2048 values reference@dymunicated to) other
processors. For highdrdimensional arrays, allocating dslimensional blocks is
frequently used for the surface to volume advantage but almost as common is to
allocate only two of the dimensions and keep tihewdimension(s) allocated locally.
The latter choice is often the result insufficigntiany processors, or extreme aspect
ratios.

A
HEEEEEEEEEEEEEEE
P
4 F,
v /
FA I T T O O I
AN XA AN A N AA KA S

LITTTITTTITTITITITTITIT ]
(a) (b)
Figure 4.1: Two allocations of a 16x16 array to 16 process@p2-dimensional blocks and (b) rows. For
the processor with shaded values to compute a restegeighbor computation requires communication
with other processors to transmit the hatchalties. The row allocation requires twice as maaiyes to
be transmitted, and because of the surface to wwhawantage, the blocked allocation improves as the
number of local items increases.

The Specifics of Block Layouts

Our goal, when allocating the array’s blocks, ib&tance the data assigned to each
processor, because the work tends to be proportiotlae number of data items.
Occasionally, everything “divides perfectly,” anaich processor is assigned the identical
amount of work; and sometimes partitioning canibgkfied by making the array
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dimensions multiples of the number of processous.mBore often the problem size and
therefore the size of the arrayss c, is dictated by other considerations. In suchase
there are various ways to allocate the arraysanksl.

AssumeP = uy, thatu does not divide, and thatr does not divide; that is, the divisions

r=a;u+e;ande, >0
c=ayV+e ande, >0

have nonzero remainders. To discuss allocatiohs, le

r=a;'(u-1) +e;' ande;' > 0
c=a(v-1) +&' andey' > 0

The two most obvious schemes can be called “Db@dsion” and “Ceiling-Floor,” see
Figure 4.2:

Direct Division: Allocate blocks ofy' x a,' elements tou-1)(v-1) processors,
allocate blocks o&' x ay' to (v-1) processors, allocate blocksagfx &' to (u-1)
processors, and allocate a bloclep &' to one processor.

Ceiling - Floor: Allocate blocks ofy' x a,' elements t@,'e,’' processors, allocate
blocks ofa;' x (a2’ - 1) elements tov(- ') processors, allocate blocks af'(- 1)

x @' to (U-e) processors, and allocate blocasg ¢ 1) x (a2’ - 1) elements to the
remaining (1 - e;)(v - &') processors.

The allocations are the same in their most imporespect, the size of the largest block,
a;' X a;'. This means that if a computation is strictlygdional to the number of local
data items, both schemes have the same worstHtaaever, the Direct Division is

likely to haveu+v-1 processors that have significantly less wortdghan the others,
and so are more likely to be idle, waiting on oshtercomplete. Such imbalance often
wastes parallel resources. The Ceiling - Floorcallion has the advantage that the
number of elements in each dimension differs by onle, making the quantity of data
assigned more balanced compared to the DirectiDivespproach. The work is
distributed somewhat better. Without additionabimfiation about the characteristics of
the problem, the Ceiling - Floor is slightly better

Sensitivity to Processoipg: Independent of which allocation is chosen, itegssble to
assign the minimum allocation of data to procepgor his is becauspg is often given
additional tasks, such as managing /0O, servinesoot of a combining tree, etc.
(These can generally be thought of as controllections, relative to the CTA model of
Chapter 2.) By allocating it the least wopk,is available to perform the additional duties.
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Figure 4.2: Two array-to-processor allocations for axL33 array on 16 processors; (a) Direct Division,
(b) Ceiling - Floor.

Fluff or Halo Buffers: Computations like the 4-point nearest neighbanate
B[i,jl = (A[i-1,j] + A[i,j+1] + Afi+1,j] + A[i, j-1 1)/ 4.0;

require values stored on other processors. Fdsltwk allocations of the type being
discussed Figure 4.1(a) shows thatifandj in the top row of the allocation, references
to A[i-1,j] are off processor to the north, and similarlytfer other edge elements of
the block. Such nearest neighbor references, wdrielyuite common in scientific
computations, are best solved with the followingrapch:

e get the necessary values of the adjacent arrakdfoem the other processors
e store the values in in-position buffers arrangexliad the local data block
« perform the computation on the (now) entirely lodala values

The buffers are known dluff or halo buffers and are allocated in their proper position
relative to the other elements in the array bleee Figure 4.3.

Several advantages recommend this approach. ¢, the fluff is filled, all references
in the computation are local. This means that theynprocessor-dependences implied
by a loop performing the stencil computation oueiagray block have been merged into
b dependences, if the computation referetcesighboring processors. The result is a
large block of dependence-free code to executeh&iyrthe statement uses the same
index calculations for all referencesApthat is, they can be performed in a single loop
having no special edge cases. Finally, moving weoalldata to the local thread at one
time offers the opportunity (generally available)atch the data movement; that is, the
whole row or column of an adjacent processor, geiséored in one or few cache lines,
might be moved at once. This is a significant atkg®, as noted in Chapter 2, because
typically data transmission takgst dt, seconds to transmndtbytes, wheré, is overhead
andt, is the time per byte. Batching communication sakiesmultiple overhead charges
from multiple transmissions, and any additionaltimgi times caused by them.
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Figure 4.3: The fluff (shaded) for an array block showing ttom-local values on adjacent processors that
must be moved to fill the fluff; once the flufffiled, the stencil computation is entirely locéThe
“missing corners” are not used, but they are atldt#@o simplify array index calculations.)

Cyclic and Block Cyclic

As effective as block allocations are, they areamdimal for all algorithms, because of
load balancing considerations. For example, asiored in Chapter 3, the well-known
LU decomposition algorithm begins with all rows armlumns participating in the initial
step. As the computation proceeds, however, a ralxcalumn are completed with each
iteration, leading to the schematic shown in Figue When all of the rows and columns
allocated to a processor are completed, it becdaatesin the figure, 3 of the 4
processors are idle for half the computation. Véhauld be done?

One solution is to reallocate the data periodicdillying the computation, but this
requires moving nearly all of the active valuestioer processors, which is considered
extremely expensive. The more practical solutiaio igse a cyclic or block cyclic
distribution. The “cyclic” idea is to assign cong#ee items to processors in a round-
robin order, or as it's often described, as if ghepbut cards. Thus a cyclic allocation of
array elements proceeds through the array in,reaymajor order, allocating elements
to processors. Because keeping track of individualy elements is burdensome, it is
more common to “deal out” consecutive subarratraegy calledblock-cyclic
allocation.

Figure 4.4: Schematic diagram of the LU Decomposition algonithlock-assigned to four processors; the
final result is a lower (black) and an upper (whiteangular matrices; active computation is graygolumn
and row are completed and added to each resulbanaspectively, in each iteration.
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Figure 4.5 shows a block-cyclic allocation in whidnsecutive array blocks are assigned
to separate processors cyclically. The figure shesveral features of block-cyclic
allocations: A block’s dimension (called tbkeunk sizedoes not have to divide the
array’s dimension; the block is simply truncatedck processor receives blocks from
throughout the array, implying that as the compomaproceeds, completed portions will
be resident on each processor, as will not-yet-deteg portions. Figure 6 shows the
schematic allocation of Figure 5 as it would appeEat way through an LU-type
computation. Notice how well the remaining worlb&anced across the processors.

Figure 4.5: Block-cyclic allocation of 3 2 blocks to a 14 14 array distributed to four processors
(colors).

The block-cyclic approach has the great advanthgelancing the work across the
processors (see Figure 4.6), but this does not eaitheut costs. The most obvious cost
is the potential of block-cyclic allocation to colicate the algorithm. If the computation
uses the spatial properties of an array—for examplgs—then because block-cyclic
breaks some of these relationships, special caag$ave to be added to the algorithm.
This effect can sometimes be neutralized by pickimgnk sizes to create easy-to-work-
with patterns in the allocation. Another commomamendation is to allocate relatively
large blocks, say 64 64, as a means of amortizing the overhead ofgheial checking.
Of course, allowing the blocks to become too lgrg®bably means that the work will be
less evenly allocated, and that the unbalancedatabse “end” of the computation will
occur sooner and last longer. It is a delicate enadt balance the competing goals of a
block-cyclic allocation.

Finally, notice that the block allocations discukabove and the block-cyclic allocations
discussed here do not exploit locality equally weWlen when block-cyclic uses large
blocks. In general, for a given number of processmd array size, block-cyclic will use
many smaller blocks whereas the block approachusdla single larger block per
processor. This means for computations requiriragest neighbor communication, e.g.
stencils, the surface to volume advantage of bladksesult in much less
communication. (The extremely small blocks of Feydr5 emphasize this point since
every element is on the surface!) Of course, fonmatations compatible with a single
allocation strategy, it is an easy matter to chdbseight one. But, for cases where
different phases of the computation would beneditf different allocations, it can be
difficult to find the right compromise.
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Figure 4.6: The block-cyclic allocation of Figure 4.5 midwdyaugh the computation; the blocks to the
right summarize the active values for each progesso

Assigning Work to Processors Dynamically

In many cases it is not possible to adopt a fixedwassignment and stay with it.
Examples include algorithms that create tasksegsgihoceed, algorithms whose tasks
have highly variable execution times, adaptive algms that apply their computing
power where the solution needs the greatest wick|rethese and similar cases the work
queue strategy may lead to the best assignmeiingbatation.

Work Queue

A work queue is a first-in first-out list of tasksktriptors. If as a computation proceeds
new work is generated, it is packaged into a ta&sicdptor and is appended to the work
queue; if as computation proceeds work is complatetla processor becomes available,
it removes a task descriptor from the queue anéhbegork on it. The commonly used
names for these two roles gme@ducerandconsumer

As an example of a trivial task that can be exm@$s work queue form, consider the
3n+1 conjecture (or Collatz Conjecture), which pragman affirmative answer to the
question “For any positive integas, does the process defined by

a1 +1 a1 odd
ai =
a1/2 a.Leven

converge to 1?” (Settp://mathworld.wolfram.com/CollatzProblem.html.) Though
this conjecture is known to be true for all integlerss than 2>, we will program a
search of the integers as an example, becausgsitétes several aspects of work queue
technique.

Our solution postulates a work queue containingniad integers to test. We initialize
the queue to the fir§ positive integers:

void init(work_q: q) { //setup globally-allocat ed queue array
inti;
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for (i=0; i<P; i++) {
q[i] = i+1;
}
)

The integers are our task descriptors. As a geperatiple, it is wise to make the task
descriptors as small as possible, while making teelfacontained.

A worker thread, of which we assume thereRyrevill consume the first item from the
work queue, ad@ to it, and append the result to the work queulee rRtionale for
addingP is thatP threads will be checking integers at once, so acing byP has the
effect of skipping those that are (logically) beprgcessed by other threads. (The other
threads may not all be computing yet, but they ldll) The worker thread has the
following logic:

int tester(int: limit) { //test the conjecture
int a; /ltest number
intn; /lcount number of rounds of testing
while (n < limit) {
n=0; /linitialize
a = consume(); /lIremove the first element of work q
produce(a+P); /Iplace new item on work q
while (a!=1 && n < limit) {
if (even(a))

a=alz2
else
a=3*a+1;
n++;
} /I exiting w/a==1 confirms converge
} /I exiting means limit was exceeded
return a; /I tell what number is the culprit

)

The tester takeslamit  as a parameter. The processing loop is controlesl!= 1

and byn < limit . Because we think the conjecture is true, we edibecprocessing
loop to exit witha == 1 , but if there were an integer for which the cohjee is false,

the loop will exceed thiémit . If thelimit  is reached the worker will stop and return;
otherwise it continues checking until it is evetijupreempted by the parent routine. Of
course, the parent, receiving a number back frevor&er, cannot know if it is a counter-
example to the conjecture, but it can test furtbesee if the number is actually
convergent, but that tHenit ~ was set too low. This simply requires increashnggize

of limit  and rechecking.

Consider the behavior of the work queue. Firsticeahat in effecP subsequences are
being checked simultaneously, but they will not agmin lock step because the amount
of work required of each check is different. Foample, with four processors the queue
might transition through the states at the begigpnin

Work Queue Active Processors [task]
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Po[1]
Po[2]
Po[2], pa[3]
Po[2], Pul3], p2[4]
p0[5]1 p1[3]! p2[4]
0 p0[5]1 p1[3]! p2[4]! p3[6]

illustrating that because processing 1 is triypalmight return to the queue to get the next
value, 2, before any of the other processors giawtessing 2 is also easy, so it is back
again quickly. Further, notice that workers do metessarily process the same
subsequence. Indeed, if the timing works outfahe processors could be working on
the same subsequence at once. Summarizing, altfmughork queue is regimented, the
way its tasks are processed can accommodate aimg t@haracteristics.

One important detail has been ignored in the wockele. It is the matter of races
resulting from multiple threads referencing the kvqueue simultaneously. We have
assumed that the two procedumamsume() andproduce() contain the appropriate
synchronization apparatus. Exact details of howotwstruct the appropriate protection
are presented in the next chapter.

The Reduce & Scan Abstractions

The success of Schwartz’s algorithm for additiod &ount 3s computations is not
accidental. Operations of adding and counting agtaynents are instances of a general
form of computation known agduceandscan They are well understood, and so,
efficient solutions are known. By recognizing swdmputations, we can avoid working
out their details each time and simply apply stathdalutions, such as Schwartz’s
algorithm. We can save our serious thinking foisthparts of a computation that need
brain power.

Reducewhich can be thought of as short for “reducedperand data structure to a
single value by combining with the given operattigs been a part of programming
languages since the creation of the array langd#&de The operators are often limited
to the associative and commutative operatemts multiply, and, or, maxandmin, but
many operations work. Though some languages halterbteduce operations, many do
not, and so we will create our own general routiased on the Schwartz approach. To
simplify our discussion of reduce, we adopt theatioh operator// operand as in+ //

A, to describé\'s elements being reduced using addition. We migite the Count 3s
computationt+ // (A == 3) , and expect to implement it by instantiating aegah
Schwartz solution with implementations of theserapens.

Scanis a synonym for “parallel prefix,” mentioned im&pter 1. Scan is related to reduce
in that scan is the reduce computation in whichinkermediate values are saved,
assuming a specific order of evaluation. ThusafoayA with values

4 2561

53



the plus-scan oA is

4 6 11 17 18

Reduce is simply the final value produced in a s@afe adopt the notaticoperator\\
operand as int WA ) As with reduce the associative and commutatperations
add, multiply, and, or, maxandmin are common, but many other also computations
work.

To illustrate using the reduce and scan abstraztimcompute the bounding-box
enclosing points in the plane. L&te an array ofi points of the form,

type planePt = record
X . int;
y @ int;

end;

then the sequential computation

maxX = A[0].x;
for(i=1,i<n,i++)

if (maxX < A[i].x)
maxX = A[i].x;

}
maxy = A[0].y;
for(i=1,i<n,i++)
{
if (maxyY < A[il.y)
maxY = A[il.y;

}
minX = A[0].x;
for(i=1,i<n,i++)

if (minX > A[i].x)
minX = A[i].x;

}
minY = A[0].y;
for(i=1,i<n,i++)

if (minY > A[il.y)
minY = A[il.y;
}

for computing the four defining values for the bding box is equivalent to four
applications of reduce,

maxX = max//A.x
maxY = max//A.y
minX = min//A.x
minY = min//A.y
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which as we saw in Chapter 1 can be efficientlylemented in parallel. Of course, these
four can be merged into one implementing procecioéhat there is only one pass over
the data and only one combining tree.

Generalized Reduce, Scan and Vector Operations

Because reduce and scan are such effective alimtisdr thinking about parallel
computation, we advocate using them, and develdpiolg for their convenient
application. Because there are so many programayisigms in use, we describe how to
construct an implementation, rather than givingecsic one. We begin the section with
reduce, and move on to scan. Finally, we obsemetlie concepts can be applied to
general vector operations.

Structure for Generalized Reduce

To build a general reduce or scan implementatimualize the Schwartz algorithm, as
abstracted in Figure 4.7. Overall, the figure shtagal computation performed at the
leaves of a combining tree, which emits the reductesult at its root. Looking more
closely at the diagram, we see that a data strictlled the tally is used together with
four functions, two applied on each processor:

init() initializes the process on each processor, satiinetally data
structure recording the local result as the regheréorms the accumulation
operation

accum(tal, val) performs the actual accumulation by combining the
running tally with the operand value

Once the local results are found, they must be awedbto form the global result, using
two more functions:

combine(left, right) combines two tally values to create a new tally
value
reduceGen(root) takes the global tally value and outputs the abmesult
for reduce.

For example, to compute/A , theinit() routine would initialize a tally variable to

0; theaccum() routine would add its tally to an operand valiregdombine() would
add two local tallies anceduceGen() is a noop that simply returns the result.
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| reduceGen (roc |

| combine (left, right |

| combine (lefi right) | | combine (left, right |

| combine (left, right | | combine (left, right | | combine (left, right | | combine (left, right |
| local | | local | | local | | local | | local | | local | | local | | loca |

tally:

B ’ .

init(j accum(tal, véi) accum(tal, \’/él) ccam(tal, val)

operand: A 1a A A

Figure 4.7: Schematic diagram of the Schwartz algorithm usdthplement user-defined reduce. The
local operations are abstracted in the box; fundtid() sets up the tallyaccum() combines the tally
and the operand data structure; outside the bdkgicombining treesombine()  forms a new tally from
two others, andeduceGen() produces the final answer from the global tally.

For the simple operation ef/A , the four-function formulation is excessively geaig

but this structure is essential in more complexi (@ore powerful) cases, as illustrated in
a moment. The key to understanding the roles ofdbereduce functions is first to
recognize that the tally data structure need ne¢ lilae same type as the operand data,
and second that the four routines take differegianent types. So, for example, imagine
a user-definedecondMin // A that finds the second smallest element in an array
useful perhaps for an array of non-negative numivérsmany 0s. In this case the tally
data structure would have to be a two-element ceoparray storing the smallest and
second smallest values. Timé() function would set-up the tally, initialized toethk
infinity for the operand data typaccum() would compare an operand value with the
tally elements recording the two smallesimbine() would find the two smallest of its
two tally arguments, and tlieduceGen() would return the second smallest value as
the result. When called at the right points in eafj@l procedure implementing
Schwartz’s algorithm, they produce a paradletondMin()  solution. Figure 4.8 makes
this logic precise.
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type tally = record

sm1 : float; /Ismallest element
sm2 : float; /Isecond smallest
end;
void init(tally: tal) { /Isetup globally-allocated tally

tal.sm1l = MAX_FLOAT,;
tal sm2 = MAX_FLOAT,;

void accum(float: elem, tally: tal) { //local acc umulation
if (tal.sm1 > elem) {
tal.sm2 = tal.sm1;
tal.sm1 = elem;

elseif (tal.sm2 > elem) {
tal.sm2 = elem;

}
void combine(tally: left, tally: right) { //combine into "left"
accum(right.sm1, left); /Iby accumulating right
accum(right.sm2, left); /Ivalues one at a time

float reduceGen(tally: tal) {
return tal.smz2;
}

Figure 4.8: The four user-defined reduce functions implemensiecondMin reduce. The tally, globally
defined on each processor, is a two-element record.

Structure for Generalized Scan

Generalized scan applies the same concepts asafiee@reduce. The primary
difference is that after the combining is complée “parallel prefix” values must be
passed back down the combining tree. That is,deraio complete the prefix
computation on the local values, an intermediateevrom the combining tree will be
needed by each processor. (Refer to the para#iékmliscussion in Chapter 1 and
review Figure 1.2.)

The generalized scan begins like the generalizeiaces and there is no conceptual
difference in the three functiomsit() ,accum() andcombine() for the two
algorithms. However, the scan is not finished wtienglobal tally value has been
computed. Rather, tally values must be propagateddhe tree subject to the constraint
that

for any node, the value it receives from its paistribe tally for the values that
are left of its leftmost leaf

which because we are computing on blocks, mearfashéem in the leftmost leaf's
block. This causes us to calit() to create the value as the input from the logical
parent of the root, because there is no tallyHeritems to the left of those covered by the
root. Each node, receiving a value from the paretdys it to its left child; for its right
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child, it combines the value received from the tfild on the upsweep with the value
received from the parent, and sends the resufigtoight.

When the tally value is received at a leaf, it mhesstombined with the values stored in

the operand array to compute the prefix totalsctviaire stored in the operand position.
In Figure 4.9 these operands are shown schemgtinathe box at the bottom. Thus, the
scanGen() procedure produces the final result.

| combine (left, right |

| combine (left, right | | combine (left, right |

| combine (left, right | | combine (left, right | | combine (left, right | | combine (left, right |
| local | | local | | local | | local | | local | | local | | local | | local |
parent tall v

scanGen(tal, val) scanGenfa'I, sefnGen(tal, val) ...

Y T 4 Y T

operand: A ja i i

Figure 4.9 : Schematic of the scan operation. The first pathefalgortihm is simply the generalized
reduce, schematized in Figure 4.7. Once the glaliglis found, prefixes are propagated down tkee.tr
When a prefix arrives at a leaf, the local operatipplies thescanGen() function, and stores the result
in the operand item.

To illustrate the operation of user-defined scamagine an arraj of integers from the
sequence 0, ..k-1. The scasameAs \\ A records in positiod[i]  the number of
elements in the firstmatchingA[i] . We use as a tally an arraylogélements, which is
initialized to 0s; the accumulate function incremsethe array item count for the operand
value; combine function adds the two arrays; aedsttan generator performs an
accumulate (initialized this time by the prefixea@d from the parent), and stores the
count for the item found. Figure 4.10 shows thecfioms that realize this result. (Notice
that the tally array at the end is a histogranttierarray.)
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void init(tally: tal) { /Isetup globally-allocat ed array
for (i=0; i<k; i++) {

talfi]= 0;
void accum(int: elem, tally: tal) { /Nocal a ccumulation
tal[elem]++;
void combine(tally: left, tally: right) { //combine into "left"

for (i=0; i<k; i++) {
left[i] += right[i];

}
int scanGen(int: elem, tally: tal) { [ffinalizing s can
accum(elem, tal); /laccum w/parent tally
return tallelem]; /Istore running count

}

Figure 4.10: User-defined scan functions to return the runmiognt ofk items; the tally is a globally
allocated array ok elements.

Structure for Gneralized Vector Operations

The foregoing discussion shows that instantiatirggltasic structure of reduce and scan
with custom functions can create efficient paradlgutions. But the idea is even more
general. There is no need that the operations tactate from left to right;”

computations that can be performed on blocks df tiett can be merge to produce a
larger solution are good candidates for applying shme structure. We illustrate the idea
by computing the longest run of positive valuesesdan array. So, for the sequence

-1.2 0.0 05-0.1-0.20.1 1.1 15 2.1 1.0 0.0-0.1

the computation would return 5.

To formulate a local block computation to find tbagest run of positive values, observe
that the run could straddle the boundary (or botiadpbetween local blocks. For that
reason, we select a tally that has three values

type runLen = record
atstart : int;  // count of positives from left
longest : int;  // longest (interior) run found so far
current :int;  // length of current run
end;

that will count the number of positive values begng at the start of a blockistart

if any, the longest run properly contained in theck, longest , and the length of the
current runcurrent . This last variable will have the effect of recoglthe length of
the positive run extending to the right end of bifexk, if any. Because the block will be
processed left to right, it will be convenientitedt a sequence that completely spans a
block as having an undefinémhgest andcurrent values. So for example, dividing
the foregoing example among four processors
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-1.2 0.0 -05 -0.1 -IJ.Z 01 111521 1.0 0.0-0.1

results in the tallies

atstart: O atstart: 0 atstart: 3 atstart: 1
longest: 1 longest: 0 longest: - longest: 0
current: 0 current: 1 current: - current: 0

Notice, the third thread has the undefined valoéatsitally.

To build the four reduce functions, initialize ttadly items to undefined (represented as
-1), but to simplify the combining logic later, seirrent  to O.

atstart: -1
longest: -1
current: 0

Accumulating begins by counting positive itemsatatart  until the sequence is
broken; thereafter, it counts positive itemgumrent , and records the length of the
runs inlongest . Thus,accum() must separate the initial sequence from the athers
and for that it requires a cascade of logic as shiovigure 4.11.

Given two tallies, their combined tally must hanftiar cases. These are
* both blocks span only positive elements: the respdins positive elements, so add
the right block’satfirst to the left block’satfirst ~ , the blockslongest
andcurrent  are the same
« the left block spans only positive elements: tightrblock’satfirst adds to
left's atfirst ~ , and the right block'®ongest andcurrent  apply
» the right block spans only positive elements: dddright block’satfirst to
the left block’scurrent |, and the left block’atfirst andlongest apply
< both blocks have non-positives; the left blookisrent  plus the right block’s
atfirst could be longer than eithemgest |, the left block’satfirst and
the right block’scurrent  apply
We usdongest == -1 as our test for a positive only block. This logic
implemented as a cascaddfof-statements.
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longest=current |

Figure 4.11: The accumulate logic. The “first time?” test isemrhenatfirst == -1 ; the “still 1st?”
test is true whefongest == -1

Finally, the global result must pick the largesttsfatfirst |, longest andcurrent
values. If the longest sequence starts at the begjnthen the preceding logic ensures
thatatfirst will record its length; if the longest sequencéeexs to the end, the
current  will record the length. Otherwise the longest sse is somewhere in the
middle, andongest  will record the value.

See Figure 4.12 for the exact logic.

These are powerful techniques that have efficianalfel implementations.

void init(runLen: zero) { /Isetup globally-allocat ed record
zero.atstart = -1;
zero.longest = -1;
zero.current = 0;

void accum(int: elem, runLen: z) { //local accumu lation
if (z.atstart ==-1) { [[first time?
if (elem > 0)
z.atstart = 1;
else {
z.atstart = 0;
z.longest = 0;

}

else {
if (z.longest == -1) { /Istill first time ?
if (elem > 0)
z.atstart++;
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else
z.longest = 0;

else {
if (elem > 0)
z.current++;
else {
if (z.longest > z.current)
z.longest = z.current;
z.current = 0;
}
}
}

void combine(runLen: left, runLen: right) { //combi
if ((left.longest == -1) && (right.longest ==
left.atstart = left.atstart + right.atstart;
else {
if (left.longest == -1) {
left.atstart = left.atstart + right.atstart;
left.longest = right.longest;
left.current = right.current;

else {
if (right.longest == -1)
left.current = left.current + right.atfir
else {
left.longest = MAX(left.longest,
left.current + right.at
right.longest);
left.current = right.current;
}
}
}

int reduceGen(runLen: z) {
if (z.longest < z.atfirst)
z.longest = z.atffirst;
if (z.longest < z.current)
z.longest = z.current;
return z.longest;

}
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Figure 4.12: The four reduce/scan functions for the “longestifdge run” computation.

After arrays, trees must be the most import wagpresent a computation. They present
challenges in parallel computation for several saasFirst, trees are usually constructed
using pointers, and in many parallel computatiomasions, pointers are local only to one

processor. Second, we typically use trees for thgiamic flexibility, but dynamic



behavior often implies performance-bashing commnatita. Third, trees complicate
allocation-for-locality. But, challenging or notges are too useful to ignore.

Representation of Trees

Begin by noticing that we have already used treeseveral computations to perform
accumulation and parallel prefix operations. Theyenimplicit in that they derive from
the communication patterns used. So, in the redodescan primitives above, the
combine() operations were performed pairwise, with the imidiate results also
being combined pairwise, etc. inducing a treehasve in Figure 4.13. There are no
pointers; processors simply perform the approptiaee roles, and the result is achieved.
By this technique we use trees to perform globafations even when they are not the
base data structure of the computation.

— |

] ]

Bl

Figure 4.13 : Induced tree. Each processor computes on a segjoénalues (heavy lines), and then
combines the results pairwise, inducing a tredcaqirocessor 0 participates at each level inréne t

Our Guideline #1 rule, to maximize the number oféablocks of independent
computation, motivates us to use the implicit it even in cases where the base data
structure is a tree. This means that we separati®tial and the global paradigms:
Locally, we may choose to use pointers in our imm@etation, but at the higher levels of
the tree where the edges are non-local, we usentiit solution — each node simply
performs its proper tree role. Though it can be@nvenient to shift processing
paradigms, the advantage may be that it allows ugite a single-threaded solution to
the subproblem (it might already exist), and therorporate those subproblems into the
global solution.

Breadth First. Consider first trees that can naturally be enutedrbreadth first, that is,
all nodes of a level can be generated given tteem nodes. In this case we
conceptually generate the complete tree down tdethed, or pair of levels, having
nodes, one corresponding to each processor. $te ininary tree case, = 2, generate
to levell. For example, foP = 8, we generate a binary tree down to level 3hasvn in
Figure 4.14(a). WheR does not equal the number of nodes on a leve{,thi greatest
level less tha® and then expand enough of the nodes to the nedttie equaP, as
shown in Figure 4.14(b). Then, assuming the tréenels much more deeply below each
of these nodes, allocate to each processor comdsppto a hode the entire subtree
enumerated from the node. The computation is cdna#y local for the whole subtree.
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Figure 4.14: Logical tree representations: (a) a binary treeraR = 2'; (b) a binary tree whete = 6.

Example. This technique works well for problems that carrdmursively partitioned

into subproblems. For example, suppose we arelsagra game tree for Tic-Tac-Toe
(Naughts and Crosses) gamedPon 4 processors. When symmetries are considered,
there are only three initial positions, and we @xpane of these to fill out the 4 search
tasks, see Figure 4.15. That is, each processsegich the game tree descendant from
the indicated board position.

O |

Figure 4.15: Enumerating the Tic-Tac-Toe game tree; a procassmssigned to search the games
beginning with each of the four initial move seqcen

Depth First. Trees that should be enumerated by depth can ferimented in parallel
using a work queue approach. The queue is inigidlizith the root; a processor removes
a node and if that action leaves the queue enpdypitocessor expands the node, taking
one descendant as its task and appending the adhidnes queue. Such an approach
corresponds to standard iterative depth first isaleand has a structure as shown in
Figure 4.16.

Figure 4.16: Basic depth allocation of a treeRe4 processors, which are each responsible fortbeee
rooted at the node; the right-most node remainkerqueue.

Having assigned a subtree to each processor, esribiel main aspect of depth first
enumerations, the feedback from the early parte@&numeration to the later parts. This
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takes various forms including a list of nodes edjtalpha-beta limits on productive
subtrees to consider, and other measures of “@sgrA parallel algorithm will have to
adapt such feedback to the processing of indepésdérrees. For example, consider a
packing algorithm trying to minimize the area odeulby the arrangement of several
objects. A global variable recording the area efltlest arrangement found so far can be
referenced by all processors and so be used insedutiee to prune the enumeration.

Full Enumeration. Certain trees must be expanded in their entikeigommon
example is the family of K-D Trees used in grauiiaal simulations and the closely
related Barnes-Hut trees. Such trees are usedpat lookup of related elements. In the
case of gravitation simulation, 3D space is paiti¢d into octants, which are in turn
partitioned, etc. until each region contains ong @oint. This allows the points
physically near a given point to be quickly locabsdtree traversal. (Advanced
algorithms allow groups of points acting at a disgto be approximated as a single
meta-point.) Areas of high concentration can lealb¢ally deep trees.

Perhaps the best allocation for such a tree isdhealled “cap allocation,” as shown in
Figure 4.17. In the allocation tfiRenodes nearest the root, the cap, are redundantly
allocated to each processor. Additionally, a precess also allocated one of the subtrees
rooted at the bottom of the cap. As the computagtimeeeds, the cap portion of the tree
must be maintained coherently. That is, all progesmust “see” the same state, and a
locking protocol must be respected. Interaction agrthe subtrees can use a messaging
protocol.

Figure 4.17. Cap allocation for a binary tree &8 processors; the cap (shaded) and one of the “lea
subtrees” are allocated to each processor.

The cap allocation is effective primarily becauseshof the activity takes place in the
subtrees, and therefore is entirely local to agssor. Further, activity around the root is
rare, so there is little likelihood for lock contem. Finally, the availability of the root
means that interactions “crossing the root” camdégated by percolating up in the local
tree and crossing the cap locally, so as to idettié correct destination subtree.
Navigating in the destination subtree is typicaldgigned as a task to the owner. As an
additional bonus in the advanced algorithms fovigmtional simulations in which large
regions of the problem are aggregated into metatpdhe points around the root are all
meta-points, and therefore are read-only, elimngataces and locking as issues.
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Summary

Exercises

Exercise 0. Write a sequential program to perfdrendperations illustrated in Figure 3.
That is, using an imagined library operation Getlifection>, <buffer>) to transmit the
data from the neighboring threads, compute a 4tmbdémcil computation on the interior
data array A. Assume that Getlt blocks if the datdhe other processor isn’t ready; also,
assume that buffer is a separate block of memaryatated to A, i.e. you must include
the fluff buffers in your portion of the data arragd fill them manually.

Exercise 1. Generalize the longest positive rumg@m to return a Boolean mask with a
1 in the element positions for every positive vatluéhe longest run, and Os everywhere
else. This computation uses the existing functghightly modified, but replaces the
reduceGen() with scanGen() to produce the final values. There is also a rewis
required for the tally data structure. [Hint: Assaim the accumulate function the
availability of a variable, callethdex , giving the index of the element being
processed.]

Exercise 2. Revise the timing assumptions of thekwaeue example so that all
processors are working on the subsequence: 4, 8612There are multiple solutions.)

EX. Revise the tester program so that it explbigsfact that if the threads have
established that all number less tiasonverge, then no thread need check further when
a <k

Historical Context

Need in the historical section a bunch of thingsualthe PRAM, Fetch and Add, and
other one-point-per processor schemes, such as S\d&d to cite Anderson/Snyder to
emphasize that there are more fundamental reasortd tike PRAMSs than lock
contention. Cite Blelloch. Ladner and Fischer, Bgitho thought up block-cyclic—
Lennert?
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Chapter 5: Achieving Good Performance

Typically, it is fairly straightforward to reasoba@ut the performance of sequential
computations. For most programs, it suffices syniplcount the number of instructions
that are executed. In some cases, we realizenthaiory system performance is the
bottleneck, so we find ways to reduce memory usage improve memory locality. In
general, programmers are encouraged to avoid pueenaptimization by remembering
the 90/10 rule, which states that 90% of the tisngpient in 10% of the code. Thus, a
prudent strategy is to write a program in a cleammer, and if its performance needs
improving, to identify the 10% of the code that doates the execution time. This 10%
can then be rewritten, perhaps even rewritten inesalternative language, such as
assembly code or C.

Unfortunately, the situation is much more compléthyarallel programs. As we will
see, the factors that determine performance argisioinstruction times, but also
communication time, waiting time, dependences, Btgnamic effects, such as
contention, are time-dependent and vary from pralite problem and from machine to
machine. Furthermore, controlling the costs is momore complicated. But before
considering the complications, consider a fundaaiqarinciple of parallel computation

Amdahl's Law

Amdahl's Lawobserves that if Hof a computation is inherently sequential, then th
maximum performance improvement is limited to adaof S. The reasoning is that the
parallel execution timelp, of a computation with sequential execution tiffg will be

the sum of the time for the sequential componedtthe parallel component. FBr
processors we have

Tp=1STs+ (1-185) (s / P

Imagining a value foP so large that the parallel portion takes neglegiirhe, the
maximum performance improvement is a factoBofThat is, the proportion of
sequential code in a computation determines itsriat for improvement using
parallelism.

Given Amdahl's Law, we can see that the 90/10duaks not work, even if the 90% of

the execution time goes to 0. By leaving the 10% @ code unchanged, our execution
time is at best 1/10 of the original, and when we many more than 10 processors, a 10x
speedup is likely to be unsatisfactory.
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The situation is actually somewhat worse than Arigldtaw implies. One obvious
problem is that the parallelizable portion of tleenputation might not be improved to an

Amdahl’'s Law. The “law” was enunciated in a 1967 paper by Genalahl, an IBM
mainframe architect [Amdahl, G.M., Validity of tlsengle-processor approach to
achieving large scale computing capabilitiesAFIPS Conference Proceedings-IPS
Press 30:483-485, 1967]. ltis a “law” in the sasmase that the Law of Supply and
Demand is a law: It describes a relationship betwe® components of program
execution time, as expressed by the equation givére text. Both laws are powerful
tools to explain the behavior of important phenoajeand both laws assume as constgnt
other quantities that affect the behavior. AmdahBw applies to a program instance.

unlimited extent—that is, there is probably an ugdpsit on the number of processors
that can be used and still improve the performamaethe parallel execution time is
unlikely to vanish. Furthermore, a parallel implernagion often executes more total
instruction than the sequential solution, making (th-1/S)(Ts an under estimate.

Many, including Amdahl, have interpreted the lawpesof that applying large numbers
of processors to a problem will have limited suscésit this seems to contradict news
reports in which huge parallel computers improveagotations by huge factors. What
gives? Amdahl’'s law describes a key fact thatiappb aninstanceof a computation.
Portions of a computation that are sequential adlparallelism is applied, dominate the
execution time. The law fixes @amstance and considers the effect of increasing
parallelism. Most parallel computations, suchraseé in the news, fix the parallelism
and expand the instances. In such cases the fimpof sequential code diminishes
relative to the overall problem as larger instararesconsidered. So, doubling the
problem size may increase the sequential portigigiely, making a greater fraction of
the problem available for parallel execution.

In summary, Amdahl's law does not deny the valupargllel computing. Rather, it
reminds us that to achieve parallel performancenust be concerned with the entire
program.

Measuring Performance

As mentioned repeatedly, the main point of paradehputing is to run computations
faster.Fasterobviously means “in less time,” but we immediateiynder, “How much
less?” To understand both what is possible and whacan expect to achieve, we use
several metrics to measure parallel performanady @éh its own strengths and
weaknesses.

Execution Time

Perhaps the most intuitive metriceisecutiortime. Most of us think of the so called
“wall clock” time as synonymous with execution tinaad for programs that run for
hours and hours, that equivalence is accurate énoBgt the elapsed wall clock time
includes operating system time for loading andatiitg the program, 1/0 time for
reading data, paging time for the compulsory pagses, check-pointing time, etc. For
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short computations—the kind that we often use wherare analyzing program
behavior—these items can be significant contritsitorexecution time. One argument
says that because they are not affected by thepusgramming, they should be factored
out of performance analysis that is directed aeustdnding the behavior of a parallel
solution; the other view says that some servicesiged by the OS are needed, and the
time should be charged. It is a complicated maitizrwe take up again at the end of the
chapter.

In this book we use execution time to refer toribeexecution time of a parallel program
exclusive of initial OS, I/O, etc. charges. Thelgem of compulsory page misses is
usually handled by running the computation twice areasuring only the second one.
When we intend to include all of the componentstrioating to execution time, we will
refer towall clock time

Notice that execution times (and wall clock timesthat matter) cannot be compared if
they come from different computers. And, in mases it is not possible to compare the
execution times of programs running different irspeven for the same computer.

FLOPS

Another common metric is FLOPS, short for floatpwint operations per second, which
is often used in scientific computations that aventhated by floating point arithmetic.
Because double precision floating point arithmigtiossually significantly more
expensive than single precision, it is common wiegrorting FLOPS to state which type
of arithmetic is being measured. An obvious dod®go using FLOPS is that it ignores
other costs such as integer computations, whichaisybe a significant component of
computation time. Perhaps more significant is FHADPS rates can often be affected by
extremely low-level program modifications that allthe programs to exploit a special
feature of the hardware, e.g. a combined multipig/aperation. Such “improvements”
typically have little generality, either to otherrmaputations or to other computers.

A limitation of both of the above metrics is thiagy distill all performance into a single
number without providing an indication of the p&bbehavior of the computation.
Instead, we often wish to understand how the perdnoice of the program scales as we
change the amount of parallelism.

Speedup

Speedups defined as the execution time of a sequent@jiam divided by the
execution time of a parallel program that comptitessame result. In particular,
Speedup Ts/ Tp, whereTgis the sequential time afi@ is the parallel time running dn
processors. Speedup is often plotted orythagis and the number of processors onxthe
axis, as shown in Figure 5.1.
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Figure 5.1. A typical speedup graph showing perforag for two programs.

The speedup graph shows a characteristic typicalaofy parallel programs, namely, that
the speedup curves level off as we increase théeauof processors. This feature is the
result of keeping the problem size constant wiitggasing the number of processors,
which causes the amount of work per processorteedse; with less work per processor
costs such as overhead—or sequential computasofaahl predicted—become more
significant, causing the total execution not tosca well.

Efficiency

Efficiency is a normalized measure of speedtfficiency= Speedup/P Ideally, speedup
should scale linearly witR, implying that efficiency should have a constaaiue of 1.
Of course, because of various sources of perforenbnss, efficiency is more typically
below 1, and it diminishes as we increase the numwierocessors. Efficiency greater
than 1 represents superlinear speedup.

Superlinear Speedup

The upper curve in the Figure 5.1 graph indicatgedinear speedup, which occurs
when speedup grows faster than the number of pocesHow is this possible? Surely
the sequential program, which is the basis foisfieedup computation, could just
simulate thd® processes of the parallel program to achieve enwon time that is no
more tharP times the parallel execution time. Shouldn’t slipear speedup be
impossible? There are two reasons why superlinesgdiip occurs.

The most common reason is that the computationt&ing set—that is, the set of pages
needed for the computationally intensive part effghogram—does not fit in the cache
when executed on a single processor, but it db@#di the caches of the multiple
processors when the problem is divided amongst foeiparallel execution. In such
cases the superlinear speedup derives from imprexecution time due to the more
efficient memory system behavior of the multi-presar execution.
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The second case of superlinear speedup occurs pararming a search that is
terminated as soon as the desired element is fMhdn performed in parallel, the
search is effectively performed in a different ardeplying that the total amount of data
searched can actually be less than in the sequeasa. Thus, the parallel execution
actually performs less work.

Issues with Speedup and Efficiency

Since speedup is a ratio of two execution times, at unitless metric that would seem to
factor out technological details such as procespgeed. Instead, such details insidiously
affect speedup, so we must be careful in intenpgetpeedup figures. There are several
concerns.

First, recognize that it is difficult to comparesgplup from machines of different
generations, even if they have the same architecfline problem is that different
components of a parallel machine are generallyowgnt by different amounts, changing
their relative importance. So, for example, preoeperformance has increased over
time, but communication latency has not fallen prtipnately. Thus, the time spent
communicating will not have diminished as muchhastime spent computing. As a
result, speedup values have generally decreasedioee Stated another way, the
parallel components of a computation have becoiaéwely more expensive compared
to the processing components.

The second issue concerhs speedup’s numerator, which should be the timeéher
fastest sequential solution for the given proceasadrproblem size. Tsis artificially
inflated, speedup will be greater. A subtle wayntreaselsis to turn off scalar
compiler optimizations for both the sequential padallel programs, which might seem
fair since it is using the same compiler for batbgrams. However, such a change
effectively slows the processors and improves—iradbt speaking—communication
latency. When reporting speedup, the sequentigrpm should be provided and the
compiler optimization settings detailed.

Another common way to increa$eis to measure the one-processor performance of the
parallel program. Speedup computed on this basis is cadlative speedupnd should

be reported as such. True speedup includes iy llossibility that the sequential
algorithm is different than the parallel algorithiRelative speedup, which simply
compares different runs of the same algorithm,galsethe base case an algorithm
optimized for concurrent execution but with no platsm; it will likely run slower

because of parallel overheads, causing the spgedopk better. Notice that it can
happen that a well-written parallel program on prezessois faster than any known
sequential program, making it the best sequentanam. In such cases we have true
speedup, not relative speedup. The situation dhmeikexplicitly identified.

Relative speed up cannot always be avoided. Fample, for large computations it may
be impossible to measure a sequential programgivea problem size, because the data
structures do not fit in memory. In such casedirdaspeedup is all that can be reported.
The base case will be a parallel computation amalshumber of processors, and the
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axis of the speedup plot should be scaled by thatuat. So, for example, if the smallest
possible run haB=4, then dividing by the runtime fé&=64, will show perfect speedup
aty=16.

Another way to inadvertently affe€t is the “cold start” problem. An easy way to
accidentally get a larggs value is to run the sequential program once acdldidie all of
the paging behavior and compulsory cache missigs fiming. As noted earlier it is
good practice to run a parallel computation a fiewes, measuring only the later runs.
This allows the caches to “warm up,” so that corspry cache miss times are not
unnecessarily included in the performance measiueesby complicating our
understanding of the program’s speedup. (Of colfrfige program has conflict misses,
they should and will be counted.) Properly, maostlgsts “warm” their programs. But
the sequential program should be “warmed,” todhabthe paging and compulsory
misses do not figure into its execution time. Tdloeasily overlooked, cold starts are
also easily corrected.

More worrisome are computations that involve comsitlle off-processor activity, e.g.
disk 1/0. One-time 1/O bursts, say to read in peabdata, are fine because timing
measurements can by-pass them; the problem imcahff-processor operations. Not
only are they slow relative to the processors tihey greatly complicate the speedup
analysis of a computation. For example, if bo#ngbquential and parallel solutions have
to perform the same off-processor operations fra@imgle source, huge times for these
operations can completely obscure the parallelisoabse they will dominate the
measurements. In such cases it is not necesspaydtielize the program at all. If
processors can independently perform the off-psmresperations, then this parallelism
alone dominates the speedup computation, whichliglly look perfect. Any
measurements of a computation involving off-prooesbarges must control their effects
carefully.

Performance Trade-Offs

We know that communication time, idle time, waihéi, and many other quantities can
affect the performance of a parallel computatidhe complicating factor is that attempts
to lower one cost can increase others. In thissewe consider such complications.

Communication vs. computation

Communication costs are a direct expense for ysangllelism because they do not arise
in sequential computing. Accordingly, it is almasivays smart to attempt to reduce
them.

Overlap Communication and Computatio®ne way to reduce communication costs is
to overlap communication with computation. Becacm@munication can be performed
concurrently with computation, and because the egatipn must be performed anyway,
a perfect overlap—that is, the data is availablemit is needed—hides the
communication cost perfectly. Partial overlap wlilninish waiting time and give partial
improvement. The key, of course, is to identifynpautation that is independent of the
communication. From a performance perspectiverlapping is generally a win without
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costs. From a programming perspective, overlappémymunication and computation
can complicate the program’s structure.

Redundant ComputatiomrAnother way to reduce communication costs isetidqrm
redundant computations. We observed in Chapter 2xample, that the local
generation of a random numberpy all processes was superior to generating dheev
in one process and requiring all others to refexéncUnlike overlapping, redundant
computation incurs a cost because there is nolelsal when all processors must
execute the random number generator code. Stat¢dex way, we have increased the
total number of instructions to be executed in otdeemove the communication cost.
Whenever the cost of the redundant computatioesis than the communication cost,
redundant computation is a win.

Notice that redundant computatialso removes a dependerfoem the original program
between the generating process and the othersithated the value. It is useful to
remove dependences even if the cost of the addaguwtation exactly matches the
communication cost. In the case of the random raurgbneration, redundant
computation removes the possibility that a cliewicpss will have to wait for the server
process to produce it. If the client can geneitatewn random number, it does not have
to wait. Such cases complicate the assessingatie-uff.

Memory vs. parallelism

Memory usage and parallelism interact in many wadsrhaps the most favorable is the
“cache effect” that leads to superlinear paral&gfgrmance, noted above. With all
processors having caches, there is more fast meimarparallel computer. But there
are other cases where memory and parallelism @itera

Privatization. For example, parallelism can be increased bygusilditional memory to

break false dependences. One memorable example isé oprivate_count

variables in the Count 3s program, which removedniied for threads to interact each
time they recorded the next 3. The effect was toeiase the number of count variables
from 1 tot , the number of threads. It is a tiny memory costf big savings in reduced
dependences

Batching. One way to reduce the number of dependencednsngase the granularity of
interaction. Batching is a programming techniqua/hich work or transmissions are
performed as a group. For example, rather thansmnéting elements of an array,
transmit a whole row or column; rather than gragtine task from the task queue, get
several. Batching effectively raises the grantygsee below) of fine-grain interactions
to reduce their frequency. The added memory iplsimequired to record the items of
the batch, and like privatization, is almost alwaysth the memory costs.

Memoization. Memoization stores a computed value to avoidomguting later. An

example is a stencil optimization: A value is cartgal based on some combination of
the scaled values of its neighbors, shown scheailgticelow,
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where color indicates the scaling coefficient; edais such as the corner elements are
multiplied by the scale factor four times as thenstl “moves through the array,” and
memoizing this value can reduce the number of pligs and memory references.
[DETAILED EXAMPLE HERE] It is a sensible program optimization that remawsgruction
executions that, strictly speaking, may not regufiarallelism improvements. However,
in many cases memoization will result in bettergfialism, as when the computation is
redundant or involves non-local data values.

Padding. Finally, we note that false sharing—referenceimdependent variables that
become dependent because they are allocated $aitie cache line—can be eliminated
by padding data structures to push the valuesdifferent cache lines.

Overhead vs. parallelism

Parallelism and overhead are sometimes at oddenéextreme, all parallel overhead,
such as lock contention, can be avoided by usisiggne process. As we increase the
number of threads the contention will likely incsea If the problem size remains fixed
each processor has less work to perform betweearhsynizations, causing
synchronization to become a larger portion of therall computation. And a smaller
problem size implies that there is less computadivailable to overlap with
communication, which will typically increase theit@mes for data.

It is the overhead of parallelism that is usudatly teason whi? cannot increase without
bound. Indeed, even computations that could cdnaép be solved with a processor
devoted to each data point will be buried by ovachieeforeP=n. Thus, we find that
most programs have an upper limit for each damaizvhich the marginal value of an
additional processor is negative, that is, addipgogessor causes the execution time to
increase.

Parallelize Overhead Recall that in Chapter 4, when lock contentiendime a serious
concern, we adopted a combining tree to solvéniessence, the threads split up the task
of accumulating intermediate values into severd¢pendent parallel activities.

[THIS SECTION CONTINUES WITH THESE TOPIGS

Load balance vs. parallelism. Increased parallelism can also improve load lu@aas
it's often easier to distribute evenly a large nandf fine-grained units of work than a
smaller number of coarse-grained units of work.

Granularity tradeoffs. Many of the above tradeoffs are related to tlamglarity of

parallelism. The best granularity often dependbath algorithmic characteristics, such
as the amount of parallelism and the types of dégeres, and hardware characteristics,
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such as the cache size, the cache line size, ardténcy and bandwidth of the machine's
communication substrate.

Latency vs. bandwidth. As discussed in Chapter 3, there are many iostawhere
bandwidth can be used to reduce latency.

Scaled speedup vs. Fixed-Size speedup
Choosing a problem size can be difficult

What should we measure?

Thekernel or the entire program?
Amdabhl’s law says that everything is important!

Operating System Costs

Because operating systems are so integral to catimuitit is complicated to assess their
effects on performance.

Initialization.

How is memory laid out in the parallel computer?

Summary

Exercises
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Chapter 6: Programming with Threads

Recall in Chapter 1 that we used threads to imphitie count 3's program. In this
chapter we'll explore thread-based programminganendetail using the standard POSIX
Threads interface. We'll first explain the basiacepts needed to create threads and to
let them interact with one another. We'll thercdss issues of safety and performance
before we step back and evaluate the overall approa

Thread Creation and Destruction

Consider the following standard code:

1 #include <pthread.h>

2interr;

3

4 void main ()

5

6 pthread_t tid[MAX]; /* An array of Thread | D's, one for each */
7 /* thread that is created */

9 for (i=0; i<t; i++)

11 err = pthread_create (&tid[i], NULL, count 3s_thread, i);
12 }

14  for (i=0; i<t; i++)

16 err = pthread_join_(tid[i], &status][i])
17 '}

The above code showsyain()  function, which then creates—and launchés—
threads in the first loop, and then waits fortthiireads to complete in the second loop.
We often refer to the creating thread aspéyeent and the created threadscasgldren.

The above code differs from the pseudocode in @hdpin a few details. Line 1
includes the pthreads header file, which decldresarious pthreads routines and
datatypes. Each thread that is created needwittloead ID, so these thread ID's are
declared on lin@. To create a thread, we invoke fitaread_create() routine

with four parameters. The first parameter is afaito a thread ID, which will point to a
valid thread ID when this thread successfully nesurThe second argument provides the
thread’s attributes; in this case, the NULL valpedfies default attributes. The third
parameter is a pointer to the start function, whirghthread will execute once it's
created. The fourth argument is passed to thersiatine, in this case, it represents a
unigue integer betwedhandt-1 that is associated with each thread. The loolinen

| 16then callgpthread_join() to wait for each of the child threads to terminalfe.
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instead of waiting for the child threads to comgJeéhemain()  routine finishes and
exits usingpthread_exit() , the child threads will continue to execute. OtVise,
the child threads will automatically terminate whreain()  finishes, since the entire
process will have terminated. See Code Specs 2.and

pthread_create()

int pthread_create ( I create a new thread
pthread_t *tid, /I thread 1D
const pthread_attr_t *attr,  // thread attribu tes
void *(*start_routine) (void *),// pointer to fun ction to execute
void *arg /I argument to fu nction
)
Arguments:

e The thread ID of the successfully created thread.
e The thread's attributes, explained below;NbeL value specifies default

attributes.
e The function that the new thread will execute oihé created.
e An argument passed to thiart_routine(), in this case, it represents a

unigue integer betweenandt-1 that is associated with each thread.

Return value:
¢ 0 if successful. Error code from <errno.h> othepwi

Notes:
e Use a structure to pass multiple arguments tottre routine.

Code Spec 1pthread_create(). The POSIX Threads threadiorefinction.

pthread_join()

int pthread_join ( /I wait for a th read to terminate
pthread_t tid, /I thread IT to wait for
void **status /I exit status

)i

Arguments:

¢ The ID of the thread to wait for.

e The completion status of the exiting thread willdogied intosstatus  unless
status iNULL, in which case the completion status is not capied

Return value:
e 0O for success. Error code from <errno.h> otherwise

Notes:

e Once athread is joined, the thread no longer®xistthread ID is no longer
valid, and it cannot be joined with any other tltkea
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Code Spec 2pthread_join(). The POSIX Threads rendezvoustfan pthread_join().

Thread ID’s

Each thread has a unique ID of typeead_t.  As with all pthread data types, a
thread ID should be treated asamaque type, meaning that individual fields of the
structure should never be accessed directly. Becelhild threads do not know their
thread ID, the two routines allow a thread to datee its thread ID, pthread_self(), and
to compare two thread ID’s, pthread_equal(), segeCRpecs 3 and 4.

pthread_self()
pthread_t pthread_self (); /I Get my thread ID

Return value:
 The ID of the thread that called this function.

Code Spec 3pthread_self(). The POSIX Threads function toHe thread's ID.

pthread_equal()

int pthread_equal ( /I Test for equ ality
pthread_t t1, /I First operand thread 1D
pthread_t t2 /I Second operand thread 1D

)

Arguments:

e Two thread ID’s

Return value:
* Non-zero if the two thread ID’s are the same (folltg the C convention).
e 0 if the two threads are different.

Code Spec 4pthread_equal(). The POSIX Threads functiorotmpare two thread IDs for equality.

Destroying Threads
There are three ways that threads can terminate.
1. A thread can return from the start routine.
2. A thread can calpthread_exit().
3. Athread can beancelled by another thread.
In each case, the thread is destroyed and itsmesobecome unavailable.
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void pthread_exit()

void pthread_exit ( /l terminate a th read
void *status /I completion status

)i

Arguments:

e The completion status of the thread that has exiféds pointer value is
available to other threads.

Return value:
* None

Notes:
* When a thread exits by simply returning from thetstoutine, the thread’s
completion status is set to the start routine’srrevalue.

Code Spec 5pthread_exit(). The POSIX Threads thread tertioangunction pthread_exit().

Thread Attributes

Each thread maintains its own properties, knowat@butes, which are stored in a
structure of typethread_attr _t. For example, threads can be eittietached or
joinable. Detached threads cannot be joined with othewatls, so they have slightly

lower overhead in some implementations of POSIXe@ts. For parallel computing, we
will rarely need detached threads. Threads cantsseithebound or unbound. Bound

threads are scheduled by the operating systemgatemnbound threads are scheduled
by the Pthreads library. For parallel computing,typically use bound threads so that

each thread provides physical concurrency.

POSIX Threads provides routines to initialize tlir@tributes, set their attributes, and

destroy attributes, as shown in Code Spec 6.

ode Spec 6pthread attribu

Thread Attributes

pthread_attr_t attr; /I Declare a thr ead attribute
pthread_t tid;

pthread_attr_init(&attr); /I Initialize a thread attribute
pthread_attr_setdetachstate(&attr, // Set the threa d attribute
PTHREAD_CREATE_UNDETACH ED);
pthread_create (&tid, &attr, start_func, NULL); // Use the attribute
1 to create a thread
pthread_join(tid, NULL);
pthread_attr_destroy(&attr); /I Destroy the t hread attribute
interface.
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Example

The following example illustrates a potential gittaat can occur because of the
interaction between parent and child threads. pvent thread simply creates a child
thread and waits for the child to exit. The clificead does some useful work and then
exits, returning an error code. Do you see whatteng with this code?

1 #include <pthread.h>

2

3 void main ()

44

5 pthread_t tid;

6 int *status;

7

8 pthread_create (&tid, NULL, start, NULL);
9 pthread_join_(tid, &status);
10}

11

12 void start()

13{

14 int errorcode;

15 /* do something useful. . . */
16

17 if(...)

18 errorcode = something;
19 pthread_exit(&errorcode);
20}

The problem occurs in the call pthread_exit() on line 17, where the child is
attempting to return an error code to the paréhtfortunately, becauserrorcode  is
declared to be local to thstart() function, the memory fogrrorcode is allocated
on the child thread’s stack. When the child exisscall stack is de-allocated, and the
parent has a dangling pointereimorcode . At some point in the future, when a new
procedure is invoked, it will over-write the stdokation wheresrrorcode  resides,
and the value ofrrorcode  will change.

Mutual Exclusion

We can now create and destroy threads, but to dlosads to interact constructively, we
need methods of coordinating their interaction panticular, when two threads share
access to memory, it is often useful to employck,lealled anutex, to providemutual
exclusionor mutually exclusive access to the variable. Assaw in Chapter 1, without
mutual exclusion, race conditions can lead to utiptable results, because when
multiple threads execute the following code, dbent variable, which is shared among
all threads, will not be atomically updated.

| for (i=start; i<start+length_per_thread; i+ +)
if (array[i] == 3)
{

count++;
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}

The solution, of course, is to protect the upd&isoant using a mutex, as shown below:

1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER ;

2

3 void count3s_thread (int id)

4{

5 /* Compute portion of array that this thread should work on */
6 intlength_per_thread = length/t;

7 int start =id * length_per_thread,;

8

9 for (i=start; i<start+length_per_thread; i+ +)
10 {

11 if (array[i] == 3)

12 {

13 pthread_mutex_lock(&lock);
14 count++;

15 pthread_mutex_unlock(&lock);
16

17 '}

18}

Line 1 shows how a mutex can be statically declatglle threads, mutexes have
attributes, and by initializing the mutexRAHREAD_MUTEX_INITIALIZER, the

mutex is assigned default attributes. To userthigex, its address is passed to the lock
and unlock routines on lines 13 and 15, respegtivEhe appropriate discipline, of
course, is to bracket adtitical sections, that is, code that must be executed atomically by
only one thread at a time, by the locking of a mutpon entrance and the unlocking of a
mutex upon exit. Only one thread can acquire th&erat any one time, so a thread will
block if it attempts to acquire a mutex that iealty held by another thread. When a
mutex is unlocked, arelinquished, one of the threads that was blocked attempting to
acquire the lock will become unblocked and gratiedmutex. The POSIX Threads
standard defines no notion of fairness, so therandehich the locks are acquiredrist
guaranteed to match the order in which the threstespted to acquire the locks.

Itis an error to unlock a mutex that has not Heeked, and it is an error to lock a mutex
that is already held. The latter will leaddeadlock, in which the thread cannot make
progress because it is blocked waiting for an etrattcannot happen. We will discuss
deadlock and techniques to avoid deadlock in metaildater in the chapter.

81



Acquiring and Releasing Mutexes

int pthread_mutex_lock( /I Lock a mutex
pthread_mutex_t *mutex);

int pthread_mutex_unlock( /I 'Unlock a mut ex
pthread_mutex_t *mutex);

int pthread_mutex_trylock( /I Non-blocking lock
pthread_mutex_t *mutex);

Arguments:
« Each function takes the address of a mutex variable

Return value:
¢ 0if successful. Error code from <errno.h> otherwi

Notes:
«  Thepthread_mutex_trylock() routine attempts to acquire a mutex put
will not block. This routine returnSBUSYif the mutex is locked.

Code Spec 7 The POSIX Threads routines for acquiring andasing mutexes.

Serializability

It's clear that our use of mutexes provides atotyti¢he thread that acquires the mutex
will execute the code in the critical section uittielinquishes the mutex. Thus, in our
above example, the counter will be updated by onbythread at a time. Atomicity is
important because it ensusializability: A concurrent execution is serializable if the
execution is guaranteed to execute in an orderctiraésponds teomeserial execution
of those threads.

Mutex Creation and Destruction

In our above example, we knew that only one mutag meeded, so we were able to
statically allocate it. In cases where the nundfeequired mutexes is not knovan
priori, we can instead allocate and deallocate mutexesndigzally. Code Spec 8 shows
how such a mutex is dynamically allocated, inigatl with default attributes, and
destroyed.
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Mutex Creation and Destruction

int pthread_mutex_init( /I Initialize a mutex
pthread_mutex_t *mutex,
pthread_mutexattr_t *attr);

int pthread_mutex_destroy ( /I Destroy a mutex
pthread_mutex_t *mutex);

int pthread_mutexattr_init( /I Initialize a mutex attribute
pthread_mutexattr_t *attr);

int pthread_mutexattr_destroy ( /I Destroy a mutex attribute
pthread_mutexattr_t *attr);

Arguments:
e Thepthread_mutex_init() routine takes two arguments, a pointer tg a
mutex and a pointer to a mutex attribute. Thietas presumed to have
already been initialized.
e Thepthread_mutexattr_init() and
pthread_mutexattr_destroy() routines take a pointer to a mutex
attribute as arguments.

Notes:
« If the second argument fithread _mutex_init() is NULL, default
attributes will be used.

Code Spec 8 The POSIX Threads routines for dynamically drepind destroying mutexes.

Dynamically Allocated Mutexes

pthread_mutex_t *lock; /I Declare a poi nter to a lock
lock = (pthread_mutex_lock_t *) malloc(sizeof (pthr ead_mutex _t));
pthread_mutex_init(lock, NULL);

/~k

* Code that uses this lock.
*/

pthread_mutex_destroy (lock);
free (lock);

Code Spec 9 An example of how dynamically allocated muteassused in the POSIX Threads interface.

Synchronization

Mutexes are sufficient to provide atomicity fortim@l sections, but in many situations we
would like a thread to synchronize its behaviothwitat of some other thread. For
example, consider a classic bounded buffer prolobewhich one or more threads put
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items into a circular buffer while other threadsiove items from the same buffer. As
shown in Figure 1, we would like the producerstaproducing data—to wait—if the
consumer is unable to keep up and the buffer besdutie and we would like the
consumers to wait if the buffer is empty.

Circular Buffer

© 0|0

cdl

Empty Buffer Full Buffer
©|0|0 @)

@
Ge? fPut Pu ﬁeet

Figure 1. A bounded buffer with producers and consum@ise Put and Get cursors indicate where the
producers will insert the next item and where thestimers will remove its next item, respectivélyhen
the buffer is empty, the consumers must wait. Wherbuffer is full, the producers must wait.

Such synchronization is supporteddmpdition variables, which are a more general form
of synchronization than joining threads. A coratitvariable allows threads to wait until
some condition becomes true, at which point onth@fvaiting threads is non-
deterministically chosen to stop waiting. We daink of the condition variable as a gate
(see Figure 2). Threads wait at the gate untilesoandition is true. Other threads open
the gate to signal that the condition has becouoes it which point one of the waiters is
allowed to enter the gate and resume executioa.tifead opens the gate when there are
no threads waiting, the signal has no effect.

o yd )
= waltel

waitel

waitel

Figure 2. Condition variables act like a gate. Threadi watside the gate by calling
pthread_cond_wait(), and threads open the gate by callotigread_cond_signal(). When
the gate is opened, one waiter is allowed throufthere are no waiters when the gate is opere, t
signal has no effect.

We can solve our bounded buffer problem with twodition variablesnonempty and
nonfull , as shown below.

1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER ;

2 pthread_cond_t nonempty = PTHREAD_COND_INITIALIZ ER;

3 pthread_cond_t nonfull= PTHREAD_COND_INITIALIZER ;

4 Item buffer[SIZE];

5intin =0; /I Buffer index for next insertion
6 intout=0; /I Buffer index for next removal
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7

8 void put (Item x) /I Producer thr ead
9{

10 pthread_mutex_lock(&lock);

11 while (in — out) == SIZE)  // While buffer is full

12 pthread_cond_wait(&nonfull, &lock);
13 buffer[in % SIZE] = x;

14  in++;

15 pthread_cond_signal(&nonempty);

16 pthread_mutex_unlock(&lock);

17}

18

19 Item get() /I Consumer thr ead

20{

21 ltemx;

22 pthread_mutex_lock(&lock);

23 while (out —in) /I While buffer is empty

24 pthread_cond_wait(&nonempty, &lock);
25 x = buffer[out % SIZE];

26 out++;

27 pthread_cond_signal(&nonfull);

28 pthread_mutex_unlock(&lock);

29 return x;

Of course, since multiple threads will be updatimgse condition variables, we need to
protect their access with a mutex, so Line 1 deslarmutex. The remaining
declarations define a buffdsuffer , and its two cursorény andout , which indicate
where to insert the next item and where to rembeenext item. The two cursors wrap
around when they exceed the boundbudfer , yielding a circular buffer.

Given these data structures, the producer threecligas th@ut()  routine, which first
acquires the mutex to access the condition vasahf€his code omits the actual creation
of the producer and consumer threads, which atevass to iteratively invoke the

put() andget() routines, respectively.) If the buffer is fulhet producer waits on the
nonfull  condition so that it will later be awakened whiee buffer becomes non-full.
If this thread blocks, the mutex that it holds mostrelinquished to avoid deadlock.
Because these two events—the releasing of the namigxhe blocking of this waiting
thread—must occur atomically, they must be perfarimgpthread_cond_wait(),

so the mutex is passed as a parametethieead cond_wait(). When the
producer resumes execution after returning fromathié on Linel2, the protecting
mutex will have been re-acquired by the systemeadral§ of the producer.

In a moment we will explain the need for thikile loop on Linell, but for now
assume when the producer executes LBjghe buffer is not full, so it is safe to insert a
new item and to bump the cursor by one. At this point, the buffer cannetdmpty
because the producer has just inserted an elestetite producer signals that the buffer
is nonempty, waking one more consumers that mayaigng on an empty buffer. If
there are no waiting consumers, the signal is I1Bgtally, the producer releases the
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mutex and exits the routine. The consumer threadwdes thget() routine, which
operates in a very similar manner.

pthread_cond_wait()

int pthread_cond_wait(
pthread_cond_t *cond, /I Condition to wait on
pthread_mutex_t *mutex); /I Protecting mutex

int pthread_cond_timedwait (
pthread_cond_t *cond,
pthread_mutex_t *mutex,
__const struct timespec *abstime); // Time-out value

Arguments:
« A condition variable to wait on.
« A mutex that protects access to the condition égiaThe mutex is released
before the thread blocks, and these two actionsratomically. When this
thread is later unblocked, the mutex is reacquiretdehalf of this thread.
Return value:
« 0if successful. Error code from <errno.h> otheerwi

Code Spec 10 pthread_cond_wait(): The POSIX Thread routiioeswaiting on condition variables.

pthread_cond_signal()

int pthread_cond_signal(
pthread_cond_t *cond); /I Condition to signal

int pthread_cond_broadcast (
pthread_cond_t *cond); /I Condition to signal

Arguments:
« A condition variable to signal.

Return value:
« 0if successful. Error code from <errno.h> otherwi

Notes:
« These routines have no effect if there are no tweaiting orcond . In
particular, there is no memory of the signal whéater call is made to
pthread_cond_wait().

« Thepthread_cond_signal() routine may wake up more than one
thread, but only one of these threads will holdghstecting mutex.
« Thepthread_cond_broadcast() routine wakes up all waiting threads.

Only one awakened thread will hold the protectingen.

Code Spec 11 pthread_cond_signal(). The POSIX Threads restfior signaling a condition variable.
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Protecting Condition Variables

| Let us now return to thehile loop on Linell of the bounded buffer program. If our
system has multiple producer threads, this lo@ssential because
pthread_cond_signal() can wake up multiple waiting threddsf which only one
will hold the protecting mutex at any particulané. Thus, at the time of the signal, the
buffer is not full, but when any particular threacjuires the mutex, the buffer may have
become full again, in which case the thread shoalidthread_cond_wait()

| again. When the producer thread executes L8¢he buffer is necessarily not full, so it
is safe to insert a new item and to bumplthecursor.

| We see on Line%5 and27 that the call tgpthread_cond_signal() is also
protected by the lock. The following example shaka this protection is necessary.
Signaling Thread Waiting Thread

lock (mutex)

. . while (out —in)

. insert(item);
tim pthread_cond_signal(&nonempty); <1 - {Formatted: Bullets and Numbering ]
/I Signal is dropped
pthread_cond_wait(&nonempty, lock);

/I Will wait forever

Figure 3. Example of why a signaling thread needs to loéepted by a mutex.

In this example, the waiting thread, in this cdsedonsumer, acquires the protecting
mutex and finds that the buffer is empty, so it@xespthread cond_wait(). If

the signaling thread, in this case the producezsamt protect the call to
pthread_cond_signal() with a mutex, it could insert an item into the flenf
immediately after the waiting thread found it empti/the producer then signals that the
buffer is non-empty before the waiting thread exesthe call to

pthread_cond_wait(), the signal will be dropped and the consumer threifid

not realize that the buffer is actually not emplty.the case that the producer only inserts
a single item, the waiting thread will needlesshjitforever.

The problem, of course, is that there is a racéition involving the manipulation of the
buffer. The obvious solution is to protect both tall topthread_cond_signal()

with the same mutex that protects the cafittread_cond_wait (), as shown in the
code for our bounded buffer solution. Because bwPut() andGet() routines are
protected by the same mutex, we have three crimaions related to the nonempty
buffer, as shown in Figure 4, and in no case carsinal be dropped while a waiting
thread thinks that the buffer is empty.

® These semantics are due to implementation detailsome cases it can be expensive to
ensure that exactly one waiter is unblocked byaadi
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Put()

insert(item);
pthread cond_signal(&nonempty);

Get()

lock (mutex)
while (out = in)
pthread_cond_wait(&nonempty, lock);

} Critical section A

} Critical section B

remove(item); | } Critical section C

Waiting Thread
Case 1: Order A, B, C

Signaling Thread

insert(item);
pthread cond signal(&nonempty);
tim lock (mutex) <
' while (out—in)
remove(item);
Case 2: Order B, A, C
lock (mutex)
while (out —.in)
tim pthread cond wait(&nonempty, lock); 'y
insert(item);
pthread_cond_signal(&nonempty):
remove(item);
Case 3: Order B, C A
lock (mutex)
while (out—in)
tim pthread cond wait(&nonempty, lock); A
’ remove(item):;
insert(item);
pthread cond_signal(&nonempty);

Figure 4. Proper locking of the signaling code preventereonditions. By identifying and protecting
three critical sections pertaining to the nonenipiiffer, we guarantee that each of A, B, and C extécute
atomically, so our problem from Figure 3 is avoid&Here is no way for theut() routine’s signal to be
| dropped while a thread executing tBet() routine thinks that the buffer is empty.

We have argued that the callgthread_cond_signal() must be protected by the
same mutex that protects the waiting code. Howengadice that the race condition
occurs not from the signaling of the condition aate, but with the access to the shared
buffer. Thus, we could instead simply protect aagte that manipulates the shared
buffer, which implies that theut() code could release the mutex immediately after
inserting an item into the buffer but before calpthread_cond_signal(). This
new code is not only legal, but it produces bgitgformance because it reduces the size
of the critical section, thereby allowing more comency.
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Creating and Destroying Condition Variables

Like threads and mutexes, condition variables @aorbated and destroyed either
statically or dynamically. In our bounded buffeaeple above, the static condition
variables were both given default attributes byiatizing them to
PTHREAD_COND_INITIALIZER. Condition variables can be dynamically allocaed
indicated in Code Spec 12

Dynamically Allocated Condition Variables

int pthread_cond_init(

pthread_cond_t *cond, /I Condition variable

const pthread_condattr_t *attr); / Condition at tribute
int pthread_cond_destroy (

pthread_cond_t *cond); /I Condition to destroy
Arguments:

- Default attributes are usedaftr is NULL

Return value:
- 0if successful. Error code from <errno.h> othepwi

Code Spec 12 The POSIX Threads routines for dynamically drepind destroying condition variables.

Waiting on Multiple Condition Variables

In some cases a piece of code cannot execute unilgsple conditions are met. In these
situations the waiting thread should test all cbods simultaneously, as shown below.

1 EatJuicyFruit()

2{

pthread_mutex_lock(&lock);

while (apples==0 && oranges==0)

pthread_cond_wait(&more_apples, &lock);
pthread_cond_wait(&more_oranges, &lock);

©oo~NOO UL~ W

[* Eat both an apple and an orange */
10 pthread_mutex_unlock(&lock);
11}

By contrast, the following code, which waits onfeaondition in turn, fails because

there is no guarantee that both conditions willrbe at the same time. That is, after
returning from the first call tpthread_cond_wait() but before returning from the
second call tpthread_cond_wait (), some other thread may have removed an apple,
making the first condition false.

1 EatJuicyFruit()
2{
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pthread_mutex_lock(&lock);

while (apples==0)
pthread_cond_wait(&more_apples, &lock);

while (oranges==0)
pthread_cond_wait(&more_oranges, &lock);

©CoOo~NOULA~W

/* Eat both an apple and an orange */
10 pthread_mutex_unlock(&lock);
11}

Thread-Specific Data

It is often useful for threads to maintain privetga that is not shared. For example, we
have seen examples where a thread index is pas#eel $tart function so that the thread
knows what portion of an array to work on. Thidér can be used to give each thread a
different element of an array, as shown below:

1

2

3 for (i=0; i<t; i++)

4 err = pthread_create (&tid[i], NULL, start _function, i);

(&)

6 void start_function(int index)
74

8 private_count[index] = 0;
9

A problem occurs, however, if the code that acceisskex occurs in a function,
foo(), which is buried deep within other code. In suithagions, how doefo()

get the value oindex ? One solution is to pass timelex parameter to every
procedure that calf®o(), including procedures that cétlo() indirectly through
other procedures. This solution is cumbersomeicodarly for those procedures that
require the parameter but do not directly use it.

Instead, what we really want is a variable thai@gbal in scope to all code but which can
have different values for each thread. POSIX Tdseaipports such a notion in the form
of thread-specific data, which uses a set &kys, which are shared by all threads in a
process, but which map to different pointer valiseseach thread. (See Figure 4.)

Memor

Thrcad 0 keyl

key2
Thrga
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Figure 5. Example of thread-specific data in POSIX Threa@lsread-specific data are accessed by keys,
which map to different memory locations in differémreads.

As a special case, the error values for POSIX Tdweautines are returned in thread-
specific data, but such data does not use thdastedefined by Code Specs 13-17.
Instead, each thread has its own valuerafo

Thread-Specific Data

pthread_key_t *my_index;
#define index (pthread_getspecific (my_index))

main()

{
.pﬁiread_key_create(&my_index, 0);
} ce
void start_routine(int id)
pthread_setspecific (my_index, id);
} .

Notes:
« Avoid accessing index in a tight inner loop becageseh access requires a
procedure call.

Code Spec 13 Example of how thread-specific data is usedcednitialized with this code, any
procedure can access the valuenyf_index .

pthread_key_create

int pthread_key_create (

pthread_key t *key, /I The key to ¢ reate
void (*destructor) (void*));  // Destructor f unction
Arguments:

e A pointer to the key to create.
¢ A destructor functionNULL indicates no destructor.

Return value:
- 0if successful. Error code from <errno.h> othepwi

Notes:
« Avoid accessing index in a tight inner loop becageeh access requires a
procedure call.

Code Spec 14 pthread_key_create. POSIX Thread routine feating a key for thread-specific data.
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pthread_key delete

int pthread_key_delete (
pthread_key _t *key); /I The key to delete

Arguments:
e A pointer to the key to delete.

Return value:
« 0if successful. Error code from <errno.h> otherwi

Notes:
- Destructors will not be called.

Code Spec 15 pthread_key_delete. POSIX Thread routine féetdea key.

pthread_setspecific

int pthread_setspecific (

pthread_key t *key, /I Key to set
void *value)); /I Value to set
Arguments:

e A pointer to the key to be set.
e The value to set.

Return value:
« 0if successful. Error code from <errno.h> otherwi

Notes:
« Itis an error to calpthread_setspecific() before the key has been
created or after the key has been deleted.

Code Spec 16 pthread_setspecific. POSIX Thread routine &ttirsg the value of thread-specific data.
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pthread_getspecific

int pthread_getspecific (
pthread_key _t *key); /I Key to value

Arguments:
e Key whose value is to be retrieved.

Return value:
« Value ofkey for the calling thread.

Notes:
« The behavior is undefined if a thread callsread_getspecific()
before the key is created or after the key is ddlet

Code Spec 17 pthread_getspecific. POSIX Thread routine ftigg the value of some thread-specific
data.

Safety Issues

Many types of errors can occur from the improper efslocks and condition variables.
We've already mentioned the problem of double-Ingkiwhich occurs when a thread
attempts to acquire a lock that it already hol@$.course, problems also arise if a thread
accesses some shared variable without locking if,aothread acquires a lock and does
not relinquish it. One particularly important plei is that of avoiding deadlock. This
section discusses various methods of avoiding deka@ind other potential bugs.

Deadlock

There are four necessary conditions for deadlock:
1. Mutual exclusion: a resource can be assigned to at most one thread
2. Hold and wait: a thread that holds resources can request neuneEs.
3. No preemption: a resource that is assigned to a thread canbentgleased by the
thread that holds it.
4. Circular wait: there is a cycle in which each thread waits fogsource that is
assigned to another thread. (See Figuye

Of course, for threads-based programming, muteseegeaources that can cause
deadlock. There are two general approaches tindesith deadlock: (1) prevent
deadlocks, and (2) allow deadlock to occur, bueéctetheir occurrence and then break the
deadlock. We will focus on the deadlock avoidabezause POSIX Threads does not
provide a mechanism for breaking locks.
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requeste acquire(

Resource Allocation Gral

Figure 6. Deadlock example. Threads T1 and T2 hold ladkand L2, respectively, and each thread
attempts to acquire the other lock, which cannagraated.

Lock Hierarchies

A simple way to prevent deadlocks is to preventeym the resource allocation graph.
We can prevent cycles by imposing an ordering eridbks and by requiring all threads
to acquire their locks in the same order. Suclsegline is known as bock hierarchy.

One problem with a lock hierarchy is that it reggiprogrammers to knoavpriori what
locks a thread needs to acquire. Suppose thataafteliring locks L1, L3, and L7, a
thread finds that it needs to also acquire lockvich would violate the lock hierarchy.
One solution would be for the thread to releaskdd@® and L7, and then reacquire locks
L2, L3, and L7 in that order. Of course, thisdtedherence to the lock hierarchy is
expensive. A better solution would be to atterodbtk L2 using
pthread_mutex_trylock() (see Code Spec 7), which either obtains the lock or
immediately returns without blocking. If the thdeia unable to obtain lock L2, it must
resort to the first solution.

Monitors

The use of locks and condition variables is erronp because it relies on programmer
discipline. An alternative is to provide languaygport, which would allow a compiler
to enforce mutual exclusion and proper synchroimatA monitor is one such language
construct, and although almost no modern languamédes such a construct, it can be
implemented in an object oriented setting, as wkesaon see. A monitor encapsulates
code and data and enforces a protocol that ensuresl exclusion. In particular, a
monitor has a set of well-defined entry pointsdidga can only be accessed by code that
resides inside the monitor, and at most one thcaacexecute the monitor’s code at any
time. Monitors also provide condition variables $ggnaling and waiting, and they
ensure that the use of these condition variablegothe monitor’s protocol. Figure 7
shows a graphical depiction of a monitor.
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Figure 7. Monitors provide an abstraction of synchronizatin which only one thread can access the
monitor’s data at any time. Other threads arekddeither waiting to enter the monitor or waitomg

events inside the monitor.

We can implement monitors in an object orientedjlege, such as C++, as shown

below.

1 class BoundedBuffer

2{ /I Emulate a mo

3 private:

4 pthread_mutex_t lock; /I Synchronizat
5 pthread_cond_t nonempty, nonfull;

6 Item *buffer; /I Shared data

7 intin, out; /I Cursors

8 Checklnvariant();

9

10 public:

11 BoundedBuffer(int size);  // Constructor
12 ~BoundedBuffer(); /I Destructor
13 void put(ltem x);

14 Item get();

15}

16

17 /I Constructor and Destructor

18 BoundedBuffer::Bounded (int size)

19

/I Initialize synchronization variables
pthread_mutex_init(&lock, NULL);
pthread_cond_init(&nonempty, NULL);
pthread_cond_init(&nonfull, NULL);

/I Initialize the buffer
buffer = new Item[size];
in=out=0;

30 BoundedBuffer::~BoundedBuffer()
31¢

32 pthread_mutex_destroy(&lock);

33 pthread_cond_destroy(&nonempty);
34 pthread_cond_destroy(&nonfull);
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35 delete buffer;

36}

37

38 // Member functions

39 BoundedBuffer::Put(ltem x)

40 {

41 pthread_mutex_lock(&lock);

42 while (in — out == size) /[ while buffer
43 pthread_cond_wait(&nonfull, &lock);
44 buffer[in%size] = x;

45 int++;

46 pthread_cond_signal(&nonempty);

47 pthread_mutex_unlock(&lock);

48}

49

50 Item BoundedBuffer::Get()

51

52 pthread_mutex_lock(&lock);

53 while (in = out) /I while buffer

54 pthread_cond_wait(&nonempty, &lock);

55 x = buffer[out%size];

56 out++;

57 pthread_cond_signal(&nonfull);
58 pthread_mutex_unlock(&lock);
59 return x;

is full

is empty

Monitors not only enforce mutual exclusion, butytipeovide an abstraction that can
simplify how we reason about concurrency. In paitr, the limited number of entry
points facilitates the preservation of invarianit$onitors haventernal functions and
external functions. Internal functions assume that the itootock is held. By contrast,
external functions must acquire the monitor locfobe executing, so external functions
cannot invoke each other. In this settingariants are properties that can are assumed to
be true upon entry and which must be restored epidn These invariants may be
violated while the monitor lock is held, but theyshbe restored before the monitor lock
is released. This use of invariants is graphicadlgicted in Figure 8.

‘ invariants are tru

‘ invariants may b
violated

—> state transition

Figure 8. Monitors and invariants. The red circles repneprogram states in which the invariants may be
violated. The blue circles represent program statevhich the invariants are assumed to be maiethi

For example, in our bounded buffer example, we haweinvariants:
1. The distance between the In and Out cursors iat the size of the buffer.



2. The In cursor is not left of the Out cursor. (liguire 1, the Put arrow is not left of
the Get arrow.)
Once we have identified our invariants, we canengitroutine that checks all invariants,
and this routine can be invoked before every entgdo the monitor and after every exit
from the monitor. The use of such invariants camsignificant debugging tool. For
example, the following code checks these invaritmteelp debug the monitor’s internal
routines.

1 BoundedBuffer::ChecklInvariant()

2{

if (in — out > size) /I Check invar iant (1)
return (0);

if (in < out) /I Check invar iant (2)
return (0);

return (1);

}

10 Item BoundedBulffer::Get()

11

12 pthread_mutex_lock(&lock);

13 assert(CheckInvariant());  // Check on every ent rance
14 while (in = out) /I while buffer is empty

15 {

16 assert(Checklnvariant()); // Check on every exit

17 pthread_cond_wait(&nonempty, &lock);

18 assert(Checklnvariant());

©oOo~NO UL~ W

20 x = buffer[out%size];

21 out++;

22 pthread_cond_signal(&nonfull);
23 assert(Checklnvariant());
24 pthread_mutex_unlock(&lock);
25 return x;

As we have mentioned before, the calptbread cond_wait() may implicitly
release the lock, so it is a potential monitor,exiid the return from
pthread_cond_wait() will implicitly re-acquire the lock, so it is a mdor
entrance.

Re-entrant Monitors

While monitors help enforce a locking disciplineey do not ensure that all concurrency
problems go away. For example, if a procedurerimoaitor attempts to re-enter the
monitor by calling an entry procedure, deadlock aaicur. To avoid this problem, the
procedure should first restore all invariants, astethe monitor lock, and then try to re-
enter the monitor. Of course, such a structurensé@t atomicity is lost. This same
problem occurs if a monitor procedure attemptstemnter the monitor indirectly by
calling some external procedure that then trieenter the monitor, so monitor
procedures should invoke external routines witle car
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Monitor functions that take a long time or wait Bmme outside event will prevent other
threads from entering the monitor. To avoid suabjems, such functions can often be
rewritten to wait on a condition, thereby releading lock and increasing parallelism. As
with re-entrant routines, such functions will neéedestore invariants before releasing the
lock.

Performance Issues

We saw in Chapter 3 that dependences among thceadtain parallelism. Because
locks dynamically impose dependences among thrédaglgranularity of our locks can
greatly affect parallelism. At one extreme, tharsest locking scheme uses a single lock
for all shared variables, which is simple but selyelimits concurrency when there is
sharing. At the other extreme, fine-grained logiesy protect small units of data. For
example, in our Count 3's example, we might us#fardnt lock to protect each node of
the accumulation tree. As an intermediate poietiuight use one lock for the entire
accumulation tree. As we reduce the lock granylatie overhead of locking increases
while the amount of available parallelism increases

Readers and Writers Example: Granularity Issues

Just as there are different granularities for Ingkihere are different granularities of
condition variables. Consider a resource thatbeashared by multiple readers or
accessed exclusively by a single writer. To cowth access to such a resource, we can
provide four routines-AcquireExclusive() , ReleaseExclusive() ,
AcquireShared() , andReleaseShared() —that readers and writers can invoke.
These routines are each protected by a single mamekthey collectively use two
condition variables. To acquire the resource itlestve mode, a thread waits on the
wBusy condition variable, which ensures that no readegsstill accessing the resource.
When the last reader is done accessing a resoust@ied mode, it signals thBusy
condition to allow the writer to proceed. Likewisehen a writer is done accessing the
resource in exclusive mode, it signals tBasy condition to allow any readers to have
access to the resource; and before accessingahedstesource, threads wait on the
rBusy condition variable.

1 int readers; /I Negative val ue => active writer
2 pthread_mutex_t lock;

3 pthread_cond_t rBusy, wBusy; // Use separate condition variables
4 /I for readers and writers

5 AcquireExclusive()

6 {

7 pthread_mutex_lock(&lock);

8 while (readers !=0)

9 pthread_cond_wait(&wBusy, &lock);
10 readers =-1;

11 pthread_mutex_unlock(&lock);

12}

13

14 AcquireShared()
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16 pthread_mutex_lock(&lock);

17 readWaiters++;

18 while (readers<0)

18 pthread_cond_wait(&rBusy, &lock);
19 readWaiters--;

20 pthread_mutex_unlock(&lock);

23 ReleaseExclusive()

24 {

25 pthread_mutex_lock(&lock);

26 readers =0;

27 pthread_cond_broadcast(&rBusy); // Only wake
28 pthread_mutex_unlock(&lock);

29}

30

31 ReleaseShared(

324

33 int doSignal;

34

35 pthread_mutex_lock(&lock);
36 readers--;

37 doSignal = (readers==0)

38 pthread_mutex_unlock(&lock);

39 if (doSignal) /I Signal is

40 pthread_cond_signal(&wBusy); // of critic

Two points about this code are noteworthy.

up readers

performed outside
al section

First, the code uses two condition variables, teiniatural to wonder if one condition
variable would suffice. In fact, one condition iednle could be used, as shown below,
and the code would be functionally correct. Unfnétely, by using a single condition
variable, the code suffers frogpurious wakeups in which writers can be awoken only to
immediately go back to sleep. In particular, wieteaseExclusive() is called

both readers and writers are signaled, so writdrsuffer spurious wakeups whenever
any reader is also waiting on the condition. Qiginal solution avoids spurious
wakeups by using two condition variables, whiclcésr exclusive access and shared
access to alternate as long as there is demarflotypes of access.

1int readers; /I Negative val

2 pthread_mutex_t lock;

3 pthread_cond_t busy; /I Use one cond
4 /I indicate whe

5 AcquireExclusive()

6{

7 pthread_mutex_lock(&lock); // This code su
8 while (readers !=0) /I wakeups!!!

9 pthread_cond_wait(&busy, &lock);
10 readers =-1;

11 pthread_mutex_unlock(&lock);

12}

13
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14 AcquireShared()

15

16 pthread_mutex_lock(&lock);

17 while (readers<0)

18 pthread_cond_wait(&busy, &lock);
19 readers++;

20 pthread_mutex_unlock(&lock);
21}

22

23 ReleaseExclusive()

24 {

25 pthread_mutex_lock(&lock);

26 readers = 0;

27 pthread_cond_broadcast(&busy);
28 pthread_mutex_unlock(&lock);
29}

30

31 ReleaseShared(

32{

33 pthread_mutex_lock(&lock);

34 readers--;

35 if (readers==0)

36 pthread_cond_signal(&busy);
37 pthread_mutex_unlock(&lock);
38}

Second, th&keleaseShared() routine signals thesBusy condition variable outside
of the critical section to avoid the problemsptiriouslock conflicts, in which a thread is
awoken by a signal, executes a few instructiond,then immediately blocks in attempt
to acquire the lock. If thReleaseShared() were instead to execute the signal inside
of the critical section, as shown below, then amyewthat would be awakened would
almost immediately block trying to acquire the lock

31 ReleaseShared(

32{

33 pthread_mutex_lock(&lock);

34 readers--;

35 if (readers==0)

36 pthread_cond_signal(&wBusy); // Wake up w riters inside of
37 pthread_mutex_unlock(&lock);  // the criti cal section
38}

The decision to move the signal outside of thecalisection represents a tradeoff,
because it allows a new reader to enter the drgeetion before the

ReleaseShared()  routine is able to awaken a waiting writer, allog/readers to
again starve out writers, albeit with much lessoaiality than would occur with a single
condition variable.

Thread Scheduling
[This might be out of place—perhaps it belongs meatiier.]
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POSIX Threads supports two scheduling scopes. atlisrin system contention scope are
calledbound threads because they are bound to a particulaegsor, and they are
scheduled by the operating system. By contrastatts in process contentions scope are
calledunbound threads because they can execute on any of thegd#library’s set of
processors. These unbound threads are schedutbd Byhreads library. For parallel
computing, we typically use bound threads.

[Need a few more details: what is the default s€ope
Are scheduling priorities an optional feature X Threads?
If not, talk here about scheduling attributes pridrity inversion.]

Overlapping Synchronization with Computation

As we mentioned in Chapter 4, it is often usefubterlap long-latency operations with
independent computation. For example, in Figufé@®ad O reaches the barrier well
before Thread 1, so would be profitable for Thr@dad do some useful work rather than
simply sit idle.

Thread 0 Thread 1

v

barrier()

tim Do useful - {Formatted: Bullets and Numbering ]
work

v

Figure 9. It's often useful to do useful work while waigifior some long-latency operation to complete.

barrier()

To take advantage of such opportunities, we oftsdrio creatsplit-phase operations,
which separate a synchronization operation intoihases: initiation and completion, as
shown in Figure 10.

/I Initiate synchronization
barrier.arrived();

/I Do useful work

/I Complete synchronization
barrier.wait();

Figure 10. Split-phase barrier allows a thread to do usefurk while waiting for other threads to arrive at
a barrier.

To see a concrete example of how split-phase dpasatan help, consider a 2D
successive relaxation program, which is often useftier in 3D form—to solve systems
of differential equations, such as the Navier-Ssodguations for fluid flow. This

101



computation starts with an array of n+2 valuesitarior values and 2 boundary values.
At each iteration, it replaces each interior vakith the average of its 2 neighbor values,

boundary value

interior values

boundary value

Figure 11 A 2D relaxation replaces, on each iterationjraérior values by the average their two nearest
neighbors.

The code for computing a 2D relaxation with a sAghase barrier is shown below.
Here, we assume that we havéhreads, each of which is responsible for comguitire
relaxation ofn/t values.

1 double *val, *new;

/I Hold n value

2intn; /I Number of in
3intt; /I Number of th

4 int iterations /I Number of it
5

6 thread_main(int index)

79

8 intn_per_thread=n/t;

9 int start = index * n_per_thread;

10

11 for (int i=0; i<iterations, i++)

12 {

13 /I Update values

14 for (int j=start; j<start+n_per_thread; j+
15

16 new[j] = (val[j-1] + val[j+1]) / 2.0;
17

18 swap(new, val);

19 /I Synchronize

20 barrier();

21 }

22}

s
terior values

reads

erations to perform

+)

/I Compute average

With a split-phase barrier, the main routine isrded as follows:

6 thread_main(int index)

79

8
9

int n_per_thread =n/t;
int start = index * n_per_thread;

for (int i=0; i<iterations, i++)
/I Update local boundary values

int j = start;
val[j] = (val[j-1] + val[j+1]) / 2.0;
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16 j = start+n_pre_thread -1;
17 val[j] = (val[j-1] + val[j+1]) / 2.0;

19 /I Start barrier
20 barrier.arrived();

21

22 /I Update local interior values

23 for (j=start+1; j<start+n_per_thread-1; j+ +)

24 {

25 new[j] = (val[j-1] + val[j+1]) / 2.0; /I Compute average
26

27 swap(new, val);

28

29 /Il Complete barrier
30 barrier.wait();

The code to implement the split-phase barrier setragghtforward enough. As shown
below, we can implement a Barrier class that keepasunter of the number of threads
that should arrive at the barrier. To initiate iyachronization, each thread calls the
arrived() routine, which increments the counter. The lasdad to arrive at the

also sets the counter to O in preparation for #he nse of the barrier. To complete the
synchronization, thevait()  routine checks to see if the counter is non-zarahich
case it waits for the last thread to arrive. Qirse, a lock is used to provide mutual
exclusion, and a condition variable is used to jg®gynchronization.

1 class Barrier

2{
3 intnThreads; /l Number of th reads
4 int count; /I Number of th reads participating

5 pthread_mutex_t lock;

6 pthread_cond_t all_here;
7 public:

8 Barrier(int t);

9 ~Barrier(void);

10 void arrived(void); /l'Initiate a ba rrier
11 int done(void); /I Check for com pletion
12 void wait(void); /I Wait for comp letion
13}

14

15 int Barrier::done(void)

16 {

17 intrval;

18 pthread_mutex_lock(&lock);

19

20 rval = Icount; /I Done if the ¢ ount is zero
21

22 pthread_mutex_unlock(&unlock);
23 returnrval;
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26 void Barrier::arrived(void)

27

28 pthread_mutex_lock(&lock);

29 count++ /I Another threa d has arrived
30

31 /I'lf last thread, then wake up any waiters
32 if (count==nThreads)

34 count = 0;
35 pthread_cond_broadcast (&all_here);
36 }

38 pthread_mutex_unlock(&lock);

41 void Barrier::wait(void)

42 {

43 pthread_mutex_lock(&lock);
44

45 // If not done, then wait

46 if (count !=0)

48 pthread_cond_wait(&all_here, &lock);
49 }

51 pthread_mutex_lock(&lock);

Unfortunately, the code presented above does nidk eavrectly! In particular, consider
an execution with two threads and two iteratiossslgown in Figure 12. Initially, the
counter is 0, and Thread 0’s arrival incrementsviidae to 1. Thread 1's arrival
increments the counter to 2, and because Thresthe last thread to arrive at the
barrier, it resets the counter to 0 and wakes ypaaiting threads, of which there are
none. The problem arises when Thread 1 gets affeHutead 0 and executes its next
iteration—and hence its next callsawive() andwait() —before Thread 0 invokes
wait()  for its first iteration. In this case, Thread ill\mcrement the counter to 1, and
when Thread 0 arrives at the wait, it will wait tko At this point, Thread 0 is blocked
waiting for the completion of the barrier in thesfiiteration, while Thread 1 is blocked
waiting for the completion of the second iteratiasulting in deadlock. Of course, the
first barrier has completed, but Thread 0 is unavedithis important fact.

Thread O Thread 1 count
barrier.arrive() 0
barrier.arrive() 1
barrier.wait() 0

tim - - {Formatted: Bullets and Numbering ]

barrier.arrive()
barrier.wait(); 1

barrier.wait();

Figure 12 Deadlock with our initial implementation of disjphase barrier.
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Of course, we seem to have become quite unluckgve Thread O execute so slowly
relative to Thread 1, but because our barrier need®rk in all cases, we need to handle
this race condition.

The problem in Figure 12 occurs because ThreadsOaeking at the state of the counter
for the wrong invocation of the barrier. A solutithen is to keep track of the current
phase of the barrier. In particular, toeived() method returns a phase number,
which is then passed to tdene() andwait() methods. The correct code is shown
below.

1 class Barrier

2{

3 int nThreads; /I Number of th reads

4 int count; /I Number of th reads participating
5 int phase; /I Phase # of t his barrier

6 pthread_mutex_t lock;

7 pthread_cond_t all_here;

8 public:
9 Barrier(int t);
10 ~Barrier(void);

11 void arrived(void); /I Initiate a ba rrier

12 int done(int p); /I Check for com pletion of phase p
13 void wait(int p); /I Wait for comp letion of phase p
13}

14

15 int Barrier::done(int p)

16 {

17 intrval;

18 pthread_mutex_lock(&lock);

19

20 rval = (phase != p) /I Done if the p hase # has changed
21

22 pthread_mutex_unlock(&unlock);
23 return rval;

26 void Barrier::arrived(void)
26 {

27 intp;

28 pthread_mutex_lock(&lock);

30 p=phase; /I Get phase num ber
31 count++ /I Another threa d has arrived

33 /I If last thread, then wake up any waiters, go to next phase
34 if (count==nThreads)

35 {

36 count = 0;

37 pthread_cond_broadcast (&all_here);

38 phase = 1 — phase;

39 }

41 pthread_mutex_unlock(&lock);
42  return p;
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43}

44

45 void Barrier::wait(int p)

46 {

47 pthread_mutex_lock(&lock);

49 // If not done, then wait
50 while (p == phase)

52 pthread_cond_wait(&all_here, &lock);
53 }

55 pthread_mutex_lock(&lock);

Since the interface to the barrier routines hawsngbd, we need to modify our relaxation
code as shown below.

6 thread_main(int index)

74

8 intn_per_thread=n/t;

9 int start = index * n_per_thread;
10 int phase;

12 for (int i=0; i<iterations, i++)

13 {

14 /I Update local boundary values
15 int j = start;

16 val[j] = (val[j-1] + val[j+1]) / 2.0;

17 j = start+n_pre_thread -1;
18 val[j] = (val[j-1] + val[j+1]) / 2.0;
19

20 /I Start barrier
21 phase = barrier.arrived();

22

23 /I Update local interior values

24 for (j=start+1; j<start+n_per_thread-1; j+ +)

25 {

26 new[j] = (val[j-1] + val[j+1]) / 2.0; /I Compute average
27

28 swap(new, val);

29

30 /I Complete barrier
31 barrier.wait(phase);

With this new barrier implementation, the situatinr-igure 12 no longer results in
deadlock. As depicted in Figure 13, Thread 0'®gation ofwait(0)  explicitly waits
for the completion of the first invocation of tharker, so when it executes line 50 in the
wait()  routine, it falls out of the while loop and newalls

pthread_cond_wait(). Thus, deadlock is avoided.
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Thread 0 Thread 1 count phase

barrier.arrive() 0 0
barrier.arrive() 1
barrier.wait(0) 0 1

tim - - {Formatted: Bullets and Numbering ]

barrier.arrive()
barrier.wait(1); 1 1

barrier.wait(0);

Figure 13, Deadlock does not occur with our new split-pHaeseier.

Tpe

. Not Spl it'phase - ‘[Formatted: Bullets and Numbering ]

[ | Split-phase

Figure 14. Performance benefit of split-phase barrier ua E4000. n=10,000,000, 10 iterations.

Java Threads

[Discussion of Java threads and a larger discussitiding concurrency inside of
libraries.

* Nice model: explicit and convenient support fomgocommon cases, but
provides the freedom to use lower-level locks ambdion variables where
necessary. Can also hide concurrency inside @ifgpelasses.

e Synchronized methods and synchronized classes

e Wait() and Notify()

Can we come up with examples where modular dedsabout locking and
synchronization are sub-optimal? In particular,need examples where the context in
which the data structure is used affects the symihation policies.]

Critique

[What's good about threads. What's bad about tteéa
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Shared virtual memory. Why can't threads-based programs execute on
machines that do not support shared memory? Wiy wa use software to
provide a virtually shared address space on tguaoti machines? This questig
was heavily studied in the 1980’s and 1990’s. basic issue is that the Share
Virtual Memory system needs to handle all data moset, and it is difficult to
do this efficiently without knowledge of the applion’s sharing behavior. In
particular, there is a tradeoff regarding the glarty of sharing: Large units of]
sharing can amortize inter-processor communicatasts, at the expense of false
sharing. Small units of sharing reduce false sigabout increase the overhead of
moving data. In general, we'd ideally like the ig@thvirtual memory system’s
granularity of sharing to match the applicatior@gital granularity of sharing.
Of course, even if the underlying shared virtuahmgy system were extremely|
efficient, there is still the question of whethlerdads-based programming is th
right programming mode

5

1]

Exercises

1. Our bounded buffer example uses a single mutexaiegt both thewonempty
andnonfull  condition variables. Could we instead use oneerfdr each
condition variable? What are the tradeoffs?

A: Yes, but this would not be a good tradeoff beedlooth the producer and
consumer access both condition variables, so loatines would have to acquire
both locks instead of just one lock. Thus, theradded locking overhead but no
greater concurrency.

2. The pthread_cond_wait() routine takes the addregeqrotecting mutex as a
parameter so that the routine can atomically btbekwaiting thread and release
the lock that is held by the waiting thread. Explahy these two operations
must be performed atomically.

A: If the two operations are not atomic, theretare cases: either (1) the thread is
blocked first or (2) the lock is released firsh dase (1), we have deadlock. In
case (2), the code that blocks the waiting threastirst acquire the lock so that
it knows that it is the only thread that is mangiinlg the queues associated with
the condition variable, so the solution is possihleincreases the latency of the
operation. [Perhaps need to think about this ansax@e more.]
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