12/5/2006

Chapter 7: Programming with MPI

This chapter will describe and evaluate MPI, the Message Passirfgdatevhich

provides a programming interface that is portable across all parallputers. In

particular, whereas Pthreads assume that the hardware supports a shasscspddes

MPI makes no such assumption. Moreover, MPI supports collections of heterogeneous
machines. There are other message passing libraries, including the Ratabé

Machine library, PVM.

Getting Started

We will again use the count 3's example to illustrate the basics, befatseouss more
advanced features. Here, we will use C bindings for MPI, but the standard also provides
bindings for Fortran and C++.

Execution Model

The MPI execution model differs from Pthreads. In MPI the unit of paralletism i

process, not a thread, so each process has its own address space. The onlyweay that t
processes can communicate is to send messages to one another using the operations of
MPI_Send() andMPI_Recv() . Thus, a parallel program’s data structures actually
consist of a collection of independent portions of data, each residing in a different
process. Furthermore, MPI execution is initiated with a static number of pesces

typically with processes assigned to different processors. Some extegtanism is

thus needed to initiate the MPI program, specifying the total number of proctbegors

will be used.

Initialization and Cleanup

The following code is a typical skeleton MPI program that initializes P4 single
process and then cleans up afterwards.

1 #include <stdio.h>

2 #include “mpi.h”

3 #include “globals.h”

4

5 int main (argc, argv)

6 int argc;

7 char **argv;

8{

9 int mylD, value, size;

10 MPI_Status status;

11

12 MPIL_Init(&argc, &argv);

13 MPI_Comm_size(MPI_COMM_WORLD, &size);
14  MPI_Comm_rank(MPI_COMM_WORLD, &myID);
15

16 /* compute stuff in parallel */

66 MPI_Finalize()
67 return O;



12/5/2006

68}

The call toMPI_Init() on line 11 initializes the MPI runtime system, in this case
passing along the runtime arguments with which this program was invoked. This
initialization routine should be called exactly once for each MPI process.

The calls on lines 12 and 13 define a context in which communication can occur. In
particular, the first argument to these calls specifiesranunicator, which is an MPI
scoping mechanism for grouping sets of logically related communication opsra
process may use different communicators to keep logically distinct comriionica
operations separate. In our example above, the program uses a single commur&cator, t
predefinedMPI_COMM_WORIcDmmunicator that includes all available MPI processes.
The call toMP1_Comm_size() returns to this process, through its second parameter,
the number of processes that participate within this communicator, and the
MPI1_Comm_rank() call returns theank of this process within the communicator. A
rank is a unique identifier used by MPI to identify this process within the communicator
The ranks are numbered from O to size-1. MiR_Finalize() call cleans up MPI

data structures. Of course, this routine should be the last MPI function called by
process.

MPI_Comm_Size&()

int MPI_Comm_Size ( /I Retrieve size of a commu nicator
MPI_Comm comm, /I Communicator
int *size, Il Size

h

Arguments:

e The communicator of interest.
* A pointer to the size, whose target will contain the size of the specified
communicator.

Return value:
* An MPI error code.

Code Spec 1. MPI_Comm_Size(). MPI routine to obtain the numbfprocesses in a communicator.

With the skeleton code in place, we are now ready to write the meat of a parallel
program. First assume that the filebals.h  includes the following lines:

#define RootProcess 1
int length;

int length_per_process;
int myStart;

int myCount = 0;

int globalCount;
MPI_Status status;
inttag = 1;



12/5/2006

MPI_Comm_Rank()

int MPI_Comm_Rank ( /I Retrieve rank of a commu nicator
MPI_Comm comm, /I Communicator
int *rank, /I Rank
h

Arguments:

¢ The communicator of interest.

* A pointer to the rank, whose target will contain the rank of the specified
communicator.

Return value:
* An MPI error code.

Code Spec 2. MPI_Comm_Rank(). MPI routine to obtain a pro¢eask within in a communicator.

MPI_Send()

int MP1_Send ( /I Blocking Send routine
void * buffer, /I Address of the data to send
int count, / Number of data elements to send
MPI_Datatype type, /I Type of data el ements to send
int dest, /I'ID of destinati on process
int tag, /I Tag to distingu ish this message
MPI_Comm * comm /I An MPI communic ator
3

Arguments:

Use MPI_STATUS_IGNORE if you

Notes:

» This routine has blocking semantics, which means that the routine does not

return until the message is received at the destination process. See
MPI_lsend()  for a non-blocking version of the send operation.

Return value:
* An MPI error code.

Code Spec 3. MPI_Send(). MPI routine to send data to anofiiecess.

With the assumed global variables, we can now give the body of the Count 3’s code..

16
17
18
19
20

length_per_process = length/size;

/* Read the data, distribute it among the var ious processes */
if (myID == RootProcess)

{



12/5/2006

21 if ((fp = fopen(*argv, "r")) == NULL )

22

23 printf(“fopen failed on %s\n", filena me);

24 exit(0);

25 }

26 fscanf(fp,"%d", &length); /* read input size */

27

28 for (p=0; p<size-1; p++) /*read data on behalf of each */
29 { [* of the oth er processes */
30 for (i=0; i<length_per_process; i++)

31 {

32 fscanf(fp,”%d”, myArray+i);

33

34 MPI_Send(myArray, length_per_process, MPI_INT, p+1,
35 tag, MPI_COMM_WORLD);

36 }

37

38 for (i=0; i<length_per_process; i++) [* Now read my data */
39 {

40 fscanf(fp,”%d”, myArray+i);

41 }

42 3

43 else

44

45 MPI_Recv(myArray, length_per_process, MPI _INT, RootProcess,
46 tag, MPI_COMM_WORLD, &status);

47 }

48

49 [* Do the actual work */

50 for (i=0; i<length_per_process; i++)

51 {

52 if (myArray[i]==3)

53 {

54 myCount++;  /* Update local count */

55 }

56 }

57

58 MPI_Reduce (&myCount,&globalCount, 1, MPIl_INT , MPI_SUM,
59 RootProcess, MPI_COMM_WORLD);

60

61 if (mylD==RootProcess)

62 {

63 printf(“Number of 3's: %d\n”, globalCount )

64

65

This code starts by having a single process, designated the Root Prackts re

contents of an array from a file and distribute this data to the other process@&se©n

21-26 the Root Process opens the specified file name, which is assumed to be the first
command line argument, and then reads the size of the file. Then, on Lines 28-36, the
Root Process reads the file contentsir@ chunks, sending the firsize-1  of these

chunks to the other processes, and then keeping the last chunk for its own use. The data
is sent to other processes on Line 34 usingtRé Send() routine. Here, each

message contains an arrayl@fgth_per_process integers. This routine is an



12/5/2006

example ofpoint-to-point communication, in which data is sent from one process to
another. In MPI, such communication is specified redundantly by both the sender and the
receiver, so Lines 43-47 show that each of the size-1 non-root processes invoke
MPI_Recv() to accept the data. The first three parameters of the send and receive
routines describe the message that is being sent, antl gaeatneter identifies the

sending or receiving process. THep@rameter provides a tag, which identifies this
message. In our example, all of the tags are identical because there isoreviram

one message sent between any pair of processes." Paeaneter identifies the
communicator, and tHédPl_Recv() routine has an additionaf'parameter that is used

to return the completion status of the operation. MPI specifies that messagesrbthe
same source and destination will be delivered in order. However, MPI does not provide
any fairness guarantee—when multiple processes send to the samdidegiroaess,
nothing can be said about the ordering of these messages.

The actual work is performed on Lines 50-56, where each process counts the number of
3’s in its portion of the array. Finally, each of the local values of count is reduced to a
single value by summing them with the calM®!_Reduce() . MPI_Reduce() is

an example of aollective communication operation that involves all members of a
communicator. In this case, each process provides a single integer, and all of these
values are summed and returned to the root process, as specified Byéharbeter, at

the address that is specified by the second parameter. The distribution chyteasar

that was performed with calls MPI_Send() andMPI_Recv() on Lines 34 and 45

could also have been performed more succinctly udif Scatter(), a collective
communication operation that distributes data from one process to all other gocesse

Logic is split up, with some code applying to some processes and not others. The logic is
also broken up by messages. In this example, the messages already residguousonti
memory, but in many cases the data must be marshaled, that is, placed contiguously in
memory, before it can be sent to another process. Dichotomy between local data, which
can be addressed directly, and remote data, which can only be accessed throalgh speci
function calls.

MPIl is a very low level interface. Programmers need to specify manisdetd operate
continually in two worlds—the local and the global. It can be challenging.



12/5/2006

MPI_Recv()
int MPI_Send ( /I Blocking Receive routin e
void * buffer, /I Address at whic h to receive data
int count, /I Number of eleme nts to receive
MPI_Datatype type, I/l Type of each el ement
int source, //'ID of sending p rocess
int tag, /I ldentifier to d istinguish message
MPI_Comm comm, /I MP1 communicato r
MPI_Status * status /I Status of this receive operation
%
Arguments:
* To receive a message from any other process, use MPI_ANY_SOURCE ps the
source.

* To match on any tag, use MPl_ANY_TAG as the fifth parameter

Notes::

» This routine has blocking semantics—it does not return until the message the

message is received. Seel_lrecv() for a non-blocking version of the
receive operation.

Return value:
e An MPI error code.

Code Spec 4. MPI_Recv(). MPI routine to receive data from o process.

Safety Issues

In MPI, there is no shared data, so there is no need to provide explicit mutual exclusion.
There are however other safety issues, including deadlock and livelock. Moreover,
because point-to-point communication is specified redundantly by both the sender and
receiver, there is the need to match communication operations.

Performance Issues

We saw in Chapter 3 that dependences among threads constrain parallelisne Becaus
locks dynamically impose dependences among threads, the granularity afksucdn

greatly affect parallelism. At one extreme, the coarsest lockhrense uses a single lock

for all shared variables, which is simple but severely limits concurrency \Wweenis

sharing. At the other extreme, fine-grained locks may protect small uniédaof For
example, in our Count 3’s example, we might use a different lock to protect each node of
the accumulation tree. As an intermediate point, we might use one lock for tke entir
accumulation tree. As we reduce the lock granularity, the overhead of locking @screas
while the amount of available parallelism increases.



12/5/2006

MPI_Reduce()

int MPI_Reduce ( /I Reduce routine
void * sendBuffer, /I Address at whic h to receive data
void * recvBuffer, /I Number of eleme nts to receive
int count, /I Type of each el ement
MPI_Datatype datatype, //'ID of sending p rocess
MPI_OP op, I/l MPI operator
int root, /I Process that wi [l contain result
MPI_Comm comm /I MP1 communicato r
%

Notes:

* A special form of this routinéviP1_Allreduce() , treats all processes as |f
they were the root, meaning that the reduced value will be passed to all
processes at the address specified by the second argument.
MPI_Allreduce() is equivalent to a call tiPI_Reduce() followed by
a call toMPI_Bcast(),  which broadcasts values to all processes within &
communicator.

Code Spec 5. MPI_Reduce(). MPI routine to perform reductigremation.

Reducing Communication Latency

Why are there so many flavors of point-to-point communication? To understand this,
realize that there is significant synchronization and copy of data thabeustfor each
point-to-point communication operation because the message must be copied across four
address space, as shown in Figure 1.

Sending Process Kernel Kernel Receiving Process

*\“‘_

latency

____________________

Figurel. Each message must be copied as it moves acwsaddress spaces, each increasing the overall
latency.

Thus, to allow users to hide some of this latency, the interface provides differgansger
that expose some of these details. For example, non-blocking versions of the routines



12/5/2006

allow a process to perform some other independent work while it waits for a message

be transmitted. Such overlapping of communication and computation is analogous to the
split-phase barrier that we saw in Chapter 6, so it improves performance xgpe¢hsesof
added program complexity.

By default, MPI also buffers messages in kernel space. Buffering ischeedause
multiple messages may arrive at a process that can only perform eive rggeration at

a time. By buffering the messages in kernel space, the system can ensalte that
messages will eventually be delivered. Besides the added use of memory space, the
drawback to kernel buffering is that messages are copied when placed in theraluffer a
copied again when delivered to the recipient. This extra copying increases
communication latency in cases when the message could be delivered directly.

To give programmers the potential to improve performance, MPI provides a non-thuffere
version of the send operation to further reduce copying and reduce memoryaurtilizat

MPI1_Ssend() —blocks if the destination buffer is available and the receiving
process has started to receive this message.

MPI_Rsend() —assumes that the receiving process is synchronized with the
sending process, so no buffering or handshaking is required. Exploiting Rsend is
very tricky and error prone.

MPI_Bsend() —allows the programmer to specify a user-space buffer to which
the message will be copied, allowing the send to return as soon as the message has
been copied to this buffer.

While these more sophisticated versions of send and receive can improve paréorman
they can hurperformance portability. As machine characteristics change, the tradeoffs
among the various versions also change. Moreover, the use of some of these routines,
particularly Rsend, can severely complicate the program text.

Overlapping Synchronization with Computation

As we mentioned in Chapter 4, it is often useful to overlap long-latency operattbns wi
independent computation. In the same way that we can implement split-phase operations
to hide the latency of barrier synchronization (see Chapter 6), we can use the
MPI_Isend() andMPI _Irecv()  operations to hide communication latency.

[SHOW THE CODE FOR THE FOLLOWING EXAMPLE]

To see a concrete example of how split-phase operations can help, consider a 2D
successive relaxation program, which is often used—often in 3D form—to solve systems
of differential equations, such as the Navier-Stokes equations for fluid flow. This
computation starts with an array of n+2 values: n interior values and 2 boundary values.
At each iteration, it replaces each interior value with the average of itstiboemplues,



12/5/2006

n=8

0.00 |0.34 ]0.21 |0.86 |0.65 [0.11 |0.43 {0.97 |0.51 [1.00

R
boundary value interior values boundary value

Figure7-2. A 2D relaxation replaces on each iterationratiior values by the average their two nearest
neighbors.

Critique

Without a doubt the greatest strength of MPI and other message passimngslisrdreir
universality. The ability to transfer a block of memory from one processor to amothe
fundamental to parallel computers, and message passing libraries givenpnegsa

access to that facility. It must exist on all parallel machines, so libesges can in
principle—and do in fact—run on any parallel machine. This universality is an essential
component of the libraries’ popularity.

With similar certainty the greatest weakness of MPI and other messagegfasilities

is their low level of abstraction. Parallel programming is difficult and fitsrgreatly

from computational abstractions as described in earlier chapters. MPI provides only
rudimentary support for a few of these. For example, the basic reduce operation to
combine all elements of an array is supported only to the extent that a singlergumma
item on each processor can be combined by one of a small set of basic opbmatas; t

of local combining—that is, elevation of the reduce concept to an entire distributed data
structure—is left to each programmer.

Curiously, the strength—universality—and the weakness—Ilow level—combine to enable

programmers to write fast, reasonably portable programs. And that propertyuras ass
message passing libraries success.

Exercises



12/5/2006

Chapter 8: The Z-level Programming Language

As we have seen, threads and message passing are approaches that supgdort paral
programming through libraries that extend a standard sequential programngugda.
The advantages of such an approach are significant: Programmersaug tnailiar

with the base language, so learning only involves learning the library &silitrary
systems can be produced quickly because they only involve wrapping the machine’s
features in a standard form; and libraries are versatile, because pragsahave latitude
to choose a base language. The main problem with libraries is that they provide few
parallel abstractions, implying that all of the parallel mechanismsarogers need to
solve a problem must be handmade with a custom implementation. For example, to use
the scan abstraction requires that the parallel prefix algorithm be maomadiyucted.
The absence of abstractions places a significant burden on programmeiievidigh
parallel languages contain statement forms for parallel abstractiorsssigd the
implementation details to the compiler.

In this chapter we present ZPL, a high-level parallel programming langNaggeneral-
purpose high-level parallel language is yet in wide use, including ZPL, elgspits of
research and development. There are a variety of explanations for this odonsitttzy
range from the fact that current languages are (in some ways) incomplétedeep
unsolved technical problems, to the psychological behavioral of programmers when
deciding to adopt a new language. (Of course, even with deficiencies they couddipe us
but with greater programming effort.) Despite not yet being in wide use,rigaarhigh-
level language can teach us how expressive a high-level parallel langarabe. We can
think in the language even if we do not program in it. ZPL is a good example because it is
an effective tool for algorithm design and high-level program structuringbgsactions
produce fast and portable parallel programs. Thus, “thinking in ZPL” produces better
programs in whatever language one programs.

ZPL is an implicitly parallel programming language, meaning that th@ib@ngenerates

all parallel threads, it inserts all necessary communication caltsgnida to

synchronization, it protects against data races, etc. Programmers oiifly thgelogic of

the computation; the compiler does the rest. What makes it possible for the coonpiler
do all of the “heavy lifting” is that the language provides expression- aminsat-

forms for common parallel abstractions. Programmers write plus scan oagmaa few
characters||A ) and the compiler implements it. Thus, ZPL is a rich source of succinct
notation for parallel abstractions, and that alone justifies our study of it.

Get The Software. The ZPL compiler and documentation are available at
http://www.cs.wasington.edu/research/zpl/ . The compiler runs
under Unix/Linux systems and easily targets to new parallel machines.

10



12/5/2006

Basic Concepts of ZPL

ZPL is an array language, meaning that entire arrays are operated upgmta$iaus, to
increment all elements of an arrAywrite

A=A+1;
or equivalently,
A+=1;

Notice that the assignment operation in ZPl=israther than simply. The primitive
updates to the array are (logically) performed in parallel.

Regions

Though it is common to want to modify all elements of an array, it is equally common to
want to limit the modification to particular elements. To control which elemeat®s d&e
referenced in an array expression, we require that all array operationsenexecuted in

the context of a region, as in

[1.n]A=A+1,;

The bracketed text isragion. Regions specify a set of indices, and they are a key idea in
ZPL. AssumindA is declared to haveelements, indexed 1 tg then the statement
references them all. The statement

[1..n/2] A=A+ 1,
references only the first half &fs elements.

Region Form. Regions take several forms as described below. In the conmafexn

range form shown, the lower limit}, and the upper limiyl, can have any value such

thatll < ul; the bounds are separated by double dots for each dimension; dimensions are
separated by commas. Thus, we write

[-100..100] Alinear array of 201 indices with balanced index range
[1..8,1..8] A square array for a chessboard
[1..4,1..4,1] Aplanein 3D, equivalent to[1..4, 1.4, 1..1]

When, as shown in this last case, an index range is a single value, it is callegsad
dimension.

The limitsll andul do not have to be constants; they can also be integer expressions, as in

[min/2..2*max]

wheremin andmax are scalar, that is non-array, variables.

11



12/5/2006

byte types 2-byte types 4-bytetypes 8-byte types 16-byte types

boolean

sbyte shortint  integef longint

ubyte ushortint  uinteger ulongint
float doyble quad
complex dgomplex gcomplex

The prefix U’ indicates that the representation is unsignedngiit an additional bit of precision. The
quad type is available only if it is available in C tme target architecture; otherwise it defaults to
double . A complex type using bytes, usek bytes for the real arkibytes for the imaginary parts of the
number.

Code Spec 8.1. Primitive data types available in ZPL.

Regions In Declarations. In addition to their use in specifying which elements of an
array participate in a computation, regions are also used to declaewittathevar
statement. For example, thneex n arrays B, C andD, are declared by

var B, C, D : [1..m,1..n] float;

These are floating point arrays. ZPL supports a variety of types as shown is@ade
8.1.

Naming Regions. It quickly becomes cumbersome to write explicitly the same regions,
so they are usually named. To name a region, usedgien declaration, as in

region R =[1..m, 1..n];

Thereatfter, the region’s name can be used wherever regions can appeas, such a
declarations

var B, C, D : [R] float;
and statement control
[R] B :=2*C + D;
Notice that the brackets are required around the region name.
Region Scoping. Finally, regions arecoped. That is, the region that applies to a

statement is the region specification on the closest enclosing statemdnt.&ample,
in the looping statement

12



12/5/2006

[R] repeat
stmt 1;
stmt 2;
[1..n] stmt 3;
stmt 4;
until condition;

the regionR] prefixes theaepeat which encloses the statements, and so, applies to
the first two statements and the last. Further, a different region castiral8 |, because
its region is closer and takes precedence. It is common for programs to operateany
arrays with the same shape making it typical for a program to declardearsigign and

to prefix the main program block with that region, which causes all stateroergsrate
on arrays of that shape, unless otherwise specified explicitly.

ZPL Control-Flow Statements

if logical-expression then statements {else statements} end;

for var:= lowto high {by step} do statementsend,;
while logical-expression do statements end;
repeat statements until logical-expression;

return {  expression}
begin statements end;
Text in brackets is optional; text in italics mbstreplaced by program constructs of the indictad.k

Code Spec 8.2. Syntax of control statements in ZPL.

Array Computation

Arrays in ZPL are generally combined element-wise using standardase@ode Spec
8.3 lists ZPL’s primitive operators and operator-assignments. For exahgttatement
(from a program we discuss below)

[R] TW := (TW & NN = 2) | (NN = 3);

operates just as it would for simple scalar values, except that it iscafuplie
corresponding array elements for all indiceRit is as if many statements of the form

TW[1,1] := (TW[1,1] & NN[1,1] = 2) | (NN[1,1] = 3)
TWI[1,2] := (TW[1,2] & NN[1,2] = 2) | (NN[1,2] = 3)
TW[1,3] := (TW[1,3] & NN[1,3] = 2) | (NN[1,3] = 3)
TW[m,n] := (TW[m,n] & NN[m.n] = 2) | (NN[m,n] = 3)
are all executed simultaneously. In actuality, the compiler gen@@desequivalent to
for (i = lo1-1; i < hil-1; i++)
for (j = 102-1; j < hi2-1; j++)

TWIi,j] = (TW[i,j] && NN[i,j] == 2) || (NN, i1==3);

13



12/5/2006

}
}

We discuss the parallel execution of this code below.

Datatype Operators

Numeric + (unary),- (unary),+,-,*,/,”", %(modulusa%bis a mod b)
Logical 1, & |

Relational = 1= ,<,> <=, >=

Bit-wise bnot(a) ,band(a,b) ,bor(a,b) ,bxor(a,b) ,

bsl(s,a) (shifta 's bitss places left, fill withOs),
bsr(s,a) (shifta’s bits rights places, fill withOs)
Exponentiation%) is optimized to multiplication for small powersg. 2, but generally compiles to a call on
C'spow() function.

The operator assignments recognized arg-=, *=, /=, %=, &=, |=

Code Spec 8.3. ZPL'’s primitive operators and operator-assignments

Controlling Array Element Reference

Regions control the indices that participate in a computation. The specifiegisimalist
exist in all arrays of the statement, but the arrays need not be the same shape. F

example, from abovd3 is m x n; supposde ism x m, m<n; then

[1..m, 1..m] E :=1/B;
references all o, but only them x m subarray oB; the other elements are unaffected by
the computation. So, it is an obvious conditialhindices specified in the region must
exist for all arraysin the statement.

Of course it is possible to change individual elements of an array by sirfeygeng a
degenerate region, as in

[x.y] D :=sqrt(2);
which sets the single elemddfx,y] to 1.414....
One thing that we are not allowed to do is to combine arrays of different rank. That is, i
Ais 1-dimensional array declared to have ind[ées] , then it cannot be added to the
first row of the 2-dimensional arrdy;

[1,1.n]C:=C+A, ILLEGAL for the given conditions.

becausé\ andC are declared to have different ranks. (This computation is possible and
easy using the flooding operator described below.) The purpose of the “like ramls rul

14



12/5/2006

to maintain control of the parallel memory allocation and thus control over locaey
the section on the WYSIWYG performance model.

@-communication

Referencing corresponding elements, though common, is not the only association of
elements of interest. In many computations it is essential to refenemtenaent’s
neighbors. To reference neighbors, ZPL providlesctions. Directions are a relative
offset from an index position. So, for each elemem tif reference the index to its left
and its right, we declare

direction left = [-1]; right = [1];

The value in brackets is a vector pointing (in index space) to the element to be
referenced. Directions are applied to an operand usin@tiperator. Thus, the local
average of the interior elementsfis computed as

[2.n-1] A := (A + A@left + A@right)/3;

In the statemenf uses the indices given by the regi8i@left specifies the set of
indices one less than the indices in the region, that isp-Rt@andA@right specifies
the set of indices one larger than the indices in the region, that is 8doordingly, the
statement has the effect of replacing each element (interior to #yg arth the average
of itself, its left and its right neighbor. As a general rule it is possitéeltl the direction
to the region’s elements to find the referenced set of indices.

As another example, declare the eight compass directions

direction nw = [-1,-1]; no = [-1, O]; ne = [-1, 1];
we =[0,-1]; ea=[0,1]
sw=[1,-1];s0=[1,0];se=[1, 1];

which allow the eight nearest neighbors of an element to be referent@dsla 2-
dimensional array of Os and 1s, then the expression

TW@nw + TW@no + TW@ne +
TW@we + TW@ea +
TW@sw + TW@so + TW@se

computes an array whose value in each position is the count of its neighbdvhat
are 1. This computation will be useful in the Life program shown below. But first we
need one more concept to explain that program.

Reduce

Recall from Chapter 4 that reduce is the operation of combining the elementgafyan a
using a primitive operator; we say we have “reduced the array to a sihgteugang the
operator.” ZPL'’s reduce operation is given by the form

15



12/5/2006

op<<A

whereop is one of the primitive associative and commutative operaitors:&, | , max,
min . To add up the interior elementsAyfwe write

[2..n-1] total := + << A;
and note that like all operations on arrays in ZPL, it is essential to speetyoa.
Reduce can be applied to arrays of any rank. So, to find the largest eleBentite
[R] biggest := max << B;
It is not necessary to store the scalar result. So,
[R] span := (max << B) - (min << B) + 1;

The reduce operation is implemented using the parallel prefix algorithosdestin
Chapter 4. ZPL also has a partial scan operator using the syfjfax

Notation: As a convention ZPL programmers capitalize the names of arrays and regions
to emphasize that the reference to many elements, and use lower caseytbingvelise.

Life, An Example

To illustrate the concepts introduced so far, consider Conway’s game of isférivtal
computation, often used as a screensaver, which makes a clean, simple example.

The Problem. Recall that the game simulates generations of organisms. The initial
configuration is generation 0. The rules are

a) An organism lives to generatiofl if it has at least 2 neighbor organisms and no
more than 3;

b) An organism is born into generatiotl if its position is empty and it has exactly
3 neighbor organisms in generation

c) All other organisms die before generatief.

The rules reduce to a condition that says an organism exists in generatetner
because it exists in generatioand has exactly 2 neighbors, or its position (whether
occupied by an existing organism or not) has exactly 3 neighbors in generation

The Solution. We solve the problem in a rectangular world by the ari&the world.
Organisms are represented as 1-bits. To know how many neighbors exist foioa posit
we add up their 8-nearest neighbors, as discussed above, into a \NiNaigighbor
number. We use the logic shown in Figure 8.1.

16



12/5/2006

program Life;
config const n : integer = 50;

1

2

3

4 region

5 R =[1.n, 1.n];
6 BigR =[0..n+1, 0..n+1];
7

8

var

9 TW : [BigR] boolean = 0; -- The World

10 NN :[R] integer; -- Number of Neighbo rs
11

12 direction

13 nw=[-1, -1]; no = [-1, O]; ne =[-1, 1];

14 we=]0,-1]; ea=10,1];

15 sw=[1,-1];s0=[1,0];se=[1,1];

16

17 procedure Life();

18 begin

19 -- Initialize the world

20 [R] repeat

21 NN = TW@nw + TW@no + TW@ne +
22 TW@we + TW@ea +

23 TW@sw + TW@so + TW@se;

24 TW = (TW & NN = 2) | (NN = 3);
25  until I(|<< TW);
26 end;

Figure 8.1. ZPL program for Conway’'s game, Life.

How It Works. The first half of the program is declarations, which have the following
meaning:

config const n : integer = 50 specifies the array bound, as a
configuration constant, meaning that its value does not change after
initially being set, and the initial setting is either the default valm the
declaration, or a value specified on the command line.

region R =[1..n,1..n]; BigR =[0..n+1,0..n+1] declares two
regions,BigR being larger thaR by border elements; the boundary will
be uninhabited, i.e. assigned 0s, and is required for the @-references.

var TW:[BigR] boolean = 0; NN:[R] integer declares the
problem representatio (¥ initialized to 0, and the intermediate count of
neighbors IN.

direction nw=[-1,-1]; ... defines the eight compass directions needed

to reference the nearest neighbors.
Notice that naming the regions was mostly pedagogical because they ansezhtiiree

times in the program, excluding declarations, and so could have been written explicitly
Nevertheless, we recommend naming regions.

17



12/5/2006

Entry Point. ZPL requires that some procedure have the same name as the pr@igram,
I.e. matching the word followingrogram on the first line. That procedure is the

entry point for the ZPL computation.

Code Spec 8.4. Specifying the entry procedure for ZPL

The program is a single procedutde . After the world is initialized—we assume a
random configuration is created or an input file is read—the computation enteeat rep
loop. The first line

NN :=TW@nw + TW@no + TW@ne +
TW@we + TW@ea +
TW@sw + TW@so + TW@se;

computes the number of living neighbors for each array position by type-casting the
Boolean arrays into integer arrays and adding. This line could be read, “Add thefarra
northwest neighbors ifWto the array of north neighborsTwto the array of northeast
neighbors inTW....” That is, ZPL programmers think of such operations from the global,
array viewpoint rather than the local, index viewpoint.

The next line creates the next generation by applying Conway’s rules. Tthe nex
generation is

TW := (TW & NN = 2) | (NN = 3);

the logical-or of two arrays, the array of organisms with exactly twdberg, and the
array of positions with exactly three neighbors.

When an iteration of the loop is complete, the termination test checks to see @réhere
still living organisms, and if not it exits. The termination condition

(<< TW);

computes an or-reduce over the world ariidgd, which is 0 if no organisms exist, and
negates the result.

Summary of Life. The Life game is simple, and the ZPL program for it is also simple,
some declarations plus two lines in a loop. Notice that the one loop drives the sequence
of generations only. The programmer did not write any array traversal loopseeanyit
index expressions; the compiler took care of generating all of the codeafpr ar
manipulations.

Perhaps more importantly, the compiler produces highly parallel code foif¢he L

computation, though the programmer didn’t specify any parallel constructs. The
parallelism is embedded in the semantics of the operations: The two statefrtbet

18



12/5/2006

loop are fully parallel and the reduce operation uses the efficient Schwarirhahg (Of
course, the declarations are no cost or trivial, one-time overhead.)

The price for such convenience is that we had to think of the solution as an array
computation. Though different, it was not so difficult.

Manipulating Arrays Of Different Ranks

With limited exceptions ZPL requires all of the arrays in a statemen{poession to

have the same rank, that is, the same number of dimensions. This is the common case, a
natural consequence of algorithm design. But in some situations computations produce
arrays of different rank, and in other cases arrays of different ranks nyst¢ia¢ed on
together. In these cases ZPL applies two basic ideas:

» Use the larger rank: When arrays of two different ranks are to be used
together, make all arrays the same (larger) rank. This is always pobsibhuse
ad-dimensional array can always be considerdédladimensional array by
picking a single index for that dimension. The lower rank array becomes a higher
ranked array with a collapsed dimension. For example, to operate on arrays whose
regions ar¢l..n, 1..p] and[1..m, 1..n, 1..p] , Simply make the
first region[1, 1..n, 1..p] . The idea applies inductively when the gap in
rank is larger than 1.

* Replicate elements: When values of lower rank arrays are used repeatedly
with elements of higher ranked arrays, logically replicate the elerottite
lower ranked array so that they match element-for-element the higtkedra
array. ZPL has an operator, calféabd, that performs this operation logically.

We will see these two ideas merge in the concept of the “flood dimension” latés in t
section.

The reason for all of this attention to array rank is that in ZPL the regionrdgéni

array not only tells how many dimensions it has, how many elements it has, artdevhat
indices are, it also specifies the allocation. Different rank arrays widrgély have
different allocations. For example, the regighs64] ,[1..8, 1..8] and
[1..4,1..4,1..4] might be allocated as shown in Figure 8.2. Such allocations
dramatically affect which values are “close” to each other. Such proxdmatygatically
affects locality. Locality dramatically affects performances iave more to say on this
below.

The main consequence is that regions su¢h.as] , [1..m, 1] and[1..m, 1,

1] , though they are all conceptually a sequence of values, have different allocations.
Since arrays with the same allocation exhibit better locality, and so pettermance,

the ZPL designers opted for the “like rank” requirement.

In this section we introduce operators that change rank, such as partial eedtlice
operators that accommodate rank differences, such as flood.

19



12/5/2006

Processor 1-dimensional
0000000000000000

0
Indices: 1..16
. 0000000000000000
Indices: 17..32
0000000000000000
2
Indices: 33..48
0000000000000000
3

Indices: 48..64

2-dimensional

7.8,1..8

(o}

imensional

(XX X/
(XX X/
0000 W
(X X X/

1,1.41.4

2,1.41.4

3,1.4,1.4

4,1.4,1..4

Figure 8.2. Typical default allocations for 1-, 2- and 3-dim@nal regions of 64 elements each on four

processors, depicted simply as dots.

Partial Reduce

A basic property of the reduce operation is that it converts an array into a Shalais,

sum = +<< A;

produces a single value by adding the elements of Arriyhis result is seen as

“reducing”all of the dimensions of an array, then a partial reduce can be viewed as
reducingsome of the dimensions of an array. Consideringrtive n arrayB, we note that

we could reduce the first dimension by combining the columns of values to produce a
single row, or reduce the second dimension by combining the rows of values to produce a

single column.

20



12/5/2006

Not surprisingly, in ZPL partial reduce uses two regiwrik the same rank, one to

specify the source indices and one to specify the target indices. The source region,
specified with the operand, defines which operand indices are input to the reduce; the
target region, usually on the statement, defines the indices of the result. Soally part
reduceB along the first dimension using add, we write

[1,1..n] C :=+<<[1..m, 1..n] B;

where the “operand regiont..m,1..n] specifies which indices @ are to
participate in the reduce (source), and the statement rdgitnn] specifies the
indices of the result (target). For example,rfor 3 andn = 4,

[1,1..4] 7765 o +<<[1.3,1.4] 3

1

f : ] ;

The compiler computes the “difference” between the two regions—the firehdion

“reduces” frommindices to one and the second dimension is unchanged—and figures
out that the first dimension, the columns, are to be reduced, that is, added.

N B
[l i
o~

To reduceB in the second dimension using multiply, we write
[1..m, 1] D :=*<<[1..m, 1..n] B;

and form = 3 andn = 4 produce

[1..3, 1] 12 = *<<[1.3,1.4] 3141
16 1414
3210

0
#
Again, the compiler computes the “difference” between the operand region and the
statement region figuring out that multiply is applied to the second dimension. It is not
necessary to give the statement region explicitly; if the desired tagjen is already the

applicable region—because the statement is executed within its scope—theitie reg
need not be repeated.

Notice that the region on the statement is really just defining the preyvedimext for
the computation. The closest applicable region might be another operand region, as in the
more complex operation on tpex m x n arrayF,

[1,1,1..n] G := max<<[1,1..m,1..n] (min<< [1..p,1. .m,1..n] F);
which finds the “plane” of minimum values over the first dimension, and then finds the

row of maximums over the columns of the “plane.” Thuspier 3,n =4 andp = 2, an
example is

21



12/5/2006

[1,1..3,1..4] 2131 - min<<[1.2,1.3,1.4] 3141
1312 1414

0200 3210

2434

1322

0503

[1,1,1..4] 2332 < max<<[l, 1.3 1.4] 2131
1312

0200

For themin reduction the compiler compares its operand region with the operand region

of themax reduction to determine that the first dimension is reduced; fonéxe
reduction, the compiler compares the operand region with the statement region. This idea

generalizes.

Flooding
If it is possible to reduce an array dimension, then it ought to be possible to expand an

array dimension. ZPL has an operation that expands in (one or more) dimensions by
replicating. It is called flooding>¢), and it is the opposite of partial reduction but with

the similar syntax. So,
[1.m, 1.n] B:=>>[1, 1..n] C;
fills the arrayB with copies of the first row of. Form = 3 andn = 4, an explicit example

IS

[1..3, 1..4] 7765 < >[1,1.4] 7765
7765
7765

T . ]

Like partial reduce the compiler figures out which dimensions to flood by cargghe
two regions, and noting the differences.

Of course, flooding can apply to any dimension, including the second dimension, as in

[1..m, 1..n] C :=>>[1..m,1] D;

which can be illustrated by an example,for 3 andn = 4,

[1..3, 1..4] 12 12 12 = >>[1.3,1] 12
16 16 16 16
0 00 0

In addition, it is possible to flood only a portion of a dimension with replicated values.

22



12/5/2006

The Flooding Principle

What is the point of flooding; why copy values? Flooding is used when arrays of

different ranks must be operated on together. Suppose, for example, that everyafolum

a matrix is to be scaled by, say, its column two. The matrix is 2-dimensional and the
column is in concept 1-dimensional. But, because only one region applies to a statement,
ZPL requires that the two arrays match in rank. So, we replicate column two using
flooding, making it a logical 2-dimensional array, and divide (element-wyst)eb

result. Specifically, we write

[1.m,1..n]B:=B/(>>[1..m, 2] B);

The expression in parentheses israxn array composed of copies of column two, and
because the division is performed element-wise, the result is that euamynadsl scaled
by column two. Specifically, leth = 3 andn = 4, then an example of the principle would
be

[1..3,1..4] 3.00 1.00 400 100 - 3141/ 1111
0.25 1.00 0.25 1.00 1414 4444
1.50 1.00 0.50 0.00 3210 2222

The values are onlygically replicated; that is, the compiler does not actually make
copies of the values. The benefit of this approach is to allow better locality in the
computation, and to manage data transfers more efficiently.

Data Manipulation, An Example

Imagine a datas@& of shapdl..m, 0..n] containing rows oh observations, say
cups of coffee consumed in a day, fiosubjects. To record summary data, the array has
been given an additional Oth column. Consider some illustrative computations on this
data.

The most coffee consumed on any day by any subject imdkeeduce over the data
portion of the entire array

[1..m,1..n] most := max<< D; -- Compute top score
The variablemost is a scalar.

The maximum for each subject is the partial reduction across the rows, whiabrevia st
the Oth column

[1..m, O] D := max<<[1..m, 1..n] D; -- Record ind ividual maxima
The computation produced a column of values.

The test for any non-coffee drinkers is simply a check for a 0 in the sumatanyrcand
an OR-reduce (over that column only) to accumulate the result, as in

23



12/5/2006

[1..m, O] tFans := |<<(D = 0); -- Does anyone not | ike coffee?

The variabldFans is a scalar. (Of course, a simple AND-red&seD would also
work, but it may be less clear.)

In the case where everyone is a coffee drinker, we can scale everyofezshadiit in
the range (0,1] relative to their biggest day by flooding the first colunussithe array
and dividing the result into the data array,

if ItFans then
[1.m1.n]D:=D/(>>[1..m, 0] D); -- Sca le by maximum
end;

Finally, we can determine the percentage of days of the study that each pbiseac

his or her maximum. We begin by comparing the whole data array to 1, thenypartiall
reducing each row using addition, which produces a count of max days for each person,
and then dividing the results by

[1..m, 0] D :=100 * (+<< [1..m,1..n](D = 1)) / n; --Pct days@max

Though some programmers might find it natural to use column 0 as a summary column,
others would prefer to declare the dataset by its proper dimefsions1..n]

and use a separate arfym[1..m, 1] to store summary results. Of course, we
requireSumto be 2-dimensional, because it will be used in expressions invdélving

With this approach the forgoing computations become

[1..m,1..n] most := max<< D;
[1..m, 1] Sum :=max<<[l..m, 1..n] D;
[1..m, 1] tFans :=|<<(Sum = 0);
if ItFans then
[1..m,1..n] D:=D/(>>[1..m, 1] Sum);
end;
[1.m, 1] Sum :=100* (+<<[1..m,1..n](D = 1) /n;

By such computations ZPL programmers perform routine data manipulation, agitchi
back and forth among various data sizes but remaining within a given rank.

Flood Regions

The use of th&umvariable in this last example illustrates a curiosity with the way we
have used ZPL so far. Though it made sense in our first solution, perhaps, to place the
summary column in the Oth position, why do we specify the &uayto have its second
index be 1? Could it be 0 or 9 P Yes. The actual consequences of this decision for
memory allocation will be explained below, but our point now is that the choice will
generally be arbitrary. To emphasize the arbitrariness, notice that threeagerations on
Sumis to flood it, that is, replicate it in all column positions.

24



12/5/2006

ZPL has the concept of a flood dimension, denoted by an asterisk (*) in the region
expression. The flood dimension is effectively a “don’t care” for a (collapsdd)i So,
the best way to define the summary array from the last example would be

var Sum : [1..m, *] float;

which specifies that the data is flooded in the second dimension. The final four
statements from the earlier example now become

[1.m,*] Sum :=max<<[l.m, 1..n] D;
[1..m, *] tFans :=|<<(Sum = 0);
if ItFans then
[1..m,1..n] D :=D/ Sum);
end;
[1.m,*] Sum :=100* (+<<[1..m,1..n](D = 1)) /' n;

There is no need to flodBumin the third line because the data is already flooded by the
properties of flood dimensions. This means that there are values to correspomd-eleme
wise with then elements oD's second dimension. How many elements da@sihave

in its second dimension? Any number needed with any needed indices. Graphieally, t
values ofSumcan be visualized as

vevy V1, V1, V1, Vg, ...
veey V2, V0, Vo, Vo, ...
.ouy V3, V3, V3, V3, ...
vevy Va4, V2, Vg, Vg, ...

<vvy Vimy Vimy Vimy Vimy -+«

so they match arrays of any size in the second dimension. Like all flood dimensions,
however,Surnis second dimension is only logical.

Flood dimensions are sensible based on the principle that programmers should never be
asked to specify more than they mean. But there is another important reason. Flood
dimensions enable the compiler to use very efficient data representations—data
replication is avoided—and very efficient communication protocols—multicasteis oft
possible. As a result, it is always better to select a flood dimension tham méke an
arbitrary choice of a collapsed index value. (Sometimes a choice is apEopsiavhen
controlling allocation, however.)

Matrix Multiplication

To apply the ideas of this section consider computing the product of two dense matrices,
A, which ism x n, andB, which isn x p to produceC = AB. This computation is often
programmed in sequential programming languages as a triply nested loop

for(i=0;i<m;i++){

for(j=0;j<p;j+t)

25



12/5/2006

{
C[i,j] = 0;
for (k =0; k < n; k++)

Cli.jl += Al KI*B[K,I;

}
}

computing thelot product for each element, in which théh row of A is multiplied
times thg th column ofB and reduced to produce t6§,j]

We present this sequential solution only to be precise. It is not the right wagkto thi
about a parallel matrix product. Indeed, van de Geijn and Watts argued that computing
the dot products separately, i.e. a rovAdfmes column oB, is exactly backwards. In

their SUMMA (Scalable Universal Matrix Multiplication Algorithmpproach they bring
the initialization and th&-loop to the outside, effectively computing all of ttle terms

of all of the dot-products at once. This contrary way of thinking produces an extremel
efficient matrix multiplication. It is also the easiest ZPL matridtiplication because it
exploits flooding.

To see the key idea of SUMMA and why flooding is so fundamental to it, notice that in
the computatiol© = AB for 3x3 matricesA andB, the definitions of the first two
columns of the result are

Ci11=A11XByq + A1oXBo g + A 3XBg g Ci12=A11XB1o + A1 pXBy o + Ay 3XBs ...
Co1=Ay1XB1q + Ay oXBo g + A 3XBs g Co2=Ay1XB1o + Ay oXBy o + Ay sXBs; ...
Cs1 = A31XByg + AgpxBoy + AgsxBs g Cs2=A31XB1o + A3oXBss + AgsXBss ...

Notice that the first term of all of these equations can be computed by tiapglites first
column of A across ax& array, and replicating the firsdw of B down a 33 array, that
is, floodingA’s first column andB’s first row, and then multiplying corresponding
elements; the second term results from replicadisgsecond column an’'s second
row and multiplying, and similarly for the third term.

The ZPL matrix product code is shown in Figure 8.3. The program begins with the
obvious variable declarations. T@el variable will be used to flood columnsAfand
Rowwill be used to flood rows d@. In the body of the procedure, the entire computation
is executed in the context of the result a€a/dimensions. The result array is initialized
to 0, and the computation enters kioop that processes through tihéerms of the dot
product.

In the body of the loop the next columnAis flooded acros€ol and the next row d
is flooded dowrRow In the final statement of the loop the two flooded arrays are
multiplied element-wise and accumulated into the result a@.ayhen the next term of
the dot-product is considered.

26



12/5/2006

var A :[1.m, 1..n] double;
B :[1..n, 1..p] double;
C :[1..m, 1..p] double;
Col:[1.m,*] double;
Row : [*, 1..p] double;
k integer;

procedure MM();
[1..m, 1..p] begin
C:=0;
fork=1tondo
[1..m,*] Col:=>>[1..m, k] A,
[*, 1..p] Row :=>>]k, 1..p] B;
C += Col*Row;
end;
end;

Figure 8.3. The SUMMA matrix multiplication algorithm in ZPL.

Notice that the use of the temporary arr@pé andRowwas actually unnecessary. The
procedure could have been written as,

procedure MM();
[1..m, 1..p] begin
C:.=0;
fork=1tondo
C+=(>>[1.m, k] A)* (>> [k, 1..p] B);
end;
end;

using expression floods. In fact, the compiler will generate temporaridsefexpression
floods anyway corresponding @l andRow but it saves the programmer a few lines of
typing. The SUMMA is not only an easy matrix multiplication program to wiits, i
extremely fast to run.

The constraints on partial reduce and flood are summarized in Code Spec 8.5.

Partial Reduce (<<) and Flood (>>). These two operations require two regions, a

source region (included as a operand) and a target region (usually on the sjateiien
[1,1..3] .. +<<[1..3,1.5]A... /lred uction
[1..3,1..5] ... >>[1,1..3] A.. //flo od

For each dimension in the two regions the index ranges are either identical or one igla
collapsed dimension (singleton value). For partial reduction (collapsed dimepgsion(

target region), the elements of the operand are combined to collapse the dinfensio

flood (collapsed dimension(s) on the source region), the element is replicated thiéo
index range of the dimension.

Code Spec 8.5. Requirements of ZPL's partial reduce and flood.

27



12/5/2006

Reordering Data With Remap

ZPL emphasizes computing on data that is local, but often data has to be moved around
to become local. The remap performs arbitrary restructuring of data, imglcigianging
its rank. Before learning about remap, we must introduce theiladays.

Indexi

ZPL provides compiler-generated constant arrays of indices denoted by tHaderxm

+ <dimension number>, as inindex1 , Index2 , Index3 , etc. The arrays, which are
only logical, contain the index values for the indicated dimension as specified by the
region. So, for example

[1..3,1..3] ... Index1 ... =111
222
333

is an array of the first dimension indices, and

[1.3,1..3] ... Index2 ... - 123
123
123

is an array of second dimension indices. The only constraint on the lusexfi arrays
is that the statement’s region havethndimension.

The constant Inde»arrays are used frequently in ZPL programs, as in
[1..n,1..n] Diag := Index1 = Index2;

for constructing an array with 1s down the diagonal, and
[1..n,1..n] RMO :=n*(Index1-1) + Index2;

for computing the row-major order index of elements of a 2D array. They are atko us
frequently in remap.

Remap

The remap operator is denoted by the hash syrand has two forms, known as

gather andscatter. Both forms take an argument in brackets rdmaap array(s),

A#[P] , that specifies the indices used to produce the result. One remap array islrequire
for each dimension.

1-Dimensional Case. For example, suppogeandP are declared over the region
[1..n] , and that fon=7, the values are

A - ddeeorr
P~ 5613742

28



12/5/2006

thenA#[P] has the value
ordered - ddeeorr#[ 5613742]

The result can be found by indexing the operand array with the remap array; so, for
example, the first element of the remap array is 5, so the fifth elemet @b¢nand, o,
is selected for the first position.

It is common to use expressions based onrttiex i values. For exampl&#[8-
Index1] , which is the descending index values for the first (and only) dimension of this
array,

rroeedd -« ddeeorr#[ 7654321]
reverses the operand. To spwlilered backwards, writé # [P # [8-Index1]]

Gather and Scatter. The form of remap shown so far is tpher form, which is used
on the right-hand side of assignment statements. It is also possible tewmde on the
left-hand side of an assignment statement, as in

AH#[P] := A

to get thescatter semantics. In this case the right-hand side values are produced and
assigned to the variable on the left-hand side according to the indices ohdppeaeay.
For theA andP data from above, the statem&jP] := A  results in

ererddo - ddeeorr#[ 5613742]= ddeeorr
proving, if it was necessary, that gather and scatter are different. (iteedeme from
the fact thagather picks the values from operand positions using the indicescatter

puts the values into result positions using the indices.)

Repeats in Remap Arrays. The values in the remap arrays do not have to be unique,
though that is the most common case. For example, the gethérl 1 1 1 1 1] is

ddddddd - ddeeorr #[ 1111111]
is a cumbersome (and expensive) way to flood the first eleméntrafr scatter the issue
IS more curious. Because scatter assigns values, an index value appeaipig tnugts
in the remap array can result in different orders of assignments, resultingredictable
results. So, the scatterforly#[ 11111 1]=A

?deeorr < ddeeorr #[ 1111111]

29



12/5/2006

will result in one ofd, e, 0 orr being assigned to the first index position, but which is
undefined. Different (parallel) executions will produce different results.

Higher Dimensions. Higher dimensions require multiple remap arrays in the brackets,
B#[C,D] ,thearray in the ith dimension specifying the index values for that
dimension. That is, the elementsBére reordered usingas the source of all of the first
indices and as the source of all of the second indices. For example,

[1..n, 1..m] Btranspose := B # [Index2, Index1];

is a standard idiom for computing the transpose of an array, because the indices of the
two dimensions are interchanged. Boranspose declared over regiofi..n,
1..m] then, form=3 andn=2 the transpose is illustrated by

The operation of this gather is clear: Itemin the result comes from tl@;, D ; position
of the operand.

Ordering Example
Remap is used regularly in ZPL. An excellent example of its use is to movenmwsl a

so they are in order by some criterion. lllustrating such a computationtesthef this
section.

Recall the “coffee drinkers” data array from the Data Manipulation @ecthe array
was defined over the regi¢h..m, 0..n] , recording the number of cups of coffee
consumed byn people oven days; the first column is used for summary statistics. For
example, we know that we can compute the average coffee consumption of the
participants by

[1..m, 0] D := (+<<[1..m,1..n] D)/n;

Now, suppose we want to order the coffee drinkers by their average consumpttdn, leas
greatest. This means that we need to reorder the rows Dfailiay based on the value in
column 0. For this, we need to compute everyone’s rank based on the Oth column.

Our strategy is to break the task into three parts

» compute the rank by using flood to make all comparisons
* reduce to get the ranking
* remap the array into the right order

For convenience, we will assume the averages are unique, but it is simple & handl
duplicates.

30



12/5/2006

All Comparisons Ranking Algorithm. To compare every element with every other
element of a sequence, we flood a 2D array with theolumn averages. This gives one

of the operands for the comparison. To get the other operand, we transpose the array, and
flood it in the other dimension. Making a comparison of the two arrays yields an array of
bits.

Begin with the declarations,

RepC : [1..m, *] float; -- Temp for replicated colu mns
RepR : [*, 1..m] float; -- Temp for replicated rows

and using the averages in column @db flood the arrays. FdRepCthe flood is direct
because the two arrays are oriented properlyReém@R column 0 must first be
transposed to be a row before flooding,

[1..m,*] RepC :=>>[1..m, 0] D; -- Replicate Av e Col
[*,1..m] RepR :=>>[*, 1..m] D#[Index2, 0];-- Repl Ave as a Row

Making all of the comparisons is a simple matter,

[1..m, 1..m] ... RepC >= RepR; Make an array of b its

Obviously, care must be taken to chose the right relational operator=Tw#l have the
effect of setting only one bit in the row corresponding to the smallest iteaf;thé bits
will be set in the row containing the maximum item.

All Comparisons Ranking Algorithm. To find the rank of the items, simply add up
the 1s in each row using a partial reduce. This will produce a column of results, but
because we will be using the result in a remap, we don’t want just a column; weawant a
array flooded with the rank values. So, we include the declaration
var Rank : [1..m, *] integer;
which makes the second dimension a flood dimension.
With the Rank variable set up we can perform the partial reduction followed bydkle fl
[1..m, *] Rank :=>> [1..m,*] (+<< [1..m,1..m] (Rep C >= RepR));

producing the desired result.

Sorting With The Rank Array. Now, using the values iRank we can reorder the
rows ofD using remap.

[1..m, O0..n] D#[Rank, Index2] := D;

31



12/5/2006

which orders the rows by the value in the Oth column. The final program is shown in
Figure 8.4.

region R = [1..m,0..n];
var  D:[R] float;
RepR : [*, 1..m] float;
RepC : [1..m, *] float;
Rank : [1..m,*] integer;

[1..m,*] RepC := >>[1..m,0] D;

[*,1..m] RepR := >>[*,1..m] D#[Index2,0];

[1..m,*] Rank := >>[1..m,*](+<<[1..m,1..m] (RepC >= RepR));
D#[Rank, Index2] := D;

Figure 8.4. Declarations and code for reordering the rows afcbording to its column 0.

This reordering operation seems complicated when considered for thienfesbtit it is
a standard ZPL paradigm. It becomes second nature very quickly, especiallgeonce t
apparatus has been set up.

Parallel Execution of ZPL

The beauty of a high level language filled with parallel abstractions is thaaprogng

is simple because the compiler does the tough work. There are no threads to keep trac
of, no communication calls to insert, etc. The compiler not only generates the cade, it c
optimize it as well. The result is a fast easy-to-write program that neetd@nly

recompiled to run well on the next parallel platform.

Although it is sensible to benefit from the compiler’s help, it is also essemkabw

how the program will run. That is, there are always a variety of ways to sgivera
programming problem, and they often require different resources—more instructions
more data motion, more memory, etc. To write quality programs we need to know
enough about how the language is implemented to know which of the competing
solutions is the best. ZPL was the first parallel programming languagebtedawithin

its specification a performance model, known astMy&lWYG Performance Model. By
taking a few minutes to learn how the model describes the performance of theedompil
code, programmers can apply the knowledge to write better programs. It's easy

Specifying Number of Processors

All computations begin with a standard organization, which we describe now. It is
possible for programmers to assign work and data to processors differentljeasimgs
not yet discussed, but any such changes begin from the standard organization.

On the command line programmers specify the number of processors and their
arrangement using the option and the-g option. So, to run the compiled program
myProgram on sixteen processors arranged in two rows of eight, write

myProgram —p16 —g2x8

32



12/5/2006

The arrangement, which is typically expressed as a 2D grid, is key tdaetiah of
arrays to processors.

Assigning Regions to Processors

Since arrays inherit their indices from regions, it is not surprising théitshetep in
assigning arrays to processors is to assign regions to processors.idhe oég

program are assigned in a consistent way, so that all regions with aniindex, K]

have that index assigned to the same processor. To achieve this effect thinkpodradl re
being superimposed on one another so that their indices align, as shown in Figure 8.5.
From this superimposition their bounding region is computed; the bounding region is the
smallest region that includes all of the indices of the superimposed regions.

Region Allocation Palicy. The policy of aligning the regions so that index,[..., k] of any region
is assigned to one processor guarantees that idmer-wise operations are performed on array
such aA + B , all of the computation is local to the processdteere is no communication.

o

.
o u

N RS

Figure 8.5. Bounding region. Regions used in the program apersmposed so that their indices align;
the black square has the same index in all regi@nse aligned, the bounding region is the smatkgibn
containing the same indices as the superimposéaireg

Once computed the bounding region can be allocated based on the processor gird given

on the command line with the —g option. The allocation is a block allocation using the
Ceiling — Floor assignment described in Chapter 4. The indices are allocated to

processors indexed in the obvious way: low index to high index in row major order. Once
the bounding region has been assigned to the processors, the task is complete because the
contributing regions simply make the same assignment. Thyrl ag2x2 allocation

of the region in Figure 8.5 is shown in Figure 8.6. The assignment shown illustrates that
allocating regions so that all indices align can result in a slightly sutalilocation.

The effect is generally small, and only occasionally arises.

As another example, the allocation in Figure 4.1(b) is achieved forl&6 &L region
by specifying—p16 —g16x1

33



12/5/2006

i
\

v
o

l

/

r

Figure 8.6. Block allocation of the bounding region. The boimgdregion is partitioned using the Ceiling-
Floor allocation, which assigns a set of indicd®e Tontributing regions’ indices are assigned exgame
way.

Array Allocation

Given the assignment of the regions’ indices to the processors, arraysiaig tiefined
by allocating space for their elements on the processors accordingahetiveir indices
are located, that is, the arrays inherit the regions’ allocations. The ordkcatiab
elements matches that of the C language, which is row-major order. Addjtjchall
allocations have fluff buffers where needed.

For example, the statement

var B, C, D : [1..8, 1..8] float;

allocated to a2 processor grid, would assign procegsahe subregion
[1..4,1..4] , Implying that those indices for arragsC andD are also allocated to it;
p: would be allocated the subregifdn.4, 5..8] , etc.

Scalar Allocation

Non-array variables are redundantly allocated; that is, all processossgyeed all of
the scalars. Scalar computation, such as

i=i+1;

is redundantly computed by each processor. On the plus side this redundancyesimina
communication (recall the random number example of Chapter 2), but on the minus side
scalar computation is not a source of improved performance through parallelism.

Work Assignment

With the arrays allocated, the work assignment is easily specifietd:acessor
computes the values for the elements allocated to it. So, the region on the statement,

34



12/5/2006

which can be thought of as stating the indices to be computed in the array statement,
imply which processor performs the actual computation. For the statement

[1..8,1..8] B:=C +D;

processopy would perform the update to the subredibm4, 1..4] of B using the

local elements of andD. By implication when the data is well-balanced among the
processors, the work for such statements will be well-balanced. Thus, the work ® updat
this array will be distributed among the four processors evenly enough thatda 4-fol
speedup can be anticipated.

Performance Model

Given the previous description of how regions, arrays and work are allocated to
processors by the ZPL compiler, it is easy to see how a program withemigre-wise
computations would perform in parallel: It exhibits essentially perfecdspe®&ut what
about the other ZPL constructs? In fact, they are almost as easy to understand.

ZPL’s performance model is based on the element-wise specification plus heaaer
communication cost for those operations, such as @-references and remapsgrequir
off-processor values. The communication component adds to the base cost of the work.
The model rests on the idea that these two costs—basic work and communication
overhead—constitute a good first approximation to the performance of any algorithm on
any (CTA) platform. The model is easy to use because programmers eathésplaces

in their code where they incur the added communication costs by simply noting where the
operators are used. Code Spec 8.6 shows a brief summary of these costs.

Syntactic Cue | Example Parallelism (P) | Communication Cost | Remarks

[R] array ops [R] ...A+B... full; work/P

@array trangl. ...A@east ... 1 point-to-point xmit "surface" only

<< reduction <A L work/P + logP | 2logP point-to-point fan-in/out trees

<< partial red | ... +<<[]A work/P + logP | log P point-to-point

|| scan | work/P + logP | 2logP point-to-point parallel prefix treep|
>> flood L.>>[1A multicast in dimension data not replicate
# remap .. A#[11,12] 2 all-to-all, potentially | general data reorg.

Code Spec 8.6. ZPL'’s performance model specifications for worase behavior; the actual performance
is influenced byn, P, processor arrangement and compiler optimizatiosldition to the physical features

of the computer.

To amplify further on the cost model, consider the following operations.

* @trandations: The @-modifier on operands implies data transmission from
values stored on adjacent processors to local fluff buffers to implement the
translation. Only edge elements are transferred, so by the CTA model, these
point-to-point communications will in general collectively require 1 or a constant
number oA communication delays.

35



12/5/2006

» <<reductions: The reduce operation uses the Schwartz algorithm to combine the
array values into a scalar; this is followed by a broadcast to distributesatae s
value back to all processors. Thus, the communication pattern is a combining tree
followed by a broadcast tree, each of which is at reggP height, resulting in
Alog P communication cost.

* << partial reductions. The partial reductions follow the combining concepts of
full reductions, but without the broadcast.

* || scan: Scan uses the parallel prefix operation, and therefore has two traversals
of alog heightP tree, one up and one down, resulting Eddog P
communication expense.

* >>flood: The flood must distribute stored values to other processors representing
portions of its dimension; a multicast—a broadcast to a subset of the processors—
can be used if available. (Special hardware is generally fast, but eventwitho
broadcast can be performed by a tree, resultihggi® concurrent transmissions.)
The primary feature of flood that bounds its communication complexity, is that if
processors are assigned to more than one dimension, only a small subset of the
processors will be recipients of any flood.

» #remap: The remap operation is ZPL’'s most expensive because it entails two
communication cycles: one to distribute the pattern of communication (remap
arrays), and one to distribute the data itself. Potentially, these are battakll-t
communications, meaning that each processor might have to communicate with
every other processor. ZPL attempts to optimize remap to reduce its expense:
Examples, include exploiting constant arguments as occur in transpose
(#A[Index2, Index1] ), or reusing remap arrays if they have not changed
since the last remap.

Using this information, it is possible to know roughly how a statement will perform.

Applying the Performance Model: Life

When we wrote the Life program we focused on realizing the proper computation, but we
could also know in approximate terms how the program will perform. Recall that the
main computation was

20 [R] repeat

21 NN = TW@nw + TW@no + TW@ne +
22 TW@we + TW@ea +

23 TW@sw + TW@so + TW@se;

24 TW = (TW & NN =2) | (NN = 3);
25  until I(]<< TW);

The loop contains essentially three computations: calcullitNigalculatingTWand
computing the reduction for the loop-termination test. Analyze each.

» Calculating NN. The statement involves eigbatranslation followed by local

computation. According to Code Spec 8.6, e@thanslation requires adelay or
so, because a CTA computer can be expected to perform many such point-to-

36



12/5/2006

point communications at once. So, we charge constant communication plus local
computation.

» Calculating TW This statement requires only local computation on the array
elements; there is no communication charge. This is parallel computation’s bes
case.

* Or Reduce. The loop termination expression requires2Zi¢og P time for the
Schwartz algorithm.

Further, the default block allocation will result in reasonably balanced wopkying a
factor of P speedup on the computation. So, asymptotically,iasreases, the problem
continues to enjoy full speedup withl@f P) communication overhead; k¥ grows, the
increase in communication overhead remains modest.

Applying the Performance Model: SUMMA
The matrix multiplication algorithm of Figure 8.3 has the text

[1..m, 1..p] begin
C:=0;
fork =1tondo
C+=(>>[1.m, k] A)* (>> [k, 1..p] B);
end;
end;

as the main part of the computation.

Ignoring the onetime initialization of arr&y the loop has for each of theterations two
flood operations and then multiply-add computations on the local elements. Again, the
default block operation will result in a reasonably balanced allocation, so thplyaul

add computations will be fully parallel. If we arrange Ehgrocessors into @P x VP

grid, then each multicast tree implementing a flood will have héigt®/2. Thus, the
communication overhead for the two iterations can be estimated tddueRpper

iteration, making it an efficient parallel matrix product solution.

Summary of the Performance Model

The bound is an estimate of the worst-case time complexity of the computation based on
how the model describes ZPL'’s execution on a CTA computer. As programmers we can
depend on it as a reliable machine-independent bound. Though certain ZPL compiler
optimizations can lead to better performance, the model guarantees thaigtiaenpwill

realize at least this level of performance. For example, the compilelsmove
communication calls around, which can result in overlapping communication with
computation. If successful in this case, the communication overhead might be entirely
eliminated; but if it is not the performance is still quite satisfactory.

! This type of analysis can be used to compare ithgos. The original paper announcing the computatio
model compared SUMMA with Canon'’s algorithm, andrfd SUMMA to be better, a prediction that was
confirmed by experimentation.

37



12/5/2006

Summary

ZPL is a high-level array programming language with implicit parsitelWe write
array computations as we might in any array language without consideratienigsues
of parallelism. The compiler performs all of the parallelization, commtiarca
placement, process spawning, etc. We can be completely oblivious to parahefiBin

Nevertheless, we will pay attention to the parallelism by using ZPkferp@ance model
to estimate how well our computation will run. Such estimates are based on then@TA
are sound for all parallel computers modeled by the CTA. ZPL is unique in allowing

programmers to write well-designed parallel programs even though they dotedhe
implementing parallel code.

Exercises

Exercise 1: Develop a small 3 x 3 data array. By hand, work out example values for the
computations in the Data Manipulation Section.

Exercise 3: Revise the row rank ordering of the coffee data to handle deglicat

Historical Context
WYSIWYG paper, ZPL programmer’s guide, remap paper.

38



