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Chapter 7: Programming with MPI  
 
This chapter will describe and evaluate MPI, the Message Passing Interface, which 
provides a programming interface that is portable across all parallel computers.  In 
particular, whereas Pthreads assume that the hardware supports a shared address space, 
MPI makes no such assumption.  Moreover, MPI supports collections of heterogeneous 
machines. There are other message passing libraries, including the Parallel Virtual 
Machine library, PVM. 

Getting Started 
We will again use the count 3’s example to illustrate the basics, before we discuss more 
advanced features.  Here, we will use C bindings for MPI, but the standard also provides 
bindings for Fortran and C++. 

Execution Model 
The MPI execution model differs from Pthreads.  In MPI the unit of parallelism is a 
process, not a thread, so each process has its own address space.  The only way that two 
processes can communicate is to send messages to one another using the operations of 
MPI_Send()  and MPI_Recv() . Thus, a parallel program’s data structures actually 
consist of a collection of independent portions of data, each residing in a different 
process.  Furthermore, MPI execution is initiated with a static number of processes, 
typically with processes assigned to different processors.  Some external mechanism is 
thus needed to initiate the MPI program, specifying the total number of processors that 
will be used. 

Initialization and Cleanup 
The following code is a typical skeleton MPI program that initializes MPI for a single 
process and then cleans up afterwards.  
 
 1 #include <stdio.h> 
 2 #include “mpi.h” 
 3 #include “globals.h” 
 4 
 5 int main (argc, argv)  
 6 int argc; 
 7 char **argv; 
 8 { 
 9    int myID, value, size; 
10    MPI_Status status; 
11     
12    MPI_Init(&argc, &argv);  
13    MPI_Comm_size(MPI_COMM_WORLD, &size); 
14    MPI_Comm_rank(MPI_COMM_WORLD, &myID); 
15     
16    /* compute stuff in parallel */ 
. . .  
66    MPI_Finalize() 
67    return 0; 
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68 } 
 

The call to MPI_Init()  on line 11 initializes the MPI runtime system, in this case 
passing along the runtime arguments with which this program was invoked.  This 
initialization routine should be called exactly once for each MPI process.   
 
The calls on lines 12 and 13 define a context in which communication can occur.  In 
particular, the first argument to these calls specifies a communicator, which is an MPI 
scoping mechanism for grouping sets of logically related communication operations.  A 
process may use different communicators to keep logically distinct communication 
operations separate.  In our example above, the program uses a single communicator, the 
predefined MPI_COMM_WORLD communicator that includes all available MPI processes.  
The call to MPI_Comm_size()  returns to this process, through its second parameter, 
the number of processes that participate within this communicator, and the 
MPI_Comm_rank()  call returns the rank of this process within the communicator.  A 
rank is a unique identifier used by MPI to identify this process within the communicator.  
The ranks are numbered from 0 to size-1.  The MPI_Finalize()  call cleans up MPI 
data structures.  Of course, this routine should be the last MPI function called by a 
process. 

 
Code Spec 1. MPI_Comm_Size().  MPI routine to obtain the number of processes in a communicator.  
 
With the skeleton code in place, we are now ready to write the meat of a parallel 
program.  First assume that the file globals.h  includes the following lines: 
 

 #define RootProcess 1 
 int length; 
 int length_per_process; 
 int myStart; 
 int myCount = 0; 
 int globalCount; 
 MPI_Status status; 
 int tag = 1; 

  

MPI_Comm_Size() 
int MPI_Comm_Size (     // Retrieve size of a commu nicator 
  MPI_Comm comm,                 // Communicator 
  int *size,                     // Size 
}; 
 

Arguments: 
• The communicator of interest.  
• A pointer to the size, whose target will contain the size of the specified 

communicator. 
 
Return value: 

• An MPI error code. 
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Code Spec 2. MPI_Comm_Rank().  MPI routine to obtain a process’ rank within in a communicator.  

 
Code Spec 3. MPI_Send().  MPI routine to send data to another process. 
 
With the assumed global variables, we can now give the body of the Count 3’s code.. 
 
16    length_per_process = length/size;  
17 
18    /* Read the data, distribute it among the var ious processes */ 
19    if (myID == RootProcess) 
20    {  

MPI_Send()                                              
int MPI_Send (           // Blocking Send routine 
  void *       buffer,           // Address of the data to send 
  int          count,            // Number of data elements to send 
  MPI_Datatype type,             // Type of data el ements to send 
  int          dest,             // ID of destinati on process 
  int          tag,              // Tag to distingu ish this message 
  MPI_Comm *   comm              // An MPI communic ator 
  }; 
 

Arguments: 
Use MPI_STATUS_IGNORE if you  
 
Notes: 

• This routine has blocking semantics, which means that the routine does not 
return until the message is received at the destination process.  See 
MPI_Isend()  for a non-blocking version of the send operation. 

 
Return value: 

• An MPI error code. 
 

MPI_Comm_Rank() 
int MPI_Comm_Rank (     // Retrieve rank of a commu nicator 
  MPI_Comm comm,                 // Communicator 
  int *rank,                     // Rank 
  }; 
 

Arguments: 
• The communicator of interest.  
• A pointer to the rank, whose target will contain the rank of the specified 

communicator. 
 
Return value: 

• An MPI error code. 
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21        if ((fp = fopen(*argv, "r")) == NULL ) 
22        { 
23            printf("fopen failed on %s\n", filena me); 
24            exit(0); 
25        } 
26        fscanf(fp,"%d", &length);   /* read input  size */  
27    
28        for (p=0; p<size-1; p++)    /* read data on behalf of each */ 
29        {                           /* of the oth er processes */ 
30            for (i=0; i<length_per_process; i++) 
31            { 
32                 fscanf(fp,”%d”, myArray+i); 
33            } 
34            MPI_Send(myArray, length_per_process,  MPI_INT, p+1, 
35                     tag, MPI_COMM_WORLD); 
36        } 
37 
38        for (i=0; i<length_per_process; i++)   /*  Now read my data */ 
39        { 
40            fscanf(fp,”%d”, myArray+i); 
41        } 
42    } 
43    else 
44    { 
45        MPI_Recv(myArray, length_per_process, MPI _INT, RootProcess, 
46                 tag, MPI_COMM_WORLD, &status); 
47    } 
48 
49    /* Do the actual work */ 
50    for (i=0; i<length_per_process; i++) 
51    { 
52        if (myArray[i]==3) 
53        { 
54            myCount++;     /* Update local count */ 
55        }                   
56    } 
57     
58    MPI_Reduce (&myCount,&globalCount, 1, MPI_INT , MPI_SUM,  
59                RootProcess, MPI_COMM_WORLD); 
60 
61    if (myID==RootProcess) 
62    { 
63        printf(“Number of 3’s: %d\n”, globalCount ); 
64    } 
65     

 
This code starts by having a single process, designated the Root Process, read the 
contents of an array from a file and distribute this data to the other processes. On Lines 
21-26 the Root Process opens the specified file name, which is assumed to be the first 
command line argument, and then reads the size of the file.  Then, on Lines 28-36, the 
Root Process reads the file contents in size  chunks, sending the first size-1  of these 
chunks to the other processes, and then keeping the last chunk for its own use.  The data 
is sent to other processes on Line 34 using the MPI_Send()  routine.  Here, each 
message contains an array of length_per_process  integers.  This routine is an 
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example of point-to-point communication, in which data is sent from one process to 
another.  In MPI, such communication is specified redundantly by both the sender and the 
receiver, so Lines 43-47 show that each of the size-1 non-root processes invoke 
MPI_Recv()  to accept the data.  The first three parameters of the send and receive 
routines describe the message that is being sent, and the 4th parameter identifies the 
sending or receiving process.  The 5th parameter provides a tag, which identifies this 
message.  In our example, all of the tags are identical because there is never more than 
one message sent between any pair of processes.  The 6th parameter identifies the 
communicator, and the MPI_Recv()  routine has an additional 7th parameter that is used 
to return the completion status of the operation.  MPI specifies that messages between the 
same source and destination will be delivered in order.  However, MPI does not provide 
any fairness guarantee—when multiple processes send to the same destination process, 
nothing can be said about the ordering of these messages. 
 
The actual work is performed on Lines 50-56, where each process counts the number of 
3’s in its portion of the array.   Finally, each of the local values of count is reduced to a 
single value by summing them with the call to MPI_Reduce() .  MPI_Reduce() is 
an example of a collective communication operation that involves all members of a 
communicator.  In this case, each process provides a single integer, and all of these 
values are summed and returned to the root process, as specified by the 6th parameter, at 
the address that is specified by the second parameter.  The distribution of the array data 
that was performed with calls to MPI_Send()  and MPI_Recv()  on Lines 34 and 45 
could also have been performed more succinctly using MPI_Scatter(),  a collective 
communication operation that distributes data from one process to all other processes. 
 
Logic is split up, with some code applying to some processes and not others.  The logic is 
also broken up by messages.  In this example, the messages already reside in contiguous 
memory, but in many cases the data must be marshaled, that is, placed contiguously in 
memory, before it can be sent to another process.  Dichotomy between local data, which 
can be addressed directly, and remote data, which can only be accessed through special 
function calls.   
 
MPI is a very low level interface.  Programmers need to specify many details and operate 
continually in two worlds—the local and the global. It can be challenging.  
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Code Spec 4. MPI_Recv().  MPI routine to receive data from another process. 
 

Safety Issues 
In MPI, there is no shared data, so there is no need to provide explicit mutual exclusion.  
There are however other safety issues, including deadlock and livelock.  Moreover, 
because point-to-point communication is specified redundantly by both the sender and 
receiver, there is the need to match communication operations. 

Performance Issues 
We saw in Chapter 3 that dependences among threads constrain parallelism. Because 
locks dynamically impose dependences among threads, the granularity of our locks can 
greatly affect parallelism.  At one extreme, the coarsest locking scheme uses a single lock 
for all shared variables, which is simple but severely limits concurrency when there is 
sharing.  At the other extreme, fine-grained locks may protect small units of data.  For 
example, in our Count 3’s example, we might use a different lock to protect each node of 
the accumulation tree.  As an intermediate point, we might use one lock for the entire 
accumulation tree.  As we reduce the lock granularity, the overhead of locking increases 
while the amount of available parallelism increases. 

MPI_Recv()                                              
int MPI_Send (           // Blocking Receive routin e 
  void *       buffer,           // Address at whic h to receive data 
  int          count,            // Number of eleme nts to receive       
  MPI_Datatype type,             // Type of each el ement 
  int          source,           // ID of sending p rocess 
  int          tag,              // Identifier to d istinguish message 
  MPI_Comm     comm,             // MPI communicato r 
  MPI_Status * status            // Status of this receive operation 
  }; 
 

Arguments: 
• To receive a message from any other process, use MPI_ANY_SOURCE as the 

source. 
• To match on any tag, use MPI_ANY_TAG as the fifth parameter 

 
Notes:: 

• This routine has blocking semantics—it does not return until the message the 
message is received.  See MPI_Irecv()  for a non-blocking version of the 
receive operation. 

 
Return value: 

• An MPI error code. 
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Code Spec 5. MPI_Reduce().  MPI routine to perform reduction operation. 
 

Reducing Communication Latency 
Why are there so many flavors of point-to-point communication?  To understand this, 
realize that there is significant synchronization and copy of data that must occur for each 
point-to-point communication operation because the message must be copied across four 
address space, as shown in Figure 1. 
 

 
Figure 1.  Each message must be copied as it moves across four address spaces, each increasing the overall 
latency. 
 
Thus, to allow users to hide some of this latency, the interface provides different versions 
that expose some of these details.  For example, non-blocking versions of the routines 

 Sending Process Receiving Process Kernel 

 send 

 recv 

Kernel 

 latency 

MPI_Reduce()                                              
int MPI_Reduce (           // Reduce routine 
  void *       sendBuffer,       // Address at whic h to receive data 
  void *       recvBuffer,       // Number of eleme nts to receive       
  int          count,            // Type of each el ement 
  MPI_Datatype datatype,         // ID of sending p rocess 
  MPI_OP       op,               // MPI operator 
  int          root,             // Process that wi ll contain result 
  MPI_Comm     comm              // MPI communicato r  
  }; 
 

Notes: 
• A special form of this routine, MPI_Allreduce() ,  treats all processes as if 

they were the root, meaning that the reduced value will be passed to all 
processes at the address specified by the second argument.  
MPI_Allreduce()  is equivalent to a call to MPI_Reduce()  followed by 
a call to MPI_Bcast(),  which broadcasts values to all processes within a 
communicator. 
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allow a process to perform some other independent work while it waits for a message to 
be transmitted.  Such overlapping of communication and computation is analogous to the 
split-phase barrier that we saw in Chapter 6, so it improves performance at the expense of 
added program complexity.   
 
By default, MPI also buffers messages in kernel space. Buffering is needed because 
multiple messages may arrive at a process that can only perform one receive operation at 
a time.  By buffering the messages in kernel space, the system can ensure that all 
messages will eventually be delivered.  Besides the added use of memory space, the 
drawback to kernel buffering is that messages are copied when placed in the buffer and 
copied again when delivered to the recipient. This extra copying increases 
communication latency in cases when the message could be delivered directly.   
 
To give programmers the potential to improve performance, MPI provides a non-buffered 
version of the send operation to further reduce copying and reduce memory utilization.   
 

MPI_Ssend() —blocks if the destination buffer is available and the receiving 
process has started to receive this message.   
 
MPI_Rsend() —assumes that the receiving process is synchronized with the 
sending process, so no buffering or handshaking is required.  Exploiting Rsend is 
very tricky and error prone. 
 
MPI_Bsend() —allows the programmer to specify a user-space buffer to which 
the message will be copied, allowing the send to return as soon as the message has 
been copied to this buffer. 

 
While these more sophisticated versions of send and receive can improve performance, 
they can hurt performance portability.  As machine characteristics change, the tradeoffs 
among the various versions also change.  Moreover, the use of some of these routines, 
particularly Rsend, can severely complicate the program text. 
 

Overlapping Synchronization with Computation 
As we mentioned in Chapter 4, it is often useful to overlap long-latency operations with 
independent computation.  In the same way that we can implement split-phase operations 
to hide the latency of barrier synchronization (see Chapter 6), we can use the 
MPI_Isend()  and MPI_Irecv()  operations to hide communication latency. 
 
[SHOW THE CODE FOR THE FOLLOWING EXAMPLE] 
 
To see a concrete example of how split-phase operations can help, consider a 2D 
successive relaxation program, which is often used—often in 3D form—to solve systems 
of differential equations, such as the Navier-Stokes equations for fluid flow.  This 
computation starts with an array of n+2 values: n interior values and 2 boundary values.  
At each iteration, it replaces each interior value with the average of its 2 neighbor values, 
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Figure 7-2.  A 2D relaxation replaces on each iteration all interior values by the average their two nearest 
neighbors. 
 
 

Critique 
Without a doubt the greatest strength of MPI and other message passing libraries is their 
universality. The ability to transfer a block of memory from one processor to another is 
fundamental to parallel computers, and message passing libraries give programmers 
access to that facility. It must exist on all parallel machines, so these libraries can in 
principle—and do in fact—run on any parallel machine. This universality is an essential 
component of the libraries’ popularity. 
 
With similar certainty the greatest weakness of MPI and other message passing facilities 
is their low level of abstraction. Parallel programming is difficult and benefits greatly 
from computational abstractions as described in earlier chapters. MPI provides only 
rudimentary support for a few of these. For example, the basic reduce operation to 
combine all elements of an array is supported only to the extent that a single summary 
item on each processor can be combined by one of a small set of basic operators; the task 
of local combining—that is, elevation of the reduce concept to an entire distributed data 
structure—is left to each programmer.   
 
Curiously, the strength—universality—and the weakness—low level—combine to enable 
programmers to write fast, reasonably portable programs. And that property has assured 
message passing libraries success.  
 
 

Exercises 
 
 

0.00  0. 34 0. 21 0. 86 0. 65 0. 11 0. 43 0. 97 0. 51 1.00  

n = 8  

boundary value interior values boundary value 
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Chapter 8: The Z-level Programming Language 
 
As we have seen, threads and message passing are approaches that support parallel 
programming through libraries that extend a standard sequential programming language. 
The advantages of such an approach are significant: Programmers are already familiar 
with the base language, so learning only involves learning the library facilities; library 
systems can be produced quickly because they only involve wrapping the machine’s 
features in a standard form; and libraries are versatile, because programmers have latitude 
to choose a base language. The main problem with libraries is that they provide few 
parallel abstractions, implying that all of the parallel mechanisms programmers need to 
solve a problem must be handmade with a custom implementation. For example, to use 
the scan abstraction requires that the parallel prefix algorithm be manually constructed. 
The absence of abstractions places a significant burden on programmers. High-level 
parallel languages contain statement forms for parallel abstractions, and assign the 
implementation details to the compiler. 
 
In this chapter we present ZPL, a high-level parallel programming language. No general-
purpose high-level parallel language is yet in wide use, including ZPL, despite years of 
research and development. There are a variety of explanations for this odd situation. They 
range from the fact that current languages are (in some ways) incomplete due to deep 
unsolved technical problems, to the psychological behavioral of programmers when 
deciding to adopt a new language. (Of course, even with deficiencies they could be used, 
but with greater programming effort.) Despite not yet being in wide use, learning a high-
level language can teach us how expressive a high-level parallel language can be. We can 
think in the language even if we do not program in it. ZPL is a good example because it is 
an effective tool for algorithm design and high-level program structuring; its abstractions 
produce fast and portable parallel programs. Thus, “thinking in ZPL” produces better 
programs in whatever language one programs. 
 
ZPL is an implicitly parallel programming language, meaning that the compiler generates 
all parallel threads, it inserts all necessary communication calls, it attends to 
synchronization, it protects against data races, etc. Programmers only specify the logic of 
the computation; the compiler does the rest. What makes it possible for the compiler to 
do all of the “heavy lifting” is that the language provides expression- and statement-
forms for common parallel abstractions. Programmers write plus scan of an array in a few 
characters (+||A ) and the compiler implements it. Thus, ZPL is a rich source of succinct 
notation for parallel abstractions, and that alone justifies our study of it. 
 

Get The Software. The ZPL compiler and documentation are available at 
http://www.cs.wasington.edu/research/zpl/ . The compiler runs 
under Unix/Linux systems and easily targets to new parallel machines.   
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Basic Concepts of ZPL 
ZPL is an array language, meaning that entire arrays are operated upon as a unit. Thus, to 
increment all elements of an array A, write 
 

A := A + 1; 

 
or equivalently, 
 

A += 1; 

 
Notice that the assignment operation in ZPL is :=  rather than simply =.  The primitive 
updates to the array are (logically) performed in parallel. 

Regions 
Though it is common to want to modify all elements of an array, it is equally common to 
want to limit the modification to particular elements. To control which elements are to be 
referenced in an array expression, we require that all array operations must be executed in 
the context of a region, as in  
 

[1..n] A := A + 1; 

 
The bracketed text is a region. Regions specify a set of indices, and they are a key idea in 
ZPL. Assuming A is declared to have n elements, indexed 1 to n, then the statement 
references them all. The statement 
 

[1..n/2] A := A + 1; 

 
references only the first half of A’s elements. 
 
Region Form. Regions take several forms as described below. In the common index 
range form shown, the lower limit, ll, and the upper limit, ul, can have any value such 
that ll ≤ ul; the bounds are separated by double dots for each dimension; dimensions are 
separated by commas. Thus, we write  
 

[-100..100]   A linear array of 201 indices with balanced index range  
[1..8, 1..8]  A square array for a chessboard  
[1..4, 1..4, 1]  A plane in 3D, equivalent to [1..4, 1..4, 1..1]  

 
When, as shown in this last case, an index range is a single value, it is called a collapsed 
dimension.  
 
The limits ll and ul do not have to be constants; they can also be integer expressions, as in  
 
 [min/2..2*max] 

 
where min  and max are scalar, that is non-array, variables. 
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Code Spec 8.1. Primitive data types available in ZPL. 
 
 
Regions In Declarations. In addition to their use in specifying which elements of an 
array participate in a computation, regions are also used to declare arrays with the var  
statement. For example, three m × n arrays, B, C and D, are declared by 
 

var B, C, D : [1..m,1..n] float; 

 
These are floating point arrays. ZPL supports a variety of types as shown in Code Spec 
8.1. 
 
Naming Regions. It quickly becomes cumbersome to write explicitly the same regions, 
so they are usually named. To name a region, use the region  declaration, as in 
 

region R = [1..m, 1..n]; 

 
Thereafter, the region’s name can be used wherever regions can appear, such as 
declarations 
 

var B, C, D : [R] float; 

 
and statement control 
 

[R] B := 2*C + D; 

 
Notice that the brackets are required around the region name. 
 
Region Scoping. Finally, regions are scoped. That is, the region that applies to a 
statement is the region specification on the closest enclosing statement. So, for example, 
in the looping statement  

byte types 2-byte types 4-byte types 8-byte types 16-byte types 
boolean     
sbyte  shortint  integer longint  
ubyte ushortint uinteger ulongint  
  float double quad 
  complex dcomplex qcomplex 

The prefix ‘u’ indicates that the representation is unsigned, giving it an additional bit of precision. The 
quad  type is available only if it is available in C on the target architecture; otherwise it defaults to 
double . A complex type using k bytes, uses k bytes for the real and k bytes for the imaginary parts of the 
number.  
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[R] repeat  
stmt 1; 

 stmt 2; 
     [1..n] stmt 3; 
  stmt 4; 

    until condition; 

 
the region [R] prefixes the repeat  which encloses the statements, and so, applies to 
the first two statements and the last. Further, a different region controls stmt 3 , because 
its region is closer and takes precedence. It is common for programs to operate over many 
arrays with the same shape making it typical for a program to declare a single region and 
to prefix the main program block with that region, which causes all statements to operate 
on arrays of that shape, unless otherwise specified explicitly.  

Code Spec 8.2. Syntax of control statements in ZPL. 
 

Array Computation 
Arrays in ZPL are generally combined element-wise using standard operators. Code Spec 
8.3 lists ZPL’s primitive operators and operator-assignments. For example, the statement 
(from a program we discuss below) 
 

[R] TW := (TW & NN = 2) | (NN = 3); 
 
operates just as it would for simple scalar values, except that it is applied to 
corresponding array elements for all indices in R. It is as if many statements of the form 
 

TW[1,1] := (TW[1,1] & NN[1,1] = 2) | (NN[1,1] = 3) 
TW[1,2] := (TW[1,2] & NN[1,2] = 2) | (NN[1,2] = 3) 
TW[1,3] := (TW[1,3] & NN[1,3] = 2) | (NN[1,3] = 3) 

... 
TW[m,n] := (TW[m,n] & NN[m,n] = 2) | (NN[m,n] = 3) 

 
are all executed simultaneously. In actuality, the compiler generates code equivalent to 
 

for (i = lo1-1; i < hi1-1; i++)  
{ 
   for (j = lo2-1; j < hi2-1; j++)  
   { 
      TW[i,j] = (TW[i,j] && NN[i,j] == 2) || (NN[i, j] == 3); 

ZPL Control-Flow Statements 
 

if logical-expression then statements {else statements } end; 
for var := low to high {by step } do statements end; 
while logical-expression do statements end; 
repeat statements until logical-expression; 
return { expression}; 
begin statements end; 
Text in brackets is optional; text in italics must be replaced by program constructs of the indicted kind.  
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   } 
} 

 
We discuss the parallel execution of this code below. 

Code Spec 8.3. ZPL’s primitive operators and operator-assignments. 
 

Controlling Array Element Reference 
Regions control the indices that participate in a computation. The specified indices must 
exist in all arrays of the statement, but the arrays need not be the same shape. For 
example, from above, B is m × n; suppose E is m × m, m < n; then 
 

[1..m, 1..m] E := 1/B; 

 
references all of E, but only the m × m subarray of B; the other elements are unaffected by 
the computation. So, it is an obvious condition: all indices specified in the region must 
exist for all arrays in the statement. 
 
Of course it is possible to change individual elements of an array by simply referencing a 
degenerate region, as in 
 

[x,y]  D := sqrt(2); 

 
which sets the single element D[x,y]  to 1.414….  
 
One thing that we are not allowed to do is to combine arrays of different rank. That is, if 
A is 1-dimensional array declared to have indices [1..n] , then it cannot be added to the 
first row of the 2-dimensional array C, 
 

[1, 1..n] C := C + A;   ILLEGAL for the given conditions. 
 
because A and C are declared to have different ranks. (This computation is possible and 
easy using the flooding operator described below.) The purpose of the “like rank” rule is 

Datatype Operators 
Numeric + (unary), -  (unary), +, - , * , / , ̂ , % (modulus, a%b is a mod b) 
Logical ! , &, |  
Relational =, != , <, >, <=, >= 
Bit-wise bnot(a) , band(a,b) , bor(a,b) , bxor(a,b) ,  

bsl(s,a) (shift a ’s bits s places left, fill with 0s),  
bsr(s,a) (shift a’s bits right s  places, fill with 0s) 

Exponentiation (̂) is optimized to multiplication for small powers, e.g. 2, but generally compiles to a call on 
C’s pow()  function.  
 
The operator assignments recognized are: +=, -=, *=, /=, %=, &=, |=  
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to maintain control of the parallel memory allocation and thus control over locality; see 
the section on the WYSIWYG performance model.  

@-communication 
Referencing corresponding elements, though common, is not the only association of 
elements of interest. In many computations it is essential to reference an element’s 
neighbors. To reference neighbors, ZPL provides directions.  Directions are a relative 
offset from an index position. So, for each element of A to reference the index to its left 
and its right, we declare  
 

direction left = [-1];  right = [1]; 

 
The value in brackets is a vector pointing (in index space) to the element to be 
referenced. Directions are applied to an operand using the @-operator. Thus, the local 
average of the interior elements of A is computed as 
 

[2..n-1] A := (A + A@left + A@right)/3; 

 
In the statement, A uses the indices given by the region; A@left  specifies the set of 
indices one less than the indices in the region, that is, 1 to n-2, and A@right  specifies 
the set of indices one larger than the indices in the region, that is 3 to n; accordingly, the 
statement has the effect of replacing each element (interior to the array) with the average 
of itself, its left and its right neighbor. As a general rule it is possible to add the direction 
to the region’s elements to find the referenced set of indices. 
 
As another example, declare the eight compass directions 
 

direction nw = [-1,-1]; no = [-1, 0]; ne = [-1, 1];  
          we = [ 0,-1];     ea = [ 0, 1]; 
          sw = [ 1,-1]; so = [ 1, 0]; se = [ 1, 1];  

 
which allow the eight nearest neighbors of an element to be referenced. If TW is a 2-
dimensional array of 0s and 1s, then the expression 
 

TW@nw + TW@no + TW@ne + 
TW@we +         TW@ea + 
TW@sw + TW@so + TW@se 

 
computes an array whose value in each position is the count of its neighbors in TW that 
are 1. This computation will be useful in the Life program shown below. But first we 
need one more concept to explain that program.  

Reduce 
Recall from Chapter 4 that reduce is the operation of combining the elements of an array 
using a primitive operator; we say we have “reduced the array to a single value using the 
operator.” ZPL’s reduce operation is given by the form 
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op << A  
 
where op is one of the primitive associative and commutative operators: +, * , &, | , max, 
min . To add up the interior elements of A, we write 
 

[2..n-1] total := + << A; 

 
and note that like all operations on arrays in ZPL, it is essential to specify a region. 
 
Reduce can be applied to arrays of any rank. So, to find the largest element in B, write 
 

[R] biggest := max << B; 

 
It is not necessary to store the scalar result. So, 
 

[R] span := (max << B) - (min << B) + 1; 

 
The reduce operation is implemented using the parallel prefix algorithm discussed in 
Chapter 4. ZPL also has a partial scan operator using the syntax +||A . 
 

 

Life, An Example 
To illustrate the concepts introduced so far, consider Conway’s game of Life. It is trivial 
computation, often used as a screensaver, which makes a clean, simple example. 
 
The Problem. Recall that the game simulates generations of organisms. The initial 
configuration is generation 0. The rules are  
 

a) An organism lives to generation i+1 if it has at least 2 neighbor organisms and no 
more than 3; 

b) An organism is born into generation i+1 if its position is empty and it has exactly 
3 neighbor organisms in generation i; 

c) All other organisms die before generation i+1. 
 
The rules reduce to a condition that says an organism exists in generation i+1 either 
because it exists in generation i and has exactly 2 neighbors, or its position (whether 
occupied by an existing organism or not) has exactly 3 neighbors in generation i.  
 
The Solution. We solve the problem in a rectangular world by the array TW, the world. 
Organisms are represented as 1-bits. To know how many neighbors exist for a position, 
we add up their 8-nearest neighbors, as discussed above, into a variable NN, neighbor 
number. We use the logic shown in Figure 8.1. 

Notation: As a convention ZPL programmers capitalize the names of arrays and regions 
to emphasize that the reference to many elements, and use lower case for everything else. 
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 1  program Life; 
 2  config const n : integer = 50; 
 3 
 4  region 
 5    R    = [1..n,   1..n  ]; 
 6    BigR = [0..n+1, 0..n+1]; 
 7   
 8  var 
 9    TW : [BigR] boolean = 0; -- The World 
10    NN : [R]    integer;     -- Number of Neighbo rs 
11 
12  direction 
13    nw = [-1, -1]; no = [-1, 0]; ne = [-1, 1]; 
14    we = [ 0, -1];               ea = [ 0, 1]; 
15    sw = [ 1, -1]; so = [ 1, 0]; se = [ 1, 1]; 
16 
17  procedure Life(); 
18  begin 
19    -- Initialize the world 
20  [R] repeat 
21        NN := TW@nw + TW@no + TW@ne + 
22              TW@we +         TW@ea + 
23              TW@sw + TW@so + TW@se; 
24        TW := (TW & NN = 2) | (NN = 3); 
25      until !(|<< TW); 
26  end;  

 
Figure 8.1. ZPL program for Conway’s game, Life. 
 
How It Works. The first half of the program is declarations, which have the following 
meaning: 
 

config const n : integer = 50  specifies the array bound, n, as a 
configuration constant, meaning that its value does not change after 
initially being set, and the initial setting is either the default value from the 
declaration, or a value specified on the command line. 

region R = [1..n,1..n]; BigR = [0..n+1,0..n+1]  declares two 
regions, BigR  being larger than R by border elements; the boundary will 
be uninhabited, i.e. assigned 0s, and is required for the @-references. 

var TW:[BigR] boolean = 0; NN:[R] integer  declares the 
problem representation (TW) initialized to 0, and the intermediate count of 
neighbors (NN). 

direction nw=[-1,-1]; ...  defines the eight compass directions needed 
to reference the nearest neighbors. 

 
Notice that naming the regions was mostly pedagogical because they are only used three 
times in the program, excluding declarations, and so could have been written explicitly. 
Nevertheless, we recommend naming regions. 
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Code Spec 8.4. Specifying the entry procedure for ZPL 
 
The program is a single procedure, Life . After the world is initialized—we assume a 
random configuration is created or an input file is read—the computation enters a repeat-
loop. The first line 
 

NN := TW@nw + TW@no + TW@ne + 
      TW@we +         TW@ea + 
      TW@sw + TW@so + TW@se; 

 
computes the number of living neighbors for each array position by type-casting the 
Boolean arrays into integer arrays and adding. This line could be read, “Add the array of 
northwest neighbors in TW to the array of north neighbors in TW to the array of northeast 
neighbors in TW ….” That is, ZPL programmers think of such operations from the global, 
array viewpoint rather than the local, index viewpoint. 
 
The next line creates the next generation by applying Conway’s rules. The next 
generation is  
 

TW := (TW & NN = 2) | (NN = 3);  
 
the logical-or of two arrays, the array of organisms with exactly two neighbors, and the 
array of positions with exactly three neighbors.   
 
When an iteration of the loop is complete, the termination test checks to see if there are 
still living organisms, and if not it exits. The termination condition 
 

!(|<< TW);  
 
computes an or-reduce over the world array, TW, which is 0 if no organisms exist, and 
negates the result. 
 
Summary of Life. The Life game is simple, and the ZPL program for it is also simple, 
some declarations plus two lines in a loop. Notice that the one loop drives the sequence 
of generations only. The programmer did not write any array traversal loops or write any 
index expressions; the compiler took care of generating all of the code for array 
manipulations.   
 
Perhaps more importantly, the compiler produces highly parallel code for the Life 
computation, though the programmer didn’t specify any parallel constructs. The 
parallelism is embedded in the semantics of the operations: The two statements of the 

Entry Point.  ZPL requires that some procedure have the same name as the program, 
i.e. matching the word following program  on the first line. That procedure is the 
entry point for the ZPL computation. 
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loop are fully parallel and the reduce operation uses the efficient Schwartz algorithm. (Of 
course, the declarations are no cost or trivial, one-time overhead.) 
 
The price for such convenience is that we had to think of the solution as an array 
computation. Though different, it was not so difficult.  

Manipulating Arrays Of Different Ranks  
With limited exceptions ZPL requires all of the arrays in a statement or expression to 
have the same rank, that is, the same number of dimensions. This is the common case, a 
natural consequence of algorithm design. But in some situations computations produce 
arrays of different rank, and in other cases arrays of different ranks must be operated on 
together. In these cases ZPL applies two basic ideas: 
 

• Use the larger rank: When arrays of two different ranks are to be used 
together, make all arrays the same (larger) rank. This is always possible, because 
a d-dimensional array can always be considered a d+1 dimensional array by 
picking a single index for that dimension. The lower rank array becomes a higher 
ranked array with a collapsed dimension. For example, to operate on arrays whose 
regions are [1..n, 1..p] and [1..m, 1..n, 1..p] , simply make the 
first region [1, 1..n, 1..p] . The idea applies inductively when the gap in 
rank is larger than 1. 

 
• Replicate elements: When values of lower rank arrays are used repeatedly 

with elements of higher ranked arrays, logically replicate the elements of the 
lower ranked array so that they match element-for-element the higher ranked 
array. ZPL has an operator, called flood, that performs this operation logically. 

 
We will see these two ideas merge in the concept of the “flood dimension” later in this 
section. 
 
The reason for all of this attention to array rank is that in ZPL the region defining an 
array not only tells how many dimensions it has, how many elements it has, and what the 
indices are, it also specifies the allocation. Different rank arrays will generally have 
different allocations. For example, the regions [1..64] , [1..8, 1..8]  and 
[1..4, 1..4, 1..4]  might be allocated as shown in Figure 8.2. Such allocations 
dramatically affect which values are “close” to each other. Such proximity dramatically 
affects locality. Locality dramatically affects performance. We have more to say on this 
below. 
 
The main consequence is that regions such as [1..m] , [1..m, 1] and [1..m, 1, 
1] , though they are all conceptually a sequence of values, have different allocations. 
Since arrays with the same allocation exhibit better locality, and so better performance, 
the ZPL designers opted for the “like rank” requirement. 
 
In this section we introduce operators that change rank, such as partial reduce, and 
operators that accommodate rank differences, such as flood. 
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Processor 1-dimensional 2-dimensional 3-dimensional 

0 
   

 Indices: 1..16 1..2,1..8 1,1..4,1..4 

1 
   

 Indices: 17..32 3..4,1..8 2,1..4,1..4 

2 
   

 Indices: 33..48 5..6,1..8 3,1..4,1..4 

3 

   

 Indices: 48..64 7..8,1..8 4,1..4,1..4 

 
Figure 8.2. Typical default allocations for 1-, 2- and 3-dimensional regions of 64 elements each on four 
processors, depicted simply as dots. 

Partial Reduce 
A basic property of the reduce operation is that it converts an array into a scalar. That is,  
 

sum := +<< A; 

 
produces a single value by adding the elements of array A. If this result is seen as 
“reducing” all of the dimensions of an array, then a partial reduce can be viewed as 
reducing some of the dimensions of an array. Considering the m × n array B, we note that 
we could reduce the first dimension by combining the columns of values to produce a 
single row, or reduce the second dimension by combining the rows of values to produce a 
single column.  
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Not surprisingly, in ZPL partial reduce uses two regions with the same rank, one to 
specify the source indices and one to specify the target indices. The source region, 
specified with the operand, defines which operand indices are input to the reduce; the 
target region, usually on the statement, defines the indices of the result. So, to partially 
reduce B along the first dimension using add, we write  
 

[1, 1..n] C := +<< [1..m, 1..n] B; 

 
where the “operand region,” [1..m,1..n]  specifies which indices of B are to 
participate in the reduce (source), and the statement region [1, 1..n]  specifies the 
indices of the result (target). For example, for m = 3 and n = 4, 
 

[1, 1..4] 7 7 6 5  ⇔  +<< [1..3, 1..4] 3 1 4 1 
                                       1 4 1 4 

              ≠                        3 2 1 0 
 
The compiler computes the “difference” between the two regions—the first dimension 
“reduces” from m indices to one and the second dimension is unchanged—and figures 
out that the first dimension, the columns, are to be reduced, that is, added.  
 
To reduce B in the second dimension using multiply, we write 
 

[1..m, 1] D := *<< [1..m, 1..n] B; 

 
and for m = 3 and n = 4 produce 
 

[1..3, 1] 12  ⇔  *<< [1..3, 1..4]   3 1 4 1 
          16                       1 4 1 4 
            0                       3 2 1 0 

                                                ≠ 
 
Again, the compiler computes the “difference” between the operand region and the 
statement region figuring out that multiply is applied to the second dimension.  It is not 
necessary to give the statement region explicitly; if the desired target region is already the 
applicable region—because the statement is executed within its scope—then the region 
need not be repeated. 
 
 
Notice that the region on the statement is really just defining the prevailing context for 
the computation. The closest applicable region might be another operand region, as in the 
more complex operation on the p × m × n array F, 
 

[1,1,1..n] G := max<< [1,1..m,1..n] (min<< [1..p,1. .m,1..n] F); 

 
which finds the “plane” of minimum values over the first dimension, and then finds the 
row of maximums over the columns of the “plane.” Thus, for m = 3, n = 4 and p = 2, an 
example is 
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[1,1..3,1..4] 2 1 3 1  ⇔  min<< [1..2,1..3,1..4]  3 1 4 1 
              1 3 1 2                             1 4 1 4 
              0 2 0 0                             3 2 1 0 
 
                                                 2 4 3 4 
                                                 1 3 2 2 
                                                 0 5 0 3 

 
 

    [1,1,1..4] 2  3  3  2  ⇔  max<< [1, 1..3, 1..4]   2 1 3 1 
                                                 1 3 1 2 
                                                 0 2 0 0 

 
For the min  reduction the compiler compares its operand region with the operand region 
of the max reduction to determine that the first dimension is reduced; for the max 
reduction, the compiler compares the operand region with the statement region. This idea 
generalizes. 

Flooding  
If it is possible to reduce an array dimension, then it ought to be possible to expand an 
array dimension. ZPL has an operation that expands in (one or more) dimensions by 
replicating. It is called flooding (>>), and it is the opposite of partial reduction but with 
the similar syntax. So, 
 

[1..m, 1..n] B := >> [1, 1..n] C; 

 
fills the array B with copies of the first row of C. For m = 3 and n = 4, an explicit example 
is 
 

 [1..3, 1..4] 7 7 6 5  ⇔  >> [1, 1..4] 7 7 6 5  
              7 7 6 5 
              7 7 6 5 

                                                         ≠ 
 
Like partial reduce the compiler figures out which dimensions to flood by comparing the 
two regions, and noting the differences. 
  
Of course, flooding can apply to any dimension, including the second dimension, as in 
 

[1..m, 1..n] C := >> [1..m,1] D; 

 
which can be illustrated by an example, for m = 3 and n = 4, 
 

[1..3, 1..4] 12 12 12  ⇔  >> [1..3,1] 12  
             16 16 16                   16 
               0   0   0                   0 

 
In addition, it is possible to flood only a portion of a dimension with replicated values.  
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The Flooding Principle 
What is the point of flooding; why copy values? Flooding is used when arrays of 
different ranks must be operated on together. Suppose, for example, that every column of 
a matrix is to be scaled by, say, its column two. The matrix is 2-dimensional and the 
column is in concept 1-dimensional. But, because only one region applies to a statement, 
ZPL requires that the two arrays match in rank. So, we replicate column two using 
flooding, making it a logical 2-dimensional array, and divide (element-wise) by the 
result. Specifically, we write 
 

[1..m,1..n] B := B / (>> [1..m, 2] B); 

 
The expression in parentheses is an m × n array composed of n copies of column two, and 
because the division is performed element-wise, the result is that every column is scaled 
by column two. Specifically, let m = 3 and n = 4, then an example of the principle would 
be  
 

[1..3, 1..4] 3.00 1.00 4.00 1.00  ⇔  3 1 4 1 / 1 1 1 1  
             0.25 1.00 0.25 1.00     1 4 1 4   4 4 4 4  
             1.50 1.00 0.50 0.00     3 2 1 0   2 2 2 2  

 
The values are only logically replicated; that is, the compiler does not actually make 
copies of the values. The benefit of this approach is to allow better locality in the 
computation, and to manage data transfers more efficiently.  

Data Manipulation, An Example 
Imagine a dataset D of shape [1..m, 0..n] containing rows of n observations, say 
cups of coffee consumed in a day, for m subjects. To record summary data, the array has 
been given an additional 0th column. Consider some illustrative computations on this 
data. 
 
The most coffee consumed on any day by any subject is the max reduce over the data 
portion of the entire array 
 

 [1..m,1..n] most := max<< D; -- Compute top score 

 
The variable most  is a scalar.  
 
The maximum for each subject is the partial reduction across the rows, which we store in 
the 0th column 
 

[1..m, 0] D := max<< [1..m, 1..n] D;  -- Record ind ividual maxima 

 
The computation produced a column of values.  
 
The test for any non-coffee drinkers is simply a check for a 0 in the summary column and 
an OR-reduce (over that column only) to accumulate the result, as in 
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[1..m, 0] tFans := |<<(D = 0); -- Does anyone not l ike coffee? 

 
The variable tFans  is a scalar. (Of course, a simple AND-reduce &<<D would also 
work, but it may be less clear.)  
 
In the case where everyone is a coffee drinker, we can scale everyone’s coffee habit in 
the range (0,1] relative to their biggest day by flooding the first column across the array 
and dividing the result into the data array, 
 

if !tFans then 
     [1..m,1..n] D := D / (>> [1..m, 0] D);  -- Sca le by maximum 
end; 

 
Finally, we can determine the percentage of days of the study that each person achieved 
his or her maximum. We begin by comparing the whole data array to 1, then partially 
reducing each row using addition, which produces a count of max days for each person, 
and then dividing the results by n. 
 

[1..m, 0] D := 100 * (+<< [1..m,1..n](D = 1)) / n; --Pct days@max 

 
Though some programmers might find it natural to use column 0 as a summary column, 
others would prefer to declare the dataset by its proper dimensions [1..m, 1..n] 
and use a separate array Sum [1..m, 1]  to store summary results. Of course, we 
require Sum to be 2-dimensional, because it will be used in expressions involving D. 
With this approach the forgoing computations become 
 

[1..m,1..n]  most    := max<< D;  
  [1..m, 1]  Sum     := max<< [1..m, 1..n] D;   
  [1..m, 1]  tFans   := |<<(Sum = 0);  
             if !tFans then 
[1..m,1..n]        D := D / (>> [1..m, 1] Sum);   
             end; 
  [1..m, 1]  Sum     := 100 * (+<< [1..m,1..n](D = 1)) / n;  

 
By such computations ZPL programmers perform routine data manipulation, switching 
back and forth among various data sizes but remaining within a given rank.  

Flood Regions 
The use of the Sum variable in this last example illustrates a curiosity with the way we 
have used ZPL so far. Though it made sense in our first solution, perhaps, to place the 
summary column in the 0th position, why do we specify the array Sum to have its second 
index be 1? Could it be 0 or 9  or n? Yes. The actual consequences of this decision for 
memory allocation will be explained below, but our point now is that the choice will 
generally be arbitrary. To emphasize the arbitrariness, notice that one of the operations on 
Sum is to flood it, that is, replicate it in all column positions.  
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ZPL has the concept of a flood dimension, denoted by an asterisk (*) in the region 
expression.  The flood dimension is effectively a “don’t care” for a (collapsed) index. So, 
the best way to define the summary array from the last example would be 
 

var Sum : [1..m, *] float; 

 
which specifies that the data is flooded in the second dimension. The final four 
statements from the earlier example now become 
 

  [1..m, *]  Sum     := max<< [1..m, 1..n] D;   
  [1..m, *]  tFans   := |<<(Sum = 0);  
             if !tFans then 
[1..m,1..n]        D := D / Sum);   
             end; 
  [1..m, *]  Sum     := 100 * (+<< [1..m,1..n](D = 1)) / n;  

 
There is no need to flood Sum in the third line because the data is already flooded by the 
properties of flood dimensions. This means that there are values to correspond element-
wise with the n elements of D’s second dimension. How many elements does Sum have 
in its second dimension? Any number needed with any needed indices. Graphically, the 
values of Sum can be visualized as 
 

…, v1, v1, v1, v1, … 
…, v2, v2, v2, v2, … 
…, v3, v3, v3, v3, … 
…, v4, v4, v4, v4, … 
           … 
…, vm, vm, vm, vm, … 

 
so they match arrays of any size in the second dimension. Like all flood dimensions, 
however, Sum’s second dimension is only logical. 
 
Flood dimensions are sensible based on the principle that programmers should never be 
asked to specify more than they mean. But there is another important reason. Flood 
dimensions enable the compiler to use very efficient data representations—data 
replication is avoided—and very efficient communication protocols—multicast is often 
possible. As a result, it is always better to select a flood dimension than it is to make an 
arbitrary choice of a collapsed index value. (Sometimes a choice is appropriate, as when 
controlling allocation, however.) 

Matrix Multiplication 
To apply the ideas of this section consider computing the product of two dense matrices, 
A, which is m × n, and B, which is n × p to produce C = AB. This computation is often 
programmed in sequential programming languages as a triply nested loop  
 

for (i = 0; i < m; i++) { 
{ 
    for (j = 0; j < p; j++)  
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    { 
        C[i,j] = 0; 
        for (k = 0; k < n; k++)  
        { 
            C[i,j] += A[i,k]*B[k,j]; 
        } 
    } 
} 

 
computing the dot product for each element, in which the i th row of A is multiplied 
times the j th column of B and reduced to produce the C[i,j] . 
 
We present this sequential solution only to be precise. It is not the right way to think 
about a parallel matrix product. Indeed, van de Geijn and Watts argued that computing 
the dot products separately, i.e. a row of A times column of B, is exactly backwards. In 
their SUMMA (Scalable Universal Matrix Multiplication Algorithm) approach they bring 
the initialization and the k-loop to the outside, effectively computing all of the kth terms 
of all of the dot-products at once. This contrary way of thinking produces an extremely 
efficient matrix multiplication. It is also the easiest ZPL matrix multiplication because it 
exploits flooding. 
 
To see the key idea of SUMMA and why flooding is so fundamental to it, notice that in 
the computation C = AB for 3x3 matrices A and B, the definitions of the first two 
columns of the result are 
 

C1,1 = A1,1xB1,1 + A1,2xB2,1 + A1,3xB3,1 C1,2 = A1,1xB1,2 + A1,2xB2,2 + A1,3xB3,2 … 
C2,1 = A2,1xB1,1 + A2,2xB2,1 + A2,3xB3,1 C2,2 = A2,1xB1,2 + A2,2xB2,2 + A2,3xB3,2 … 
C3,1 = A3,1xB1,1 + A3,2xB2,1 + A3,3xB3,1 C3,2 = A3,1xB1,2 + A3,2xB2,2 + A3,3xB3,2 … 

 
Notice that the first term of all of these equations can be computed by replicating the first 
column of A across a 3x3 array, and replicating the first row of B down a 3x3 array, that 
is, flooding A’s first column and B’s first row, and then multiplying corresponding 
elements; the second term results from replicating A’s second column and B’s second 
row and multiplying, and similarly for the third term. 
 
The ZPL matrix product code is shown in Figure 8.3. The program begins with the 
obvious variable declarations. The Col  variable will be used to flood columns of A, and 
Row will be used to flood rows of B. In the body of the procedure, the entire computation 
is executed in the context of the result array C’s dimensions. The result array is initialized 
to 0, and the computation enters the k -loop that processes through the n terms of the dot 
product. 
 
 
In the body of the loop the next column of A is flooded across Col  and the next row of B 
is flooded down Row. In the final statement of the loop the two flooded arrays are 
multiplied element-wise and accumulated into the result array, C. Then the next term of 
the dot-product is considered.  
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var A   : [1..m, 1..n] double; 
    B   : [1..n, 1..p] double; 
    C   : [1..m, 1..p] double; 
    Col : [1..m, *]    double; 
    Row : [*, 1..p]    double; 
    k   :              integer; 

                 ... 
 

procedure MM(); 
[1..m, 1..p] begin 
               C := 0; 
               for k = 1 to n do 
     [1..m, *]    Col := >> [1..m, k] A; 
     [*, 1..p]    Row := >> [k, 1..p] B; 
                  C += Col*Row; 
               end; 
             end; 

 
Figure 8.3. The SUMMA matrix multiplication algorithm in ZPL. 
 
Notice that the use of the temporary arrays Col  and Row was actually unnecessary. The 
procedure could have been written as, 
 

procedure MM(); 
[1..m, 1..p] begin 
               C := 0; 
               for k = 1 to n do 
 C += (>> [1..m, k] A ) * (>> [k, 1..p] B); 
               end; 
             end; 

 
using expression floods. In fact, the compiler will generate temporaries for the expression 
floods anyway corresponding to Col  and Row, but it saves the programmer a few lines of 
typing. The SUMMA is not only an easy matrix multiplication program to write, it is 
extremely fast to run.  
 
The constraints on partial reduce and flood are summarized in Code Spec 8.5. 

Code Spec 8.5. Requirements of ZPL’s partial reduce and flood. 
 
 
 

Partial Reduce (<<) and Flood (>>). These two operations require two regions, a 
source region (included as a operand) and a target region (usually on the statement), as in  

  [1, 1..3]     ...  +<< [1..3, 1..5] A ...  // red uction 
  [1..3,1..5]   ...   >> [1, 1..3]    A ...  // flo od 

For each dimension in the two regions the index ranges are either identical or one is a 
collapsed dimension (singleton value). For partial reduction (collapsed dimension(s) on 
target region), the elements of the operand are combined to collapse the dimension; for 
flood (collapsed dimension(s) on the source region), the element is replicated to flood the 
index range of the dimension. 
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Reordering Data With Remap 
ZPL emphasizes computing on data that is local, but often data has to be moved around 
to become local. The remap performs arbitrary restructuring of data, including changing 
its rank. Before learning about remap, we must introduce the Indexi arrays. 

Indexi 
ZPL provides compiler-generated constant arrays of indices denoted by the form Index  
+ <dimension number>, as in Index1 , Index2 , Index3 , etc. The arrays, which are 
only logical, contain the index values for the indicated dimension as specified by the 
region. So, for example 
 

[1..3,1..3]  ... Index1 ...  ⇔  1  1  1 
          2  2  2 
                                3  3  3 

  
is an array of the first dimension indices, and 
 

[1..3,1..3]  ... Index2 ...  ⇔  1  2  3 
          1  2  3 
                                1  2  3 

 
is an array of second dimension indices. The only constraint on the use of Index i arrays 
is that the statement’s region have an ith dimension. 
 
The constant Indexi arrays are used frequently in ZPL programs, as in 
 

[1..n,1..n]  Diag := Index1 = Index2; 

 
for constructing an array with 1s down the diagonal, and  
 

[1..n,1..n]  RMO := n*(Index1-1) + Index2; 

 
for computing the row-major order index of elements of a 2D array. They are also used 
frequently in remap. 
 

Remap 
The remap operator is denoted by the hash symbol (#) and has two forms, known as 
gather and scatter.  Both forms take an argument in brackets, the remap array(s), 
A#[P] , that specifies the indices used to produce the result. One remap array is required 
for each dimension.  
 
1-Dimensional Case. For example, suppose A and P are declared over the region 
[1..n] , and that for n=7, the values are 
 

A ⇔ d  d  e  e  o  r  r  
P ⇔ 5  6  1  3  7  4  2  
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then A#[P]  has the value 
 

o  r  d  e  r  e  d ⇔ d  d  e  e  o  r  r # [ 5  6  1  3  7  4  2 ] 

 
The result can be found by indexing the operand array with the remap array; so, for 
example, the first element of the remap array is 5, so the fifth element of the operand, o, 
is selected for the first position.  
 
It is common to use expressions based on the Index i values. For example, A#[8-
Index1] , which is the descending index values for the first (and only) dimension of this 
array, 
 

r  r  o  e  e  d  d ⇔ d  d  e  e  o  r  r # [ 7  6  5  4  3  2  1 ] 

 
reverses the operand. To spell ordered backwards, write A # [P # [8-Index1]] . 
 
Gather and Scatter. The form of remap shown so far is the gather form, which is used 
on the right-hand side of assignment statements. It is also possible to write remap on the 
left-hand side of an assignment statement, as in 
 

A#[P] := A 

 
to get the scatter semantics. In this case the right-hand side values are produced and 
assigned to the variable on the left-hand side according to the indices of the remap array. 
For the A and P data from above, the statement A[P] := A  results in  
 

e  r  e  r  d  d  o ⇔ d  d  e  e  o  r  r # [ 5  6  1  3  7  4  2 ]:= d  d  e  e  o  r  r  
 
proving, if it was necessary, that gather and scatter are different. (The terms come from 
the fact that gather picks the values from operand positions using the indices and scatter 
puts the values into result positions using the indices.) 
 
Repeats in Remap Arrays. The values in the remap arrays do not have to be unique, 
though that is the most common case. For example, the gather A#[ 1  1  1  1  1  1  1]  is 
 

d  d  d  d  d  d  d ⇔ d  d  e  e  o  r  r  # [ 1  1  1  1  1  1  1 ]  

 
is a cumbersome (and expensive) way to flood the first element of A. For scatter the issue 
is more curious. Because scatter assigns values, an index value appearing multiple times 
in the remap array can result in different orders of assignments, resulting in unpredictable 
results. So, the scatter form A # [ 1  1  1  1  1  1 ]:= A  
 

?  d  e  e  o  r  r  ⇔ d  d  e  e  o  r  r  # [ 1  1  1  1  1  1  1 ]  
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will result in one of d, e, o or r  being assigned to the first index position, but which is 
undefined. Different (parallel) executions will produce different results. 
 
Higher Dimensions. Higher dimensions require multiple remap arrays in the brackets, 
B # [C, D] , the array in the ith dimension specifying the index values for that 
dimension. That is, the elements of B are reordered using C as the source of all of the first 
indices and D as the source of all of the second indices.  For example, 
 

[1..n, 1..m] Btranspose := B # [Index2, Index1]; 

 
is a standard idiom for computing the transpose of an array, because the indices of the 
two dimensions are interchanged. For Btranspose  declared over region [1..n, 
1..m]  then, for m=3 and n=2 the transpose is illustrated by 
 

a  c  e  ⇔ a  b # [ 1  2  3,  1  1  1 ] 
b  d  f    c  d    1  2  3   2  2  2 
        e  f 
                                 

The operation of this gather is clear: Item i, j in the result comes from the Ci,j, Di,j position 
of the operand. 

Ordering Example 
Remap is used regularly in ZPL. An excellent example of its use is to move rows around 
so they are in order by some criterion. Illustrating such a computation is the task of this 
section. 
 
Recall the “coffee drinkers” data array from the Data Manipulation Section. The array 
was defined over the region [1..m, 0..n] , recording the number of cups of coffee 
consumed by m people over n days; the first column is used for summary statistics. For 
example, we know that we can compute the average coffee consumption of the 
participants by 
 

[1..m, 0] D := (+<< [1..m,1..n] D)/n; 

 
Now, suppose we want to order the coffee drinkers by their average consumption, least to 
greatest. This means that we need to reorder the rows of the D array based on the value in 
column 0. For this, we need to compute everyone’s rank based on the 0th column.  
 
Our strategy is to break the task into three parts 
  

• compute the rank by using flood to make all comparisons 
• reduce to get the ranking 
• remap the array into the right order  

 
For convenience, we will assume the averages are unique, but it is simple to handle 
duplicates. 



12/5/2006 

31 

 
All Comparisons Ranking Algorithm. To compare every element with every other 
element of a sequence, we flood a 2D array with the 0th column averages. This gives one 
of the operands for the comparison. To get the other operand, we transpose the array, and 
flood it in the other dimension. Making a comparison of the two arrays yields an array of 
bits.  
 
Begin with the declarations, 
 

RepC : [1..m, *] float; -- Temp for replicated colu mns 
RepR : [*, 1..m] float; -- Temp for replicated rows  

 
and using the averages in column 0 of D to flood the arrays. For RepC the flood is direct 
because the two arrays are oriented properly. For RepR column 0 must first be 
transposed to be a row before flooding, 
 

[1..m,*] RepC := >> [1..m, 0] D;    -- Replicate Av e Col 
[*,1..m] RepR := >> [*, 1..m] D#[Index2, 0];-- Repl  Ave as a Row 

 
Making all of the comparisons is a simple matter, 
 

[1..m, 1..m]  ... RepC >= RepR;  Make an array of b its 

 
Obviously, care must be taken to chose the right relational operator. The >= will have the 
effect of setting only one bit in the row corresponding to the smallest item; all of the bits 
will be set in the row containing the maximum item.  
 
All Comparisons Ranking Algorithm. To find the rank of the items, simply add up 
the 1s in each row using a partial reduce. This will produce a column of results, but 
because we will be using the result in a remap, we don’t want just a column; we want an 
array flooded with the rank values. So, we include the declaration 
 

var Rank : [1..m, *] integer; 

 
which makes the second dimension a flood dimension. 
 
With the Rank variable set up we can perform the partial reduction followed by the flood 
 

[1..m, *] Rank := >> [1..m,*] (+<< [1..m,1..m] (Rep C >= RepR)); 

 
producing the desired result.  
 
Sorting With The Rank Array. Now, using the values in Rank we can reorder the 
rows of D using remap.  
 

 [1..m, 0..n] D#[Rank, Index2] := D; 
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which orders the rows by the value in the 0th column. The final program is shown in 
Figure 8.4. 
 

region R = [1..m,0..n]; 
var      D: [R] float; 
     RepR : [*, 1..m] float; 
     RepC : [1..m, *] float; 
     Rank : [1..m,*] integer; 
           ... 
  [1..m,*] RepC := >>[1..m,0] D; 
  [*,1..m] RepR := >>[*,1..m] D#[Index2,0]; 
  [1..m,*] Rank := >>[1..m,*](+<<[1..m,1..m] (RepC >= RepR)); 
           D#[Rank, Index2] := D; 

 
Figure 8.4. Declarations and code for reordering the rows of D according to its column 0. 
 
This reordering operation seems complicated when considered for the first time, but it is 
a standard ZPL paradigm. It becomes second nature very quickly, especially once the 
apparatus has been set up.  

Parallel Execution of ZPL 
The beauty of a high level language filled with parallel abstractions is that programming 
is simple because the compiler does the tough work. There are no threads to keep track 
of, no communication calls to insert, etc. The compiler not only generates the code, it can 
optimize it as well. The result is a fast easy-to-write program that need only be 
recompiled to run well on the next parallel platform.  
 
Although it is sensible to benefit from the compiler’s help, it is also essential to know 
how the program will run. That is, there are always a variety of ways to solve a given 
programming problem, and they often require different resources—more instructions, 
more data motion, more memory, etc. To write quality programs we need to know 
enough about how the language is implemented to know which of the competing 
solutions is the best. ZPL was the first parallel programming language to embed within 
its specification a performance model, known as the WYSIWYG Performance Model.  By 
taking a few minutes to learn how the model describes the performance of the compiled 
code, programmers can apply the knowledge to write better programs. It’s easy.  

Specifying Number of Processors 
All computations begin with a standard organization, which we describe now. It is 
possible for programmers to assign work and data to processors differently using features 
not yet discussed, but any such changes begin from the standard organization.  
 
On the command line programmers specify the number of processors and their 
arrangement using the –p  option and the –g  option. So, to run the compiled program 
myProgram  on sixteen processors arranged in two rows of eight, write 
 

myProgram –p16 –g2x8 
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The arrangement, which is typically expressed as a 2D grid, is key to the allocation of 
arrays to processors.  

Assigning Regions to Processors 
Since arrays inherit their indices from regions, it is not surprising that the first step in 
assigning arrays to processors is to assign regions to processors. The regions of a 
program are assigned in a consistent way, so that all regions with an index [i, j, …, k] 
have that index assigned to the same processor. To achieve this effect think of all regions 
being superimposed on one another so that their indices align, as shown in Figure 8.5. 
From this superimposition their bounding region is computed; the bounding region is the 
smallest region that includes all of the indices of the superimposed regions. 

 

 
 
Figure 8.5. Bounding region. Regions used in the program are superimposed so that their indices align; 
the black square has the same index in all regions. Once aligned, the bounding region is the smallest region 
containing the same indices as the superimposed region. 
 
Once computed the bounding region can be allocated based on the processor gird given 
on the command line with the –g option. The allocation is a block allocation using the 
Ceiling – Floor assignment described in Chapter 4. The indices are allocated to 
processors indexed in the obvious way: low index to high index in row major order. Once 
the bounding region has been assigned to the processors, the task is complete because the 
contributing regions simply make the same assignment. Thus, a –p4 –g2x2  allocation 
of the region in Figure 8.5 is shown in Figure 8.6. The assignment shown illustrates that 
allocating regions so that all indices align can result in a slightly suboptimal allocation. 
The effect is generally small, and only occasionally arises. 
 
As another example, the allocation in Figure 4.1(b) is achieved for a 16×16 ZPL region 
by specifying –p16 –g16x1 . 

Region Allocation Policy. The policy of aligning the regions so that index [i, j, …, k] of any region 
is assigned to one processor guarantees that when element-wise operations are performed on arrays, 
such as A + B , all of the computation is local to the processors. There is no communication. 
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Figure 8.6. Block allocation of the bounding region. The bounding region is partitioned using the Ceiling-
Floor allocation, which assigns a set of indices. The contributing regions’ indices are assigned in the same 
way. 

Array Allocation 
Given the assignment of the regions’ indices to the processors, arrays are trivially defined 
by allocating space for their elements on the processors according the where their indices 
are located, that is, the arrays inherit the regions’ allocations. The order of allocating 
elements matches that of the C language, which is row-major order. Additionally, the 
allocations have fluff buffers where needed. 
 
For example, the statement 
 

var B, C, D : [1..8, 1..8] float; 

 
allocated to a 2×2 processor grid, would assign processor p0 the subregion 
[1..4,1..4] , implying that those indices for arrays B, C and D are also allocated to it; 
p1 would be allocated the subregion [1..4, 5..8] , etc.  

Scalar Allocation 
Non-array variables are redundantly allocated; that is, all processors are assigned all of 
the scalars. Scalar computation, such as  
 

i := i + 1; 

 
is redundantly computed by each processor. On the plus side this redundancy eliminates 
communication (recall the random number example of Chapter 2), but on the minus side 
scalar computation is not a source of improved performance through parallelism. 

Work Assignment 
With the arrays allocated, the work assignment is easily specified: Each processor 
computes the values for the elements allocated to it. So, the region on the statement, 
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which can be thought of as stating the indices to be computed in the array statement, 
imply which processor performs the actual computation. For the statement 
 

[1..8, 1..8]  B := C + D; 

 
processor p0 would perform the update to the subregion [1..4, 1..4] of B using the 
local elements of C and D. By implication when the data is well-balanced among the 
processors, the work for such statements will be well-balanced. Thus, the work to update 
this array will be distributed among the four processors evenly enough that a 4-fold 
speedup can be anticipated.   
 

Performance Model 
Given the previous description of how regions, arrays and work are allocated to 
processors by the ZPL compiler, it is easy to see how a program with only element-wise 
computations would perform in parallel: It exhibits essentially perfect speedup. But what 
about the other ZPL constructs? In fact, they are almost as easy to understand. 
 
ZPL’s performance model is based on the element-wise specification plus an overhead 
communication cost for those operations, such as @-references and remaps, requiring 
off-processor values. The communication component adds to the base cost of the work. 
The model rests on the idea that these two costs—basic work and communication 
overhead—constitute a good first approximation to the performance of any algorithm on 
any (CTA) platform. The model is easy to use because programmers can “see” the places 
in their code where they incur the added communication costs by simply noting where the 
operators are used. Code Spec 8.6 shows a brief summary of these costs. 

Code Spec 8.6. ZPL’s performance model specifications for worst-case behavior; the actual performance 
is influenced by n, P, processor arrangement and compiler optimizations in addition to the physical features 
of the computer. 
 
To amplify further on the cost model, consider the following operations.  
 

• @-translations: The @-modifier on operands implies data transmission from 
values stored on adjacent processors to local fluff buffers to implement the 
translation. Only edge elements are transferred, so by the CTA model, these 
point-to-point communications will in general collectively require 1 or a constant 
number of λ communication delays. 

Syntactic Cue Example Parallelism (P) Communication Cost Remarks 
[R]  array ops [R]  ... A+B ... full; work/P   
@ array transl. ... A@east ...  1 point-to-point xmit "surface" only 
<< reduction ... +<<A ... work/P + log P 2log P point-to-point fan-in/out trees 
<< partial red … +<<[ ] A  … work/P + log P log P point-to-point  
|| scan … +||  … work/P + log P 2log P point-to-point  parallel prefix trees 
>> flood … >> [ ] A …  multicast in dimension data not replicated 
# remap ... A#[I1,I2]  ...  2 all-to-all, potentially general data reorg. 
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• << reductions: The reduce operation uses the Schwartz algorithm to combine the 
array values into a scalar; this is followed by a broadcast to distribute the scalar 
value back to all processors. Thus, the communication pattern is a combining tree 
followed by a broadcast tree, each of which is at most log P height, resulting in 
λlog P communication cost. 

• << partial reductions: The partial reductions follow the combining concepts of 
full reductions, but without the broadcast. 

• || scan: Scan uses the parallel prefix operation, and therefore has two traversals 
of a log height P tree, one up and one down, resulting in a 2λ log P 
communication expense. 

• >> flood: The flood must distribute stored values to other processors representing 
portions of its dimension; a multicast—a broadcast to a subset of the processors—
can be used if available. (Special hardware is generally fast, but even without it 
broadcast can be performed by a tree, resulting in log P concurrent transmissions.) 
The primary feature of flood that bounds its communication complexity, is that if 
processors are assigned to more than one dimension, only a small subset of the 
processors will be recipients of any flood. 

• # remap: The remap operation is ZPL’s most expensive because it entails two 
communication cycles: one to distribute the pattern of communication (remap 
arrays), and one to distribute the data itself. Potentially, these are both all-to-all 
communications, meaning that each processor might have to communicate with 
every other processor. ZPL attempts to optimize remap to reduce its expense: 
Examples, include exploiting constant arguments as occur in transpose 
(#A[Index2, Index1] ), or reusing remap arrays if they have not changed 
since the last remap. 

 
Using this information, it is possible to know roughly how a statement will perform.  

Applying the Performance Model: Life 
When we wrote the Life program we focused on realizing the proper computation, but we 
could also know in approximate terms how the program will perform. Recall that the 
main computation was 
 

20  [R] repeat 
21        NN := TW@nw + TW@no + TW@ne + 
22              TW@we +         TW@ea + 
23              TW@sw + TW@so + TW@se; 
24        TW := (TW & NN = 2) | (NN = 3); 
25      until !(|<< TW); 

 
The loop contains essentially three computations: calculating NN, calculating TW and 
computing the reduction for the loop-termination test. Analyze each. 
  

• Calculating NN. The statement involves eight @-translation followed by local 
computation. According to Code Spec 8.6, each @-translation requires a λ delay or 
so, because a CTA computer can be expected to perform many such point-to-
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point communications at once. So, we charge constant communication plus local 
computation. 

• Calculating TW. This statement requires only local computation on the array 
elements; there is no communication charge. This is parallel computation’s best 
case. 

• Or Reduce. The loop termination expression requires the 2λ log P time for the 
Schwartz algorithm.  

 
Further, the default block allocation will result in reasonably balanced work, implying a 
factor of P speedup on the computation. So, asymptotically, as n increases, the problem 
continues to enjoy full speedup with O(log P) communication overhead; if P grows, the 
increase in communication overhead remains modest. 

Applying the Performance Model: SUMMA 
The matrix multiplication algorithm of Figure 8.3 has the text  
 

[1..m, 1..p] begin 
               C := 0; 
               for k = 1 to n do 
 C += (>> [1..m, k] A ) * (>> [k, 1..p] B); 
               end; 
             end; 

 
as the main part of the computation.  
 
Ignoring the onetime initialization of array C, the loop has for each of the n iterations two 
flood operations and then multiply-add computations on the local elements. Again, the 
default block operation will result in a reasonably balanced allocation, so the multiply-
add computations will be fully parallel. If we arrange the P processors into a √P × √P 
grid, then each multicast tree implementing a flood will have height log P/2. Thus, the 
communication overhead for the two iterations can be estimated to be O(log P) per 
iteration, making it an efficient parallel matrix product solution.1  

Summary of the Performance Model 
The bound is an estimate of the worst-case time complexity of the computation based on 
how the model describes ZPL’s execution on a CTA computer. As programmers we can 
depend on it as a reliable machine-independent bound. Though certain ZPL compiler 
optimizations can lead to better performance, the model guarantees that the program will 
realize at least this level of performance. For example, the compiler moves 
communication calls around, which can result in overlapping communication with 
computation. If successful in this case, the communication overhead might be entirely 
eliminated; but if it is not the performance is still quite satisfactory. 

                                                 
1 This type of analysis can be used to compare algorithms. The original paper announcing the computation 
model compared SUMMA with Canon’s algorithm, and found SUMMA to be better, a prediction that was 
confirmed by experimentation.   



12/5/2006 

38 

Summary 
ZPL is a high-level array programming language with implicit parallelism. We write 
array computations as we might in any array language without consideration to the issues 
of parallelism. The compiler performs all of the parallelization, communication 
placement, process spawning, etc. We can be completely oblivious to parallelism in ZPL. 
 
Nevertheless, we will pay attention to the parallelism by using ZPL’s performance model 
to estimate how well our computation will run. Such estimates are based on the CTA and 
are sound for all parallel computers modeled by the CTA. ZPL is unique in allowing 
programmers to write well-designed parallel programs even though they do not write the 
implementing parallel code.    
 

Exercises 
 
Exercise 1: Develop a small 3 x 3 data array. By hand, work out example values for the 
computations in the Data Manipulation Section. 
 
Exercise 3: Revise the row rank ordering of the coffee data to handle duplicates. 
 

Historical Context 
WYSIWYG paper, ZPL programmer’s guide, remap paper. 
  
 


