
12/5/2006

1

Chapter 7: Programming with MPI

This chapter will describe and evaluate MPI, the Message Passing Interface, which
provides a programming interface that is portable across all parallel computers. In
particular, whereas Pthreads assume that the hardware supports a shared address space,
MPI makes no such assumption. Moreover, MPI supports collections of heterogeneous
machines. There are other message passing libraries, including the Parallel Virtual
Machine library, PVM.

Getting Started
We will again use the count 3’s example to illustrate the basics, before we discuss more
advanced features. Here, we will use C bindings for MPI, but the standard also provides
bindings for Fortran and C++.

Execution Model
The MPI execution model differs from Pthreads. In MPI the unit of parallelism is a
process, not a thread, so each process has its own address space. The only way that two
processes can communicate is to send messages to one another using the operations of
MPI_Send() and MPI_Recv() . Thus, a parallel program’s data structures actually
consist of a collection of independent portions of data, each residing in a different
process. Furthermore, MPI execution is initiated with a static number of processes,
typically with processes assigned to different processors. Some external mechanism is
thus needed to initiate the MPI program, specifying the total number of processors that
will be used.

Initialization and Cleanup
The following code is a typical skeleton MPI program that initializes MPI for a single
process and then cleans up afterwards.

 1 #include <stdio.h>
 2 #include “mpi.h”
 3 #include “globals.h”
 4
 5 int main (argc, argv)
 6 int argc;
 7 char **argv;
 8 {
 9 int myID, value, size;
10 MPI_Status status;
11
12 MPI_Init(&argc, &argv);
13 MPI_Comm_size(MPI_COMM_WORLD, &size);
14 MPI_Comm_rank(MPI_COMM_WORLD, &myID);
15
16 /* compute stuff in parallel */
. . .
66 MPI_Finalize()
67 return 0;

12/5/2006

2

68 }

The call to MPI_Init() on line 11 initializes the MPI runtime system, in this case
passing along the runtime arguments with which this program was invoked. This
initialization routine should be called exactly once for each MPI process.

The calls on lines 12 and 13 define a context in which communication can occur. In
particular, the first argument to these calls specifies a communicator, which is an MPI
scoping mechanism for grouping sets of logically related communication operations. A
process may use different communicators to keep logically distinct communication
operations separate. In our example above, the program uses a single communicator, the
predefined MPI_COMM_WORLD communicator that includes all available MPI processes.
The call to MPI_Comm_size() returns to this process, through its second parameter,
the number of processes that participate within this communicator, and the
MPI_Comm_rank() call returns the rank of this process within the communicator. A
rank is a unique identifier used by MPI to identify this process within the communicator.
The ranks are numbered from 0 to size-1. The MPI_Finalize() call cleans up MPI
data structures. Of course, this routine should be the last MPI function called by a
process.

Code Spec 1. MPI_Comm_Size(). MPI routine to obtain the number of processes in a communicator.

With the skeleton code in place, we are now ready to write the meat of a parallel
program. First assume that the file globals.h includes the following lines:

 #define RootProcess 1
 int length;
 int length_per_process;
 int myStart;
 int myCount = 0;
 int globalCount;
 MPI_Status status;
 int tag = 1;

MPI_Comm_Size()
int MPI_Comm_Size (// Retrieve size of a commu nicator
 MPI_Comm comm, // Communicator
 int *size, // Size
};

Arguments:
• The communicator of interest.
• A pointer to the size, whose target will contain the size of the specified

communicator.

Return value:

• An MPI error code.

12/5/2006

3

Code Spec 2. MPI_Comm_Rank(). MPI routine to obtain a process’ rank within in a communicator.

Code Spec 3. MPI_Send(). MPI routine to send data to another process.

With the assumed global variables, we can now give the body of the Count 3’s code..

16 length_per_process = length/size;
17
18 /* Read the data, distribute it among the var ious processes */
19 if (myID == RootProcess)
20 {

MPI_Send()
int MPI_Send (// Blocking Send routine
 void * buffer, // Address of the data to send
 int count, // Number of data elements to send
 MPI_Datatype type, // Type of data el ements to send
 int dest, // ID of destinati on process
 int tag, // Tag to distingu ish this message
 MPI_Comm * comm // An MPI communic ator
 };

Arguments:
Use MPI_STATUS_IGNORE if you

Notes:

• This routine has blocking semantics, which means that the routine does not
return until the message is received at the destination process. See
MPI_Isend() for a non-blocking version of the send operation.

Return value:

• An MPI error code.

MPI_Comm_Rank()
int MPI_Comm_Rank (// Retrieve rank of a commu nicator
 MPI_Comm comm, // Communicator
 int *rank, // Rank
 };

Arguments:
• The communicator of interest.
• A pointer to the rank, whose target will contain the rank of the specified

communicator.

Return value:

• An MPI error code.

12/5/2006

4

21 if ((fp = fopen(*argv, "r")) == NULL)
22 {
23 printf("fopen failed on %s\n", filena me);
24 exit(0);
25 }
26 fscanf(fp,"%d", &length); /* read input size */
27
28 for (p=0; p<size-1; p++) /* read data on behalf of each */
29 { /* of the oth er processes */
30 for (i=0; i<length_per_process; i++)
31 {
32 fscanf(fp,”%d”, myArray+i);
33 }
34 MPI_Send(myArray, length_per_process, MPI_INT, p+1,
35 tag, MPI_COMM_WORLD);
36 }
37
38 for (i=0; i<length_per_process; i++) /* Now read my data */
39 {
40 fscanf(fp,”%d”, myArray+i);
41 }
42 }
43 else
44 {
45 MPI_Recv(myArray, length_per_process, MPI _INT, RootProcess,
46 tag, MPI_COMM_WORLD, &status);
47 }
48
49 /* Do the actual work */
50 for (i=0; i<length_per_process; i++)
51 {
52 if (myArray[i]==3)
53 {
54 myCount++; /* Update local count */
55 }
56 }
57
58 MPI_Reduce (&myCount,&globalCount, 1, MPI_INT , MPI_SUM,
59 RootProcess, MPI_COMM_WORLD);
60
61 if (myID==RootProcess)
62 {
63 printf(“Number of 3’s: %d\n”, globalCount);
64 }
65

This code starts by having a single process, designated the Root Process, read the
contents of an array from a file and distribute this data to the other processes. On Lines
21-26 the Root Process opens the specified file name, which is assumed to be the first
command line argument, and then reads the size of the file. Then, on Lines 28-36, the
Root Process reads the file contents in size chunks, sending the first size-1 of these
chunks to the other processes, and then keeping the last chunk for its own use. The data
is sent to other processes on Line 34 using the MPI_Send() routine. Here, each
message contains an array of length_per_process integers. This routine is an

12/5/2006

5

example of point-to-point communication, in which data is sent from one process to
another. In MPI, such communication is specified redundantly by both the sender and the
receiver, so Lines 43-47 show that each of the size-1 non-root processes invoke
MPI_Recv() to accept the data. The first three parameters of the send and receive
routines describe the message that is being sent, and the 4th parameter identifies the
sending or receiving process. The 5th parameter provides a tag, which identifies this
message. In our example, all of the tags are identical because there is never more than
one message sent between any pair of processes. The 6th parameter identifies the
communicator, and the MPI_Recv() routine has an additional 7th parameter that is used
to return the completion status of the operation. MPI specifies that messages between the
same source and destination will be delivered in order. However, MPI does not provide
any fairness guarantee—when multiple processes send to the same destination process,
nothing can be said about the ordering of these messages.

The actual work is performed on Lines 50-56, where each process counts the number of
3’s in its portion of the array. Finally, each of the local values of count is reduced to a
single value by summing them with the call to MPI_Reduce() . MPI_Reduce() is
an example of a collective communication operation that involves all members of a
communicator. In this case, each process provides a single integer, and all of these
values are summed and returned to the root process, as specified by the 6th parameter, at
the address that is specified by the second parameter. The distribution of the array data
that was performed with calls to MPI_Send() and MPI_Recv() on Lines 34 and 45
could also have been performed more succinctly using MPI_Scatter(), a collective
communication operation that distributes data from one process to all other processes.

Logic is split up, with some code applying to some processes and not others. The logic is
also broken up by messages. In this example, the messages already reside in contiguous
memory, but in many cases the data must be marshaled, that is, placed contiguously in
memory, before it can be sent to another process. Dichotomy between local data, which
can be addressed directly, and remote data, which can only be accessed through special
function calls.

MPI is a very low level interface. Programmers need to specify many details and operate
continually in two worlds—the local and the global. It can be challenging.

12/5/2006

6

Code Spec 4. MPI_Recv(). MPI routine to receive data from another process.

Safety Issues
In MPI, there is no shared data, so there is no need to provide explicit mutual exclusion.
There are however other safety issues, including deadlock and livelock. Moreover,
because point-to-point communication is specified redundantly by both the sender and
receiver, there is the need to match communication operations.

Performance Issues
We saw in Chapter 3 that dependences among threads constrain parallelism. Because
locks dynamically impose dependences among threads, the granularity of our locks can
greatly affect parallelism. At one extreme, the coarsest locking scheme uses a single lock
for all shared variables, which is simple but severely limits concurrency when there is
sharing. At the other extreme, fine-grained locks may protect small units of data. For
example, in our Count 3’s example, we might use a different lock to protect each node of
the accumulation tree. As an intermediate point, we might use one lock for the entire
accumulation tree. As we reduce the lock granularity, the overhead of locking increases
while the amount of available parallelism increases.

MPI_Recv()
int MPI_Send (// Blocking Receive routin e
 void * buffer, // Address at whic h to receive data
 int count, // Number of eleme nts to receive
 MPI_Datatype type, // Type of each el ement
 int source, // ID of sending p rocess
 int tag, // Identifier to d istinguish message
 MPI_Comm comm, // MPI communicato r
 MPI_Status * status // Status of this receive operation
 };

Arguments:
• To receive a message from any other process, use MPI_ANY_SOURCE as the

source.
• To match on any tag, use MPI_ANY_TAG as the fifth parameter

Notes::

• This routine has blocking semantics—it does not return until the message the
message is received. See MPI_Irecv() for a non-blocking version of the
receive operation.

Return value:

• An MPI error code.

12/5/2006

7

Code Spec 5. MPI_Reduce(). MPI routine to perform reduction operation.

Reducing Communication Latency
Why are there so many flavors of point-to-point communication? To understand this,
realize that there is significant synchronization and copy of data that must occur for each
point-to-point communication operation because the message must be copied across four
address space, as shown in Figure 1.

Figure 1. Each message must be copied as it moves across four address spaces, each increasing the overall
latency.

Thus, to allow users to hide some of this latency, the interface provides different versions
that expose some of these details. For example, non-blocking versions of the routines

 Sending Process Receiving Process Kernel

 send

 recv

Kernel

 latency

MPI_Reduce()
int MPI_Reduce (// Reduce routine
 void * sendBuffer, // Address at whic h to receive data
 void * recvBuffer, // Number of eleme nts to receive
 int count, // Type of each el ement
 MPI_Datatype datatype, // ID of sending p rocess
 MPI_OP op, // MPI operator
 int root, // Process that wi ll contain result
 MPI_Comm comm // MPI communicato r
 };

Notes:
• A special form of this routine, MPI_Allreduce() , treats all processes as if

they were the root, meaning that the reduced value will be passed to all
processes at the address specified by the second argument.
MPI_Allreduce() is equivalent to a call to MPI_Reduce() followed by
a call to MPI_Bcast(), which broadcasts values to all processes within a
communicator.

12/5/2006

8

allow a process to perform some other independent work while it waits for a message to
be transmitted. Such overlapping of communication and computation is analogous to the
split-phase barrier that we saw in Chapter 6, so it improves performance at the expense of
added program complexity.

By default, MPI also buffers messages in kernel space. Buffering is needed because
multiple messages may arrive at a process that can only perform one receive operation at
a time. By buffering the messages in kernel space, the system can ensure that all
messages will eventually be delivered. Besides the added use of memory space, the
drawback to kernel buffering is that messages are copied when placed in the buffer and
copied again when delivered to the recipient. This extra copying increases
communication latency in cases when the message could be delivered directly.

To give programmers the potential to improve performance, MPI provides a non-buffered
version of the send operation to further reduce copying and reduce memory utilization.

MPI_Ssend() —blocks if the destination buffer is available and the receiving
process has started to receive this message.

MPI_Rsend() —assumes that the receiving process is synchronized with the
sending process, so no buffering or handshaking is required. Exploiting Rsend is
very tricky and error prone.

MPI_Bsend() —allows the programmer to specify a user-space buffer to which
the message will be copied, allowing the send to return as soon as the message has
been copied to this buffer.

While these more sophisticated versions of send and receive can improve performance,
they can hurt performance portability. As machine characteristics change, the tradeoffs
among the various versions also change. Moreover, the use of some of these routines,
particularly Rsend, can severely complicate the program text.

Overlapping Synchronization with Computation
As we mentioned in Chapter 4, it is often useful to overlap long-latency operations with
independent computation. In the same way that we can implement split-phase operations
to hide the latency of barrier synchronization (see Chapter 6), we can use the
MPI_Isend() and MPI_Irecv() operations to hide communication latency.

[SHOW THE CODE FOR THE FOLLOWING EXAMPLE]

To see a concrete example of how split-phase operations can help, consider a 2D
successive relaxation program, which is often used—often in 3D form—to solve systems
of differential equations, such as the Navier-Stokes equations for fluid flow. This
computation starts with an array of n+2 values: n interior values and 2 boundary values.
At each iteration, it replaces each interior value with the average of its 2 neighbor values,

12/5/2006

9

Figure 7-2. A 2D relaxation replaces on each iteration all interior values by the average their two nearest
neighbors.

Critique
Without a doubt the greatest strength of MPI and other message passing libraries is their
universality. The ability to transfer a block of memory from one processor to another is
fundamental to parallel computers, and message passing libraries give programmers
access to that facility. It must exist on all parallel machines, so these libraries can in
principle—and do in fact—run on any parallel machine. This universality is an essential
component of the libraries’ popularity.

With similar certainty the greatest weakness of MPI and other message passing facilities
is their low level of abstraction. Parallel programming is difficult and benefits greatly
from computational abstractions as described in earlier chapters. MPI provides only
rudimentary support for a few of these. For example, the basic reduce operation to
combine all elements of an array is supported only to the extent that a single summary
item on each processor can be combined by one of a small set of basic operators; the task
of local combining—that is, elevation of the reduce concept to an entire distributed data
structure—is left to each programmer.

Curiously, the strength—universality—and the weakness—low level—combine to enable
programmers to write fast, reasonably portable programs. And that property has assured
message passing libraries success.

Exercises

0.00 0. 34 0. 21 0. 86 0. 65 0. 11 0. 43 0. 97 0. 51 1.00

n = 8

boundary value interior values boundary value

12/5/2006

10

Chapter 8: The Z-level Programming Language

As we have seen, threads and message passing are approaches that support parallel
programming through libraries that extend a standard sequential programming language.
The advantages of such an approach are significant: Programmers are already familiar
with the base language, so learning only involves learning the library facilities; library
systems can be produced quickly because they only involve wrapping the machine’s
features in a standard form; and libraries are versatile, because programmers have latitude
to choose a base language. The main problem with libraries is that they provide few
parallel abstractions, implying that all of the parallel mechanisms programmers need to
solve a problem must be handmade with a custom implementation. For example, to use
the scan abstraction requires that the parallel prefix algorithm be manually constructed.
The absence of abstractions places a significant burden on programmers. High-level
parallel languages contain statement forms for parallel abstractions, and assign the
implementation details to the compiler.

In this chapter we present ZPL, a high-level parallel programming language. No general-
purpose high-level parallel language is yet in wide use, including ZPL, despite years of
research and development. There are a variety of explanations for this odd situation. They
range from the fact that current languages are (in some ways) incomplete due to deep
unsolved technical problems, to the psychological behavioral of programmers when
deciding to adopt a new language. (Of course, even with deficiencies they could be used,
but with greater programming effort.) Despite not yet being in wide use, learning a high-
level language can teach us how expressive a high-level parallel language can be. We can
think in the language even if we do not program in it. ZPL is a good example because it is
an effective tool for algorithm design and high-level program structuring; its abstractions
produce fast and portable parallel programs. Thus, “thinking in ZPL” produces better
programs in whatever language one programs.

ZPL is an implicitly parallel programming language, meaning that the compiler generates
all parallel threads, it inserts all necessary communication calls, it attends to
synchronization, it protects against data races, etc. Programmers only specify the logic of
the computation; the compiler does the rest. What makes it possible for the compiler to
do all of the “heavy lifting” is that the language provides expression- and statement-
forms for common parallel abstractions. Programmers write plus scan of an array in a few
characters (+||A) and the compiler implements it. Thus, ZPL is a rich source of succinct
notation for parallel abstractions, and that alone justifies our study of it.

Get The Software. The ZPL compiler and documentation are available at
http://www.cs.wasington.edu/research/zpl/ . The compiler runs
under Unix/Linux systems and easily targets to new parallel machines.

12/5/2006

11

Basic Concepts of ZPL
ZPL is an array language, meaning that entire arrays are operated upon as a unit. Thus, to
increment all elements of an array A, write

A := A + 1;

or equivalently,

A += 1;

Notice that the assignment operation in ZPL is := rather than simply =. The primitive
updates to the array are (logically) performed in parallel.

Regions
Though it is common to want to modify all elements of an array, it is equally common to
want to limit the modification to particular elements. To control which elements are to be
referenced in an array expression, we require that all array operations must be executed in
the context of a region, as in

[1..n] A := A + 1;

The bracketed text is a region. Regions specify a set of indices, and they are a key idea in
ZPL. Assuming A is declared to have n elements, indexed 1 to n, then the statement
references them all. The statement

[1..n/2] A := A + 1;

references only the first half of A’s elements.

Region Form. Regions take several forms as described below. In the common index
range form shown, the lower limit, ll, and the upper limit, ul, can have any value such
that ll ≤ ul; the bounds are separated by double dots for each dimension; dimensions are
separated by commas. Thus, we write

[-100..100] A linear array of 201 indices with balanced index range
[1..8, 1..8] A square array for a chessboard
[1..4, 1..4, 1] A plane in 3D, equivalent to [1..4, 1..4, 1..1]

When, as shown in this last case, an index range is a single value, it is called a collapsed
dimension.

The limits ll and ul do not have to be constants; they can also be integer expressions, as in

 [min/2..2*max]

where min and max are scalar, that is non-array, variables.

12/5/2006

12

Code Spec 8.1. Primitive data types available in ZPL.

Regions In Declarations. In addition to their use in specifying which elements of an
array participate in a computation, regions are also used to declare arrays with the var
statement. For example, three m × n arrays, B, C and D, are declared by

var B, C, D : [1..m,1..n] float;

These are floating point arrays. ZPL supports a variety of types as shown in Code Spec
8.1.

Naming Regions. It quickly becomes cumbersome to write explicitly the same regions,
so they are usually named. To name a region, use the region declaration, as in

region R = [1..m, 1..n];

Thereafter, the region’s name can be used wherever regions can appear, such as
declarations

var B, C, D : [R] float;

and statement control

[R] B := 2*C + D;

Notice that the brackets are required around the region name.

Region Scoping. Finally, regions are scoped. That is, the region that applies to a
statement is the region specification on the closest enclosing statement. So, for example,
in the looping statement

byte types 2-byte types 4-byte types 8-byte types 16-byte types
boolean
sbyte shortint integer longint
ubyte ushortint uinteger ulongint
 float double quad
 complex dcomplex qcomplex

The prefix ‘u’ indicates that the representation is unsigned, giving it an additional bit of precision. The
quad type is available only if it is available in C on the target architecture; otherwise it defaults to
double . A complex type using k bytes, uses k bytes for the real and k bytes for the imaginary parts of the
number.

12/5/2006

13

[R] repeat
stmt 1;

 stmt 2;
 [1..n] stmt 3;
 stmt 4;

 until condition;

the region [R] prefixes the repeat which encloses the statements, and so, applies to
the first two statements and the last. Further, a different region controls stmt 3 , because
its region is closer and takes precedence. It is common for programs to operate over many
arrays with the same shape making it typical for a program to declare a single region and
to prefix the main program block with that region, which causes all statements to operate
on arrays of that shape, unless otherwise specified explicitly.

Code Spec 8.2. Syntax of control statements in ZPL.

Array Computation
Arrays in ZPL are generally combined element-wise using standard operators. Code Spec
8.3 lists ZPL’s primitive operators and operator-assignments. For example, the statement
(from a program we discuss below)

[R] TW := (TW & NN = 2) | (NN = 3);

operates just as it would for simple scalar values, except that it is applied to
corresponding array elements for all indices in R. It is as if many statements of the form

TW[1,1] := (TW[1,1] & NN[1,1] = 2) | (NN[1,1] = 3)
TW[1,2] := (TW[1,2] & NN[1,2] = 2) | (NN[1,2] = 3)
TW[1,3] := (TW[1,3] & NN[1,3] = 2) | (NN[1,3] = 3)

...
TW[m,n] := (TW[m,n] & NN[m,n] = 2) | (NN[m,n] = 3)

are all executed simultaneously. In actuality, the compiler generates code equivalent to

for (i = lo1-1; i < hi1-1; i++)
{
 for (j = lo2-1; j < hi2-1; j++)
 {
 TW[i,j] = (TW[i,j] && NN[i,j] == 2) || (NN[i, j] == 3);

ZPL Control-Flow Statements

if logical-expression then statements {else statements } end;
for var := low to high {by step } do statements end;
while logical-expression do statements end;
repeat statements until logical-expression;
return { expression};
begin statements end;
Text in brackets is optional; text in italics must be replaced by program constructs of the indicted kind.

12/5/2006

14

 }
}

We discuss the parallel execution of this code below.

Code Spec 8.3. ZPL’s primitive operators and operator-assignments.

Controlling Array Element Reference
Regions control the indices that participate in a computation. The specified indices must
exist in all arrays of the statement, but the arrays need not be the same shape. For
example, from above, B is m × n; suppose E is m × m, m < n; then

[1..m, 1..m] E := 1/B;

references all of E, but only the m × m subarray of B; the other elements are unaffected by
the computation. So, it is an obvious condition: all indices specified in the region must
exist for all arrays in the statement.

Of course it is possible to change individual elements of an array by simply referencing a
degenerate region, as in

[x,y] D := sqrt(2);

which sets the single element D[x,y] to 1.414….

One thing that we are not allowed to do is to combine arrays of different rank. That is, if
A is 1-dimensional array declared to have indices [1..n] , then it cannot be added to the
first row of the 2-dimensional array C,

[1, 1..n] C := C + A; ILLEGAL for the given conditions.

because A and C are declared to have different ranks. (This computation is possible and
easy using the flooding operator described below.) The purpose of the “like rank” rule is

Datatype Operators
Numeric + (unary), - (unary), +, - , * , / , ̂ , % (modulus, a%b is a mod b)
Logical ! , &, |
Relational =, != , <, >, <=, >=
Bit-wise bnot(a) , band(a,b) , bor(a,b) , bxor(a,b) ,

bsl(s,a) (shift a ’s bits s places left, fill with 0s),
bsr(s,a) (shift a’s bits right s places, fill with 0s)

Exponentiation (̂) is optimized to multiplication for small powers, e.g. 2, but generally compiles to a call on
C’s pow() function.

The operator assignments recognized are: +=, -=, *=, /=, %=, &=, |=

12/5/2006

15

to maintain control of the parallel memory allocation and thus control over locality; see
the section on the WYSIWYG performance model.

@-communication
Referencing corresponding elements, though common, is not the only association of
elements of interest. In many computations it is essential to reference an element’s
neighbors. To reference neighbors, ZPL provides directions. Directions are a relative
offset from an index position. So, for each element of A to reference the index to its left
and its right, we declare

direction left = [-1]; right = [1];

The value in brackets is a vector pointing (in index space) to the element to be
referenced. Directions are applied to an operand using the @-operator. Thus, the local
average of the interior elements of A is computed as

[2..n-1] A := (A + A@left + A@right)/3;

In the statement, A uses the indices given by the region; A@left specifies the set of
indices one less than the indices in the region, that is, 1 to n-2, and A@right specifies
the set of indices one larger than the indices in the region, that is 3 to n; accordingly, the
statement has the effect of replacing each element (interior to the array) with the average
of itself, its left and its right neighbor. As a general rule it is possible to add the direction
to the region’s elements to find the referenced set of indices.

As another example, declare the eight compass directions

direction nw = [-1,-1]; no = [-1, 0]; ne = [-1, 1];
 we = [0,-1]; ea = [0, 1];
 sw = [1,-1]; so = [1, 0]; se = [1, 1];

which allow the eight nearest neighbors of an element to be referenced. If TW is a 2-
dimensional array of 0s and 1s, then the expression

TW@nw + TW@no + TW@ne +
TW@we + TW@ea +
TW@sw + TW@so + TW@se

computes an array whose value in each position is the count of its neighbors in TW that
are 1. This computation will be useful in the Life program shown below. But first we
need one more concept to explain that program.

Reduce
Recall from Chapter 4 that reduce is the operation of combining the elements of an array
using a primitive operator; we say we have “reduced the array to a single value using the
operator.” ZPL’s reduce operation is given by the form

12/5/2006

16

op << A

where op is one of the primitive associative and commutative operators: +, * , &, | , max,
min . To add up the interior elements of A, we write

[2..n-1] total := + << A;

and note that like all operations on arrays in ZPL, it is essential to specify a region.

Reduce can be applied to arrays of any rank. So, to find the largest element in B, write

[R] biggest := max << B;

It is not necessary to store the scalar result. So,

[R] span := (max << B) - (min << B) + 1;

The reduce operation is implemented using the parallel prefix algorithm discussed in
Chapter 4. ZPL also has a partial scan operator using the syntax +||A .

Life, An Example
To illustrate the concepts introduced so far, consider Conway’s game of Life. It is trivial
computation, often used as a screensaver, which makes a clean, simple example.

The Problem. Recall that the game simulates generations of organisms. The initial
configuration is generation 0. The rules are

a) An organism lives to generation i+1 if it has at least 2 neighbor organisms and no
more than 3;

b) An organism is born into generation i+1 if its position is empty and it has exactly
3 neighbor organisms in generation i;

c) All other organisms die before generation i+1.

The rules reduce to a condition that says an organism exists in generation i+1 either
because it exists in generation i and has exactly 2 neighbors, or its position (whether
occupied by an existing organism or not) has exactly 3 neighbors in generation i.

The Solution. We solve the problem in a rectangular world by the array TW, the world.
Organisms are represented as 1-bits. To know how many neighbors exist for a position,
we add up their 8-nearest neighbors, as discussed above, into a variable NN, neighbor
number. We use the logic shown in Figure 8.1.

Notation: As a convention ZPL programmers capitalize the names of arrays and regions
to emphasize that the reference to many elements, and use lower case for everything else.

12/5/2006

17

 1 program Life;
 2 config const n : integer = 50;
 3
 4 region
 5 R = [1..n, 1..n];
 6 BigR = [0..n+1, 0..n+1];
 7
 8 var
 9 TW : [BigR] boolean = 0; -- The World
10 NN : [R] integer; -- Number of Neighbo rs
11
12 direction
13 nw = [-1, -1]; no = [-1, 0]; ne = [-1, 1];
14 we = [0, -1]; ea = [0, 1];
15 sw = [1, -1]; so = [1, 0]; se = [1, 1];
16
17 procedure Life();
18 begin
19 -- Initialize the world
20 [R] repeat
21 NN := TW@nw + TW@no + TW@ne +
22 TW@we + TW@ea +
23 TW@sw + TW@so + TW@se;
24 TW := (TW & NN = 2) | (NN = 3);
25 until !(|<< TW);
26 end;

Figure 8.1. ZPL program for Conway’s game, Life.

How It Works. The first half of the program is declarations, which have the following
meaning:

config const n : integer = 50 specifies the array bound, n, as a
configuration constant, meaning that its value does not change after
initially being set, and the initial setting is either the default value from the
declaration, or a value specified on the command line.

region R = [1..n,1..n]; BigR = [0..n+1,0..n+1] declares two
regions, BigR being larger than R by border elements; the boundary will
be uninhabited, i.e. assigned 0s, and is required for the @-references.

var TW:[BigR] boolean = 0; NN:[R] integer declares the
problem representation (TW) initialized to 0, and the intermediate count of
neighbors (NN).

direction nw=[-1,-1]; ... defines the eight compass directions needed
to reference the nearest neighbors.

Notice that naming the regions was mostly pedagogical because they are only used three
times in the program, excluding declarations, and so could have been written explicitly.
Nevertheless, we recommend naming regions.

12/5/2006

18

Code Spec 8.4. Specifying the entry procedure for ZPL

The program is a single procedure, Life . After the world is initialized—we assume a
random configuration is created or an input file is read—the computation enters a repeat-
loop. The first line

NN := TW@nw + TW@no + TW@ne +
 TW@we + TW@ea +
 TW@sw + TW@so + TW@se;

computes the number of living neighbors for each array position by type-casting the
Boolean arrays into integer arrays and adding. This line could be read, “Add the array of
northwest neighbors in TW to the array of north neighbors in TW to the array of northeast
neighbors in TW ….” That is, ZPL programmers think of such operations from the global,
array viewpoint rather than the local, index viewpoint.

The next line creates the next generation by applying Conway’s rules. The next
generation is

TW := (TW & NN = 2) | (NN = 3);

the logical-or of two arrays, the array of organisms with exactly two neighbors, and the
array of positions with exactly three neighbors.

When an iteration of the loop is complete, the termination test checks to see if there are
still living organisms, and if not it exits. The termination condition

!(|<< TW);

computes an or-reduce over the world array, TW, which is 0 if no organisms exist, and
negates the result.

Summary of Life. The Life game is simple, and the ZPL program for it is also simple,
some declarations plus two lines in a loop. Notice that the one loop drives the sequence
of generations only. The programmer did not write any array traversal loops or write any
index expressions; the compiler took care of generating all of the code for array
manipulations.

Perhaps more importantly, the compiler produces highly parallel code for the Life
computation, though the programmer didn’t specify any parallel constructs. The
parallelism is embedded in the semantics of the operations: The two statements of the

Entry Point. ZPL requires that some procedure have the same name as the program,
i.e. matching the word following program on the first line. That procedure is the
entry point for the ZPL computation.

12/5/2006

19

loop are fully parallel and the reduce operation uses the efficient Schwartz algorithm. (Of
course, the declarations are no cost or trivial, one-time overhead.)

The price for such convenience is that we had to think of the solution as an array
computation. Though different, it was not so difficult.

Manipulating Arrays Of Different Ranks
With limited exceptions ZPL requires all of the arrays in a statement or expression to
have the same rank, that is, the same number of dimensions. This is the common case, a
natural consequence of algorithm design. But in some situations computations produce
arrays of different rank, and in other cases arrays of different ranks must be operated on
together. In these cases ZPL applies two basic ideas:

• Use the larger rank: When arrays of two different ranks are to be used
together, make all arrays the same (larger) rank. This is always possible, because
a d-dimensional array can always be considered a d+1 dimensional array by
picking a single index for that dimension. The lower rank array becomes a higher
ranked array with a collapsed dimension. For example, to operate on arrays whose
regions are [1..n, 1..p] and [1..m, 1..n, 1..p] , simply make the
first region [1, 1..n, 1..p] . The idea applies inductively when the gap in
rank is larger than 1.

• Replicate elements: When values of lower rank arrays are used repeatedly

with elements of higher ranked arrays, logically replicate the elements of the
lower ranked array so that they match element-for-element the higher ranked
array. ZPL has an operator, called flood, that performs this operation logically.

We will see these two ideas merge in the concept of the “flood dimension” later in this
section.

The reason for all of this attention to array rank is that in ZPL the region defining an
array not only tells how many dimensions it has, how many elements it has, and what the
indices are, it also specifies the allocation. Different rank arrays will generally have
different allocations. For example, the regions [1..64] , [1..8, 1..8] and
[1..4, 1..4, 1..4] might be allocated as shown in Figure 8.2. Such allocations
dramatically affect which values are “close” to each other. Such proximity dramatically
affects locality. Locality dramatically affects performance. We have more to say on this
below.

The main consequence is that regions such as [1..m] , [1..m, 1] and [1..m, 1,
1] , though they are all conceptually a sequence of values, have different allocations.
Since arrays with the same allocation exhibit better locality, and so better performance,
the ZPL designers opted for the “like rank” requirement.

In this section we introduce operators that change rank, such as partial reduce, and
operators that accommodate rank differences, such as flood.

12/5/2006

20

Processor 1-dimensional 2-dimensional 3-dimensional

0

 Indices: 1..16 1..2,1..8 1,1..4,1..4

1

 Indices: 17..32 3..4,1..8 2,1..4,1..4

2

 Indices: 33..48 5..6,1..8 3,1..4,1..4

3

 Indices: 48..64 7..8,1..8 4,1..4,1..4

Figure 8.2. Typical default allocations for 1-, 2- and 3-dimensional regions of 64 elements each on four
processors, depicted simply as dots.

Partial Reduce
A basic property of the reduce operation is that it converts an array into a scalar. That is,

sum := +<< A;

produces a single value by adding the elements of array A. If this result is seen as
“reducing” all of the dimensions of an array, then a partial reduce can be viewed as
reducing some of the dimensions of an array. Considering the m × n array B, we note that
we could reduce the first dimension by combining the columns of values to produce a
single row, or reduce the second dimension by combining the rows of values to produce a
single column.

12/5/2006

21

Not surprisingly, in ZPL partial reduce uses two regions with the same rank, one to
specify the source indices and one to specify the target indices. The source region,
specified with the operand, defines which operand indices are input to the reduce; the
target region, usually on the statement, defines the indices of the result. So, to partially
reduce B along the first dimension using add, we write

[1, 1..n] C := +<< [1..m, 1..n] B;

where the “operand region,” [1..m,1..n] specifies which indices of B are to
participate in the reduce (source), and the statement region [1, 1..n] specifies the
indices of the result (target). For example, for m = 3 and n = 4,

[1, 1..4] 7 7 6 5 ⇔ +<< [1..3, 1..4] 3 1 4 1
 1 4 1 4

 ≠ 3 2 1 0

The compiler computes the “difference” between the two regions—the first dimension
“reduces” from m indices to one and the second dimension is unchanged—and figures
out that the first dimension, the columns, are to be reduced, that is, added.

To reduce B in the second dimension using multiply, we write

[1..m, 1] D := *<< [1..m, 1..n] B;

and for m = 3 and n = 4 produce

[1..3, 1] 12 ⇔ *<< [1..3, 1..4] 3 1 4 1
 16 1 4 1 4
 0 3 2 1 0

 ≠

Again, the compiler computes the “difference” between the operand region and the
statement region figuring out that multiply is applied to the second dimension. It is not
necessary to give the statement region explicitly; if the desired target region is already the
applicable region—because the statement is executed within its scope—then the region
need not be repeated.

Notice that the region on the statement is really just defining the prevailing context for
the computation. The closest applicable region might be another operand region, as in the
more complex operation on the p × m × n array F,

[1,1,1..n] G := max<< [1,1..m,1..n] (min<< [1..p,1. .m,1..n] F);

which finds the “plane” of minimum values over the first dimension, and then finds the
row of maximums over the columns of the “plane.” Thus, for m = 3, n = 4 and p = 2, an
example is

12/5/2006

22

[1,1..3,1..4] 2 1 3 1 ⇔ min<< [1..2,1..3,1..4] 3 1 4 1
 1 3 1 2 1 4 1 4
 0 2 0 0 3 2 1 0

 2 4 3 4
 1 3 2 2
 0 5 0 3

 [1,1,1..4] 2 3 3 2 ⇔ max<< [1, 1..3, 1..4] 2 1 3 1
 1 3 1 2
 0 2 0 0

For the min reduction the compiler compares its operand region with the operand region
of the max reduction to determine that the first dimension is reduced; for the max
reduction, the compiler compares the operand region with the statement region. This idea
generalizes.

Flooding
If it is possible to reduce an array dimension, then it ought to be possible to expand an
array dimension. ZPL has an operation that expands in (one or more) dimensions by
replicating. It is called flooding (>>), and it is the opposite of partial reduction but with
the similar syntax. So,

[1..m, 1..n] B := >> [1, 1..n] C;

fills the array B with copies of the first row of C. For m = 3 and n = 4, an explicit example
is

 [1..3, 1..4] 7 7 6 5 ⇔ >> [1, 1..4] 7 7 6 5
 7 7 6 5
 7 7 6 5

 ≠

Like partial reduce the compiler figures out which dimensions to flood by comparing the
two regions, and noting the differences.

Of course, flooding can apply to any dimension, including the second dimension, as in

[1..m, 1..n] C := >> [1..m,1] D;

which can be illustrated by an example, for m = 3 and n = 4,

[1..3, 1..4] 12 12 12 ⇔ >> [1..3,1] 12
 16 16 16 16
 0 0 0 0

In addition, it is possible to flood only a portion of a dimension with replicated values.

12/5/2006

23

The Flooding Principle
What is the point of flooding; why copy values? Flooding is used when arrays of
different ranks must be operated on together. Suppose, for example, that every column of
a matrix is to be scaled by, say, its column two. The matrix is 2-dimensional and the
column is in concept 1-dimensional. But, because only one region applies to a statement,
ZPL requires that the two arrays match in rank. So, we replicate column two using
flooding, making it a logical 2-dimensional array, and divide (element-wise) by the
result. Specifically, we write

[1..m,1..n] B := B / (>> [1..m, 2] B);

The expression in parentheses is an m × n array composed of n copies of column two, and
because the division is performed element-wise, the result is that every column is scaled
by column two. Specifically, let m = 3 and n = 4, then an example of the principle would
be

[1..3, 1..4] 3.00 1.00 4.00 1.00 ⇔ 3 1 4 1 / 1 1 1 1
 0.25 1.00 0.25 1.00 1 4 1 4 4 4 4 4
 1.50 1.00 0.50 0.00 3 2 1 0 2 2 2 2

The values are only logically replicated; that is, the compiler does not actually make
copies of the values. The benefit of this approach is to allow better locality in the
computation, and to manage data transfers more efficiently.

Data Manipulation, An Example
Imagine a dataset D of shape [1..m, 0..n] containing rows of n observations, say
cups of coffee consumed in a day, for m subjects. To record summary data, the array has
been given an additional 0th column. Consider some illustrative computations on this
data.

The most coffee consumed on any day by any subject is the max reduce over the data
portion of the entire array

 [1..m,1..n] most := max<< D; -- Compute top score

The variable most is a scalar.

The maximum for each subject is the partial reduction across the rows, which we store in
the 0th column

[1..m, 0] D := max<< [1..m, 1..n] D; -- Record ind ividual maxima

The computation produced a column of values.

The test for any non-coffee drinkers is simply a check for a 0 in the summary column and
an OR-reduce (over that column only) to accumulate the result, as in

12/5/2006

24

[1..m, 0] tFans := |<<(D = 0); -- Does anyone not l ike coffee?

The variable tFans is a scalar. (Of course, a simple AND-reduce &<<D would also
work, but it may be less clear.)

In the case where everyone is a coffee drinker, we can scale everyone’s coffee habit in
the range (0,1] relative to their biggest day by flooding the first column across the array
and dividing the result into the data array,

if !tFans then
 [1..m,1..n] D := D / (>> [1..m, 0] D); -- Sca le by maximum
end;

Finally, we can determine the percentage of days of the study that each person achieved
his or her maximum. We begin by comparing the whole data array to 1, then partially
reducing each row using addition, which produces a count of max days for each person,
and then dividing the results by n.

[1..m, 0] D := 100 * (+<< [1..m,1..n](D = 1)) / n; --Pct days@max

Though some programmers might find it natural to use column 0 as a summary column,
others would prefer to declare the dataset by its proper dimensions [1..m, 1..n]
and use a separate array Sum [1..m, 1] to store summary results. Of course, we
require Sum to be 2-dimensional, because it will be used in expressions involving D.
With this approach the forgoing computations become

[1..m,1..n] most := max<< D;
 [1..m, 1] Sum := max<< [1..m, 1..n] D;
 [1..m, 1] tFans := |<<(Sum = 0);
 if !tFans then
[1..m,1..n] D := D / (>> [1..m, 1] Sum);
 end;
 [1..m, 1] Sum := 100 * (+<< [1..m,1..n](D = 1)) / n;

By such computations ZPL programmers perform routine data manipulation, switching
back and forth among various data sizes but remaining within a given rank.

Flood Regions
The use of the Sum variable in this last example illustrates a curiosity with the way we
have used ZPL so far. Though it made sense in our first solution, perhaps, to place the
summary column in the 0th position, why do we specify the array Sum to have its second
index be 1? Could it be 0 or 9 or n? Yes. The actual consequences of this decision for
memory allocation will be explained below, but our point now is that the choice will
generally be arbitrary. To emphasize the arbitrariness, notice that one of the operations on
Sum is to flood it, that is, replicate it in all column positions.

12/5/2006

25

ZPL has the concept of a flood dimension, denoted by an asterisk (*) in the region
expression. The flood dimension is effectively a “don’t care” for a (collapsed) index. So,
the best way to define the summary array from the last example would be

var Sum : [1..m, *] float;

which specifies that the data is flooded in the second dimension. The final four
statements from the earlier example now become

 [1..m, *] Sum := max<< [1..m, 1..n] D;
 [1..m, *] tFans := |<<(Sum = 0);
 if !tFans then
[1..m,1..n] D := D / Sum);
 end;
 [1..m, *] Sum := 100 * (+<< [1..m,1..n](D = 1)) / n;

There is no need to flood Sum in the third line because the data is already flooded by the
properties of flood dimensions. This means that there are values to correspond element-
wise with the n elements of D’s second dimension. How many elements does Sum have
in its second dimension? Any number needed with any needed indices. Graphically, the
values of Sum can be visualized as

…, v1, v1, v1, v1, …
…, v2, v2, v2, v2, …
…, v3, v3, v3, v3, …
…, v4, v4, v4, v4, …
 …
…, vm, vm, vm, vm, …

so they match arrays of any size in the second dimension. Like all flood dimensions,
however, Sum’s second dimension is only logical.

Flood dimensions are sensible based on the principle that programmers should never be
asked to specify more than they mean. But there is another important reason. Flood
dimensions enable the compiler to use very efficient data representations—data
replication is avoided—and very efficient communication protocols—multicast is often
possible. As a result, it is always better to select a flood dimension than it is to make an
arbitrary choice of a collapsed index value. (Sometimes a choice is appropriate, as when
controlling allocation, however.)

Matrix Multiplication
To apply the ideas of this section consider computing the product of two dense matrices,
A, which is m × n, and B, which is n × p to produce C = AB. This computation is often
programmed in sequential programming languages as a triply nested loop

for (i = 0; i < m; i++) {
{
 for (j = 0; j < p; j++)

12/5/2006

26

 {
 C[i,j] = 0;
 for (k = 0; k < n; k++)
 {
 C[i,j] += A[i,k]*B[k,j];
 }
 }
}

computing the dot product for each element, in which the i th row of A is multiplied
times the j th column of B and reduced to produce the C[i,j] .

We present this sequential solution only to be precise. It is not the right way to think
about a parallel matrix product. Indeed, van de Geijn and Watts argued that computing
the dot products separately, i.e. a row of A times column of B, is exactly backwards. In
their SUMMA (Scalable Universal Matrix Multiplication Algorithm) approach they bring
the initialization and the k-loop to the outside, effectively computing all of the kth terms
of all of the dot-products at once. This contrary way of thinking produces an extremely
efficient matrix multiplication. It is also the easiest ZPL matrix multiplication because it
exploits flooding.

To see the key idea of SUMMA and why flooding is so fundamental to it, notice that in
the computation C = AB for 3x3 matrices A and B, the definitions of the first two
columns of the result are

C1,1 = A1,1xB1,1 + A1,2xB2,1 + A1,3xB3,1 C1,2 = A1,1xB1,2 + A1,2xB2,2 + A1,3xB3,2 …
C2,1 = A2,1xB1,1 + A2,2xB2,1 + A2,3xB3,1 C2,2 = A2,1xB1,2 + A2,2xB2,2 + A2,3xB3,2 …
C3,1 = A3,1xB1,1 + A3,2xB2,1 + A3,3xB3,1 C3,2 = A3,1xB1,2 + A3,2xB2,2 + A3,3xB3,2 …

Notice that the first term of all of these equations can be computed by replicating the first
column of A across a 3x3 array, and replicating the first row of B down a 3x3 array, that
is, flooding A’s first column and B’s first row, and then multiplying corresponding
elements; the second term results from replicating A’s second column and B’s second
row and multiplying, and similarly for the third term.

The ZPL matrix product code is shown in Figure 8.3. The program begins with the
obvious variable declarations. The Col variable will be used to flood columns of A, and
Row will be used to flood rows of B. In the body of the procedure, the entire computation
is executed in the context of the result array C’s dimensions. The result array is initialized
to 0, and the computation enters the k -loop that processes through the n terms of the dot
product.

In the body of the loop the next column of A is flooded across Col and the next row of B
is flooded down Row. In the final statement of the loop the two flooded arrays are
multiplied element-wise and accumulated into the result array, C. Then the next term of
the dot-product is considered.

12/5/2006

27

var A : [1..m, 1..n] double;
 B : [1..n, 1..p] double;
 C : [1..m, 1..p] double;
 Col : [1..m, *] double;
 Row : [*, 1..p] double;
 k : integer;

 ...

procedure MM();
[1..m, 1..p] begin
 C := 0;
 for k = 1 to n do
 [1..m, *] Col := >> [1..m, k] A;
 [*, 1..p] Row := >> [k, 1..p] B;
 C += Col*Row;
 end;
 end;

Figure 8.3. The SUMMA matrix multiplication algorithm in ZPL.

Notice that the use of the temporary arrays Col and Row was actually unnecessary. The
procedure could have been written as,

procedure MM();
[1..m, 1..p] begin
 C := 0;
 for k = 1 to n do
 C += (>> [1..m, k] A) * (>> [k, 1..p] B);
 end;
 end;

using expression floods. In fact, the compiler will generate temporaries for the expression
floods anyway corresponding to Col and Row, but it saves the programmer a few lines of
typing. The SUMMA is not only an easy matrix multiplication program to write, it is
extremely fast to run.

The constraints on partial reduce and flood are summarized in Code Spec 8.5.

Code Spec 8.5. Requirements of ZPL’s partial reduce and flood.

Partial Reduce (<<) and Flood (>>). These two operations require two regions, a
source region (included as a operand) and a target region (usually on the statement), as in

 [1, 1..3] ... +<< [1..3, 1..5] A ... // red uction
 [1..3,1..5] ... >> [1, 1..3] A ... // flo od

For each dimension in the two regions the index ranges are either identical or one is a
collapsed dimension (singleton value). For partial reduction (collapsed dimension(s) on
target region), the elements of the operand are combined to collapse the dimension; for
flood (collapsed dimension(s) on the source region), the element is replicated to flood the
index range of the dimension.

12/5/2006

28

Reordering Data With Remap
ZPL emphasizes computing on data that is local, but often data has to be moved around
to become local. The remap performs arbitrary restructuring of data, including changing
its rank. Before learning about remap, we must introduce the Indexi arrays.

Indexi
ZPL provides compiler-generated constant arrays of indices denoted by the form Index
+ <dimension number>, as in Index1 , Index2 , Index3 , etc. The arrays, which are
only logical, contain the index values for the indicated dimension as specified by the
region. So, for example

[1..3,1..3] ... Index1 ... ⇔ 1 1 1
 2 2 2
 3 3 3

is an array of the first dimension indices, and

[1..3,1..3] ... Index2 ... ⇔ 1 2 3
 1 2 3
 1 2 3

is an array of second dimension indices. The only constraint on the use of Index i arrays
is that the statement’s region have an ith dimension.

The constant Indexi arrays are used frequently in ZPL programs, as in

[1..n,1..n] Diag := Index1 = Index2;

for constructing an array with 1s down the diagonal, and

[1..n,1..n] RMO := n*(Index1-1) + Index2;

for computing the row-major order index of elements of a 2D array. They are also used
frequently in remap.

Remap
The remap operator is denoted by the hash symbol (#) and has two forms, known as
gather and scatter. Both forms take an argument in brackets, the remap array(s),
A#[P] , that specifies the indices used to produce the result. One remap array is required
for each dimension.

1-Dimensional Case. For example, suppose A and P are declared over the region
[1..n] , and that for n=7, the values are

A ⇔ d d e e o r r
P ⇔ 5 6 1 3 7 4 2

12/5/2006

29

then A#[P] has the value

o r d e r e d ⇔ d d e e o r r # [5 6 1 3 7 4 2]

The result can be found by indexing the operand array with the remap array; so, for
example, the first element of the remap array is 5, so the fifth element of the operand, o,
is selected for the first position.

It is common to use expressions based on the Index i values. For example, A#[8-
Index1] , which is the descending index values for the first (and only) dimension of this
array,

r r o e e d d ⇔ d d e e o r r # [7 6 5 4 3 2 1]

reverses the operand. To spell ordered backwards, write A # [P # [8-Index1]] .

Gather and Scatter. The form of remap shown so far is the gather form, which is used
on the right-hand side of assignment statements. It is also possible to write remap on the
left-hand side of an assignment statement, as in

A#[P] := A

to get the scatter semantics. In this case the right-hand side values are produced and
assigned to the variable on the left-hand side according to the indices of the remap array.
For the A and P data from above, the statement A[P] := A results in

e r e r d d o ⇔ d d e e o r r # [5 6 1 3 7 4 2]:= d d e e o r r

proving, if it was necessary, that gather and scatter are different. (The terms come from
the fact that gather picks the values from operand positions using the indices and scatter
puts the values into result positions using the indices.)

Repeats in Remap Arrays. The values in the remap arrays do not have to be unique,
though that is the most common case. For example, the gather A#[1 1 1 1 1 1 1] is

d d d d d d d ⇔ d d e e o r r # [1 1 1 1 1 1 1]

is a cumbersome (and expensive) way to flood the first element of A. For scatter the issue
is more curious. Because scatter assigns values, an index value appearing multiple times
in the remap array can result in different orders of assignments, resulting in unpredictable
results. So, the scatter form A # [1 1 1 1 1 1]:= A

? d e e o r r ⇔ d d e e o r r # [1 1 1 1 1 1 1]

12/5/2006

30

will result in one of d, e, o or r being assigned to the first index position, but which is
undefined. Different (parallel) executions will produce different results.

Higher Dimensions. Higher dimensions require multiple remap arrays in the brackets,
B # [C, D] , the array in the ith dimension specifying the index values for that
dimension. That is, the elements of B are reordered using C as the source of all of the first
indices and D as the source of all of the second indices. For example,

[1..n, 1..m] Btranspose := B # [Index2, Index1];

is a standard idiom for computing the transpose of an array, because the indices of the
two dimensions are interchanged. For Btranspose declared over region [1..n,
1..m] then, for m=3 and n=2 the transpose is illustrated by

a c e ⇔ a b # [1 2 3, 1 1 1]
b d f c d 1 2 3 2 2 2
 e f

The operation of this gather is clear: Item i, j in the result comes from the Ci,j, Di,j position
of the operand.

Ordering Example
Remap is used regularly in ZPL. An excellent example of its use is to move rows around
so they are in order by some criterion. Illustrating such a computation is the task of this
section.

Recall the “coffee drinkers” data array from the Data Manipulation Section. The array
was defined over the region [1..m, 0..n] , recording the number of cups of coffee
consumed by m people over n days; the first column is used for summary statistics. For
example, we know that we can compute the average coffee consumption of the
participants by

[1..m, 0] D := (+<< [1..m,1..n] D)/n;

Now, suppose we want to order the coffee drinkers by their average consumption, least to
greatest. This means that we need to reorder the rows of the D array based on the value in
column 0. For this, we need to compute everyone’s rank based on the 0th column.

Our strategy is to break the task into three parts

• compute the rank by using flood to make all comparisons
• reduce to get the ranking
• remap the array into the right order

For convenience, we will assume the averages are unique, but it is simple to handle
duplicates.

12/5/2006

31

All Comparisons Ranking Algorithm. To compare every element with every other
element of a sequence, we flood a 2D array with the 0th column averages. This gives one
of the operands for the comparison. To get the other operand, we transpose the array, and
flood it in the other dimension. Making a comparison of the two arrays yields an array of
bits.

Begin with the declarations,

RepC : [1..m, *] float; -- Temp for replicated colu mns
RepR : [*, 1..m] float; -- Temp for replicated rows

and using the averages in column 0 of D to flood the arrays. For RepC the flood is direct
because the two arrays are oriented properly. For RepR column 0 must first be
transposed to be a row before flooding,

[1..m,*] RepC := >> [1..m, 0] D; -- Replicate Av e Col
[*,1..m] RepR := >> [*, 1..m] D#[Index2, 0];-- Repl Ave as a Row

Making all of the comparisons is a simple matter,

[1..m, 1..m] ... RepC >= RepR; Make an array of b its

Obviously, care must be taken to chose the right relational operator. The >= will have the
effect of setting only one bit in the row corresponding to the smallest item; all of the bits
will be set in the row containing the maximum item.

All Comparisons Ranking Algorithm. To find the rank of the items, simply add up
the 1s in each row using a partial reduce. This will produce a column of results, but
because we will be using the result in a remap, we don’t want just a column; we want an
array flooded with the rank values. So, we include the declaration

var Rank : [1..m, *] integer;

which makes the second dimension a flood dimension.

With the Rank variable set up we can perform the partial reduction followed by the flood

[1..m, *] Rank := >> [1..m,*] (+<< [1..m,1..m] (Rep C >= RepR));

producing the desired result.

Sorting With The Rank Array. Now, using the values in Rank we can reorder the
rows of D using remap.

 [1..m, 0..n] D#[Rank, Index2] := D;

12/5/2006

32

which orders the rows by the value in the 0th column. The final program is shown in
Figure 8.4.

region R = [1..m,0..n];
var D: [R] float;
 RepR : [*, 1..m] float;
 RepC : [1..m, *] float;
 Rank : [1..m,*] integer;
 ...
 [1..m,*] RepC := >>[1..m,0] D;
 [*,1..m] RepR := >>[*,1..m] D#[Index2,0];
 [1..m,*] Rank := >>[1..m,*](+<<[1..m,1..m] (RepC >= RepR));
 D#[Rank, Index2] := D;

Figure 8.4. Declarations and code for reordering the rows of D according to its column 0.

This reordering operation seems complicated when considered for the first time, but it is
a standard ZPL paradigm. It becomes second nature very quickly, especially once the
apparatus has been set up.

Parallel Execution of ZPL
The beauty of a high level language filled with parallel abstractions is that programming
is simple because the compiler does the tough work. There are no threads to keep track
of, no communication calls to insert, etc. The compiler not only generates the code, it can
optimize it as well. The result is a fast easy-to-write program that need only be
recompiled to run well on the next parallel platform.

Although it is sensible to benefit from the compiler’s help, it is also essential to know
how the program will run. That is, there are always a variety of ways to solve a given
programming problem, and they often require different resources—more instructions,
more data motion, more memory, etc. To write quality programs we need to know
enough about how the language is implemented to know which of the competing
solutions is the best. ZPL was the first parallel programming language to embed within
its specification a performance model, known as the WYSIWYG Performance Model. By
taking a few minutes to learn how the model describes the performance of the compiled
code, programmers can apply the knowledge to write better programs. It’s easy.

Specifying Number of Processors
All computations begin with a standard organization, which we describe now. It is
possible for programmers to assign work and data to processors differently using features
not yet discussed, but any such changes begin from the standard organization.

On the command line programmers specify the number of processors and their
arrangement using the –p option and the –g option. So, to run the compiled program
myProgram on sixteen processors arranged in two rows of eight, write

myProgram –p16 –g2x8

12/5/2006

33

The arrangement, which is typically expressed as a 2D grid, is key to the allocation of
arrays to processors.

Assigning Regions to Processors
Since arrays inherit their indices from regions, it is not surprising that the first step in
assigning arrays to processors is to assign regions to processors. The regions of a
program are assigned in a consistent way, so that all regions with an index [i, j, …, k]
have that index assigned to the same processor. To achieve this effect think of all regions
being superimposed on one another so that their indices align, as shown in Figure 8.5.
From this superimposition their bounding region is computed; the bounding region is the
smallest region that includes all of the indices of the superimposed regions.

Figure 8.5. Bounding region. Regions used in the program are superimposed so that their indices align;
the black square has the same index in all regions. Once aligned, the bounding region is the smallest region
containing the same indices as the superimposed region.

Once computed the bounding region can be allocated based on the processor gird given
on the command line with the –g option. The allocation is a block allocation using the
Ceiling – Floor assignment described in Chapter 4. The indices are allocated to
processors indexed in the obvious way: low index to high index in row major order. Once
the bounding region has been assigned to the processors, the task is complete because the
contributing regions simply make the same assignment. Thus, a –p4 –g2x2 allocation
of the region in Figure 8.5 is shown in Figure 8.6. The assignment shown illustrates that
allocating regions so that all indices align can result in a slightly suboptimal allocation.
The effect is generally small, and only occasionally arises.

As another example, the allocation in Figure 4.1(b) is achieved for a 16×16 ZPL region
by specifying –p16 –g16x1 .

Region Allocation Policy. The policy of aligning the regions so that index [i, j, …, k] of any region
is assigned to one processor guarantees that when element-wise operations are performed on arrays,
such as A + B , all of the computation is local to the processors. There is no communication.

12/5/2006

34

Figure 8.6. Block allocation of the bounding region. The bounding region is partitioned using the Ceiling-
Floor allocation, which assigns a set of indices. The contributing regions’ indices are assigned in the same
way.

Array Allocation
Given the assignment of the regions’ indices to the processors, arrays are trivially defined
by allocating space for their elements on the processors according the where their indices
are located, that is, the arrays inherit the regions’ allocations. The order of allocating
elements matches that of the C language, which is row-major order. Additionally, the
allocations have fluff buffers where needed.

For example, the statement

var B, C, D : [1..8, 1..8] float;

allocated to a 2×2 processor grid, would assign processor p0 the subregion
[1..4,1..4] , implying that those indices for arrays B, C and D are also allocated to it;
p1 would be allocated the subregion [1..4, 5..8] , etc.

Scalar Allocation
Non-array variables are redundantly allocated; that is, all processors are assigned all of
the scalars. Scalar computation, such as

i := i + 1;

is redundantly computed by each processor. On the plus side this redundancy eliminates
communication (recall the random number example of Chapter 2), but on the minus side
scalar computation is not a source of improved performance through parallelism.

Work Assignment
With the arrays allocated, the work assignment is easily specified: Each processor
computes the values for the elements allocated to it. So, the region on the statement,

12/5/2006

35

which can be thought of as stating the indices to be computed in the array statement,
imply which processor performs the actual computation. For the statement

[1..8, 1..8] B := C + D;

processor p0 would perform the update to the subregion [1..4, 1..4] of B using the
local elements of C and D. By implication when the data is well-balanced among the
processors, the work for such statements will be well-balanced. Thus, the work to update
this array will be distributed among the four processors evenly enough that a 4-fold
speedup can be anticipated.

Performance Model
Given the previous description of how regions, arrays and work are allocated to
processors by the ZPL compiler, it is easy to see how a program with only element-wise
computations would perform in parallel: It exhibits essentially perfect speedup. But what
about the other ZPL constructs? In fact, they are almost as easy to understand.

ZPL’s performance model is based on the element-wise specification plus an overhead
communication cost for those operations, such as @-references and remaps, requiring
off-processor values. The communication component adds to the base cost of the work.
The model rests on the idea that these two costs—basic work and communication
overhead—constitute a good first approximation to the performance of any algorithm on
any (CTA) platform. The model is easy to use because programmers can “see” the places
in their code where they incur the added communication costs by simply noting where the
operators are used. Code Spec 8.6 shows a brief summary of these costs.

Code Spec 8.6. ZPL’s performance model specifications for worst-case behavior; the actual performance
is influenced by n, P, processor arrangement and compiler optimizations in addition to the physical features
of the computer.

To amplify further on the cost model, consider the following operations.

• @-translations: The @-modifier on operands implies data transmission from
values stored on adjacent processors to local fluff buffers to implement the
translation. Only edge elements are transferred, so by the CTA model, these
point-to-point communications will in general collectively require 1 or a constant
number of λ communication delays.

Syntactic Cue Example Parallelism (P) Communication Cost Remarks
[R] array ops [R] ... A+B ... full; work/P
@ array transl. ... A@east ... 1 point-to-point xmit "surface" only
<< reduction ... +<<A ... work/P + log P 2log P point-to-point fan-in/out trees
<< partial red … +<<[] A … work/P + log P log P point-to-point
|| scan … +|| … work/P + log P 2log P point-to-point parallel prefix trees
>> flood … >> [] A … multicast in dimension data not replicated
remap ... A#[I1,I2] ... 2 all-to-all, potentially general data reorg.

12/5/2006

36

• << reductions: The reduce operation uses the Schwartz algorithm to combine the
array values into a scalar; this is followed by a broadcast to distribute the scalar
value back to all processors. Thus, the communication pattern is a combining tree
followed by a broadcast tree, each of which is at most log P height, resulting in
λlog P communication cost.

• << partial reductions: The partial reductions follow the combining concepts of
full reductions, but without the broadcast.

• || scan: Scan uses the parallel prefix operation, and therefore has two traversals
of a log height P tree, one up and one down, resulting in a 2λ log P
communication expense.

• >> flood: The flood must distribute stored values to other processors representing
portions of its dimension; a multicast—a broadcast to a subset of the processors—
can be used if available. (Special hardware is generally fast, but even without it
broadcast can be performed by a tree, resulting in log P concurrent transmissions.)
The primary feature of flood that bounds its communication complexity, is that if
processors are assigned to more than one dimension, only a small subset of the
processors will be recipients of any flood.

• # remap: The remap operation is ZPL’s most expensive because it entails two
communication cycles: one to distribute the pattern of communication (remap
arrays), and one to distribute the data itself. Potentially, these are both all-to-all
communications, meaning that each processor might have to communicate with
every other processor. ZPL attempts to optimize remap to reduce its expense:
Examples, include exploiting constant arguments as occur in transpose
(#A[Index2, Index1]), or reusing remap arrays if they have not changed
since the last remap.

Using this information, it is possible to know roughly how a statement will perform.

Applying the Performance Model: Life
When we wrote the Life program we focused on realizing the proper computation, but we
could also know in approximate terms how the program will perform. Recall that the
main computation was

20 [R] repeat
21 NN := TW@nw + TW@no + TW@ne +
22 TW@we + TW@ea +
23 TW@sw + TW@so + TW@se;
24 TW := (TW & NN = 2) | (NN = 3);
25 until !(|<< TW);

The loop contains essentially three computations: calculating NN, calculating TW and
computing the reduction for the loop-termination test. Analyze each.

• Calculating NN. The statement involves eight @-translation followed by local
computation. According to Code Spec 8.6, each @-translation requires a λ delay or
so, because a CTA computer can be expected to perform many such point-to-

12/5/2006

37

point communications at once. So, we charge constant communication plus local
computation.

• Calculating TW. This statement requires only local computation on the array
elements; there is no communication charge. This is parallel computation’s best
case.

• Or Reduce. The loop termination expression requires the 2λ log P time for the
Schwartz algorithm.

Further, the default block allocation will result in reasonably balanced work, implying a
factor of P speedup on the computation. So, asymptotically, as n increases, the problem
continues to enjoy full speedup with O(log P) communication overhead; if P grows, the
increase in communication overhead remains modest.

Applying the Performance Model: SUMMA
The matrix multiplication algorithm of Figure 8.3 has the text

[1..m, 1..p] begin
 C := 0;
 for k = 1 to n do
 C += (>> [1..m, k] A) * (>> [k, 1..p] B);
 end;
 end;

as the main part of the computation.

Ignoring the onetime initialization of array C, the loop has for each of the n iterations two
flood operations and then multiply-add computations on the local elements. Again, the
default block operation will result in a reasonably balanced allocation, so the multiply-
add computations will be fully parallel. If we arrange the P processors into a √P × √P
grid, then each multicast tree implementing a flood will have height log P/2. Thus, the
communication overhead for the two iterations can be estimated to be O(log P) per
iteration, making it an efficient parallel matrix product solution.1

Summary of the Performance Model
The bound is an estimate of the worst-case time complexity of the computation based on
how the model describes ZPL’s execution on a CTA computer. As programmers we can
depend on it as a reliable machine-independent bound. Though certain ZPL compiler
optimizations can lead to better performance, the model guarantees that the program will
realize at least this level of performance. For example, the compiler moves
communication calls around, which can result in overlapping communication with
computation. If successful in this case, the communication overhead might be entirely
eliminated; but if it is not the performance is still quite satisfactory.

1 This type of analysis can be used to compare algorithms. The original paper announcing the computation
model compared SUMMA with Canon’s algorithm, and found SUMMA to be better, a prediction that was
confirmed by experimentation.

12/5/2006

38

Summary
ZPL is a high-level array programming language with implicit parallelism. We write
array computations as we might in any array language without consideration to the issues
of parallelism. The compiler performs all of the parallelization, communication
placement, process spawning, etc. We can be completely oblivious to parallelism in ZPL.

Nevertheless, we will pay attention to the parallelism by using ZPL’s performance model
to estimate how well our computation will run. Such estimates are based on the CTA and
are sound for all parallel computers modeled by the CTA. ZPL is unique in allowing
programmers to write well-designed parallel programs even though they do not write the
implementing parallel code.

Exercises

Exercise 1: Develop a small 3 x 3 data array. By hand, work out example values for the
computations in the Data Manipulation Section.

Exercise 3: Revise the row rank ordering of the coffee data to handle duplicates.

Historical Context
WYSIWYG paper, ZPL programmer’s guide, remap paper.

