Chapter 5: Achieving Good Performance

Typically, it is fairly straightforward to reasoba@ut the performance of sequential
computations. For most programs, it suffices syniplcount the number of instructions
that are executed. In some cases, we realizentaiory system performance is the
bottleneck, so we find ways to reduce memory usadge improve memory locality. In
general, programmers are encouraged to avoid pueenaptimization by remembering
the 90/10 rule, which states that 90% of the tisngpient in 10% of the code. Thus, a
prudent strategy is to write a program in a cleammer, and if its performance needs
improving, to identify the 10% of the code that doates the execution time. This 10%
can then be rewritten, perhaps even rewritten iinesalternative language, such as
assembly code or C.

Unfortunately, the situation is much more compléthyarallel programs. As we will
see, the factors that determine performance argisioinstruction times, but also
communication time, waiting time, dependences, Btgnamic effects, such as
contention, are time-dependent and vary from pralite problem and from machine to
machine. Furthermore, controlling the costs is momore complicated. But before
considering the complications, consider a fundaaiqarinciple of parallel computation

Amdahl's Law

Amdahl's Lawobserves that if Hof a computation is inherently sequential, then th
maximum performance improvement is limited to adaof S. The reasoning is that the
parallel execution timelp, of a computation with sequential execution tiffig will be

the sum of the time for the sequential componedtthe parallel component. FBr
processors we have

Tp=1STs+ (1-185) (s / P

Imagining a value foP so large that the parallel portion takes neglegiirhe, the
maximum performance improvement is a factoBofThat is, the proportion of
sequential code in a computation determines itsriat for improvement using
parallelism.

Given Amdahl's Law, we can see that the 90/10duaks not work, even if the 90% of

the execution time goes to 0. By leaving the 10% @ code unchanged, our execution
time is at best 1/10 of the original, and when we many more than 10 processors, a 10x
speedup is likely to be unsatisfactory.

The situation is actually somewhat worse than Ariid&taw implies. One obvious
problem is that the parallelizable portion of tleenputation might not be improved to an

Amdahl’'s Law. The “law” was enunciated in a 1967 paper by Genalahl, an IBM
mainframe architect [Amdahl, G.M., Validity of tlsengle-processor approach to
achieving large scale computing capabilitiesAFIPS Conference Proceedings-IPS
Press 30:483-485, 1967]. ltis a “law” in the sasmase that the Law of Supply and
Demand is a law: It describes a relationship betwe® components of program
execution time, as expressed by the equation givére text. Both laws are powerful
tools to explain the behavior of important phenoajeand both laws assume as constgnt
other quantities that affect the behavior. AmdahBw applies to a program instance.

unlimited extent—that is, there is probably an ugdpeit on the number of processors
that can be used and still improve the performamnaethe parallel execution time is
unlikely to vanish. Furthermore, a parallel implernagion often executes more total
instruction than the sequential solution, making (th-1/S)(Ts an under estimate.

Many, including Amdahl, have interpreted the lawpesof that applying large numbers
of processors to a problem will have limited sus¢ésit this seems to contradict news
reports in which huge parallel computers improveagotations by huge factors. What
gives? Amdahl’'s law describes a key fact thatiappb aninstanceof a computation.
Portions of a computation that are sequential adlparallelism is applied, dominate the
execution time. The law fixes @amstance and considers the effect of increasing
parallelism. Most parallel computations, suchhase in the news, fix the parallelism
and expand the instances. In such cases the fimpof sequential code diminishes
relative to the overall problem as larger instararesconsidered. So, doubling the
problem size may increase the sequential portigigiely, making a greater fraction of
the problem available for parallel execution.

In summary, Amdahl’s law does not deny the valupargllel computing. Rather, it
reminds us that to achieve parallel performancenwst be concerned with the entire
program.

Measuring Performance

As mentioned repeatedly, the main point of paradehputing is to run computations
faster.Fasterobviously means “in less time,” but we immediateiynder, “How much
less?” To understand both what is possible and whacan expect to achieve, we use
several metrics to measure parallel performanad wéth its own strengths and
weaknesses.

Execution Time

Perhaps the most intuitive metriceisecutiortime. Most of us think of the so called
“wall clock” time as synonymous with execution tinaad for programs that run for
hours and hours, that equivalence is accurate énoBgt the elapsed wall clock time
includes operating system time for loading andaitiitg the program, 1/0 time for
reading data, paging time for the compulsory pagses, check-pointing time, etc. For

short computations—the kind that we often use wherare analyzing program
behavior—these items can be significant contritsitorexecution time. One argument
says that because they are not affected by thepusgramming, they should be factored
out of performance analysis that is directed aeustdnding the behavior of a parallel
solution; the other view says that some servicesiged by the OS are needed, and the
time should be charged. It is a complicated maltizrwe take up again at the end of the
chapter.

In this book we use execution time to refer toribeexecution time of a parallel program
exclusive of initial OS, I/O, etc. charges. Thelgem of compulsory page misses is
usually handled by running the computation twice areasuring only the second one.
When we intend to include all of the componentstrioating to execution time, we will
refer towall clock time

Notice that execution times (and wall clock timesthat matter) cannot be compared if
they come from different computers. And, in mases it is not possible to compare the
execution times of programs running different irspeen for the same computer.

FLOPS

Another common metric is FLOPS, short for floatpwint operations per second, which
is often used in scientific computations that aventhated by floating point arithmetic.
Because double precision floating point arithmigtiossually significantly more
expensive than single precision, it is common wiegrorting FLOPS to state which type
of arithmetic is being measured. An obvious dod®go using FLOPS is that it ignores
other costs such as integer computations, whichaisybe a significant component of
computation time. Perhaps more significant is FHADPS rates can often be affected by
extremely low-level program modifications that allthe programs to exploit a special
feature of the hardware, e.g. a combined multipig/aperation. Such “improvements”
typically have little generality, either to otherrmaputations or to other computers.

A limitation of both of the above metrics is thiagy distill all performance into a single
number without providing an indication of the p&bbehavior of the computation.
Instead, we often wish to understand how the perdnice of the program scales as we
change the amount of parallelism.

Speedup

Speedups defined as the execution time of a sequent@jiam divided by the
execution time of a parallel program that comptitessame result. In particular,
Speedup Ts/ Tp, whereTgis the sequential time afi@ is the parallel time running dn
processors. Speedup is often plotted orythgis and the number of processors onxthe
axis, as shown in Figure 5.1.

487 Performance
"
/, -
Speedup "
/ —l
7 Programl ==
Program2 =
0 Processors 64

Figure 5.1. A typical speedup graph showing pertoroe for two programs.

The speedup graph shows a characteristic typicalaofy parallel programs, namely, that
the speedup curves level off as we increase théeauof processors. This feature is the
result of keeping the problem size constant wiitggasing the number of processors,
which causes the amount of work per processordeedse; with less work per processor
costs such as overhead—or sequential computasofaahl predicted—become more
significant, causing the total execution not todsca well.

Efficiency

Efficiency is a normalized measure of speedtfficiency= Speedup/P Ideally, speedup
should scale linearly witR, implying that efficiency should have a constaaiue of 1.
Of course, because of various sources of perforenbnss, efficiency is more typically
below 1, and it diminishes as we increase the numwierocessors. Efficiency greater
than 1 represents superlinear speedup.

Superlinear Speedup

The upper curve in the Figure 5.1 graph indicatg®dinear speedup, which occurs
when speedup grows faster than the number of pocesHow is this possible? Surely
the sequential program, which is the basis foisfieedup computation, could just
simulate thd® processes of the parallel program to achieve enwon time that is no
more tharP times the parallel execution time. Shouldn’t slipear speedup be
impossible? There are two reasons why superlinesgdiip occurs.

The most common reason is that the computationt&ing set—that is, the set of pages
needed for the computationally intensive part effghogram—does not fit in the cache
when executed on a single processor, but it db@#di the caches of the multiple
processors when the problem is divided amongst foeiparallel execution. In such
cases the superlinear speedup derives from imprexecution time due to the more
efficient memory system behavior of the multi-presar execution.

The second case of superlinear speedup occurs pararming a search that is
terminated as soon as the desired element is fMhdn performed in parallel, the
search is effectively performed in a different ardeplying that the total amount of data
searched can actually be less than in the sequeasa. Thus, the parallel execution
actually performs less work.

Issues with Speedup and Efficiency

Since speedup is a ratio of two execution times, at unitless metric that would seem to
factor out technological details such as procespgeed. Instead, such details insidiously
affect speedup, so we must be careful in intenpgetpeedup figures. There are several
concerns.

First, recognize that it is difficult to comparesgplup from machines of different
generations, even if they have the same architecfline problem is that different
components of a parallel machine are generallyowgnt by different amounts, changing
their relative importance. So, for example, preaoeperformance has increased over
time, but communication latency has not fallen prtipnately. Thus, the time spent
communicating will not have diminished as muchhastime spent computing. As a
result, speedup values have generally decreasedioee Stated another way, the
parallel components of a computation have becoiaéwely more expensive compared
to the processing components.

The second issue concerhs speedup’s numerator, which should be the timeéher
fastest sequential solution for the given proceasadrproblem size. [Fsis artificially
inflated, speedup will be greater. A subtle wajntwreaselsis to turn off scalar
compiler optimizations for both the sequential padallel programs, which might seem
fair since it is using the same compiler for batbgrams. However, such a change
effectively slows the processors and improves—iradbt speaking—communication
latency. When reporting speedup, the sequentigrpm should be provided and the
compiler optimization settings detailed.

Another common way to increa$eis to measure the one-processor performance of the
parallel program. Speedup computed on this basis is cadlative speedupnd should

be reported as such. True speedup includes iy llossibility that the sequential
algorithm is different than the parallel algorithiRelative speedup, which simply
compares different runs of the same algorithm,galsethe base case an algorithm
optimized for concurrent execution but with no platsm; it will likely run slower

because of parallel overheads, causing the spgedopk better. Notice that it can
happen that a well-written parallel program on prezessois faster than any known
sequential program, making it the best sequentanam. In such cases we have true
speedup, not relative speedup. The situation dhmeikexplicitly identified.

Relative speed up cannot always be avoided. Fample, for large computations it may
be impossible to measure a sequential programgivea problem size, because the data
structures do not fit in memory. In such casedirdaspeedup is all that can be reported.
The base case will be a parallel computation amalshumber of processors, and the

axis of the speedup plot should be scaled by thatuat. So, for example, if the smallest
possible run haB=4, then dividing by the runtime fé&=64, will show perfect speedup
aty=16.

Another way to inadvertently affe€t is the “cold start” problem. An easy way to
accidentally get a larggs value is to run the sequential program once acdldidie all of
the paging behavior and compulsory cache missigs fiming. As noted earlier it is
good practice to run a parallel computation a fiewes, measuring only the later runs.
This allows the caches to “warm up,” so that corspry cache miss times are not
unnecessarily included in the performance measueesby complicating our
understanding of the program’s speedup. (Of coifrfige program has conflict misses,
they should and will be counted.) Properly, maostlgsts “warm” their programs. But
the sequential program should be “warmed,” todhabthe paging and compulsory
misses do not figure into its execution time. Tdloeasily overlooked, cold starts are
also easily corrected.

More worrisome are computations that involve comsitlle off-processor activity, e.g.
disk 1/0. One-time 1/O bursts, say to read in peabdata, are fine because timing
measurements can by-pass them; the problem imcahtff-processor operations. Not
only are they slow relative to the processors tihey greatly complicate the speedup
analysis of a computation. For example, if bo#ngbquential and parallel solutions have
to perform the same off-processor operations fra@imgle source, huge times for these
operations can completely obscure the parallelisoabse they will dominate the
measurements. In such cases it is not necesspaydtielize the program at all. If
processors can independently perform the off-psmresperations, then this parallelism
alone dominates the speedup computation, whichielly look perfect. Any
measurements of a computation involving off-prooesbarges must control their effects
carefully.

Performance Trade-Offs

We know that communication time, idle time, waihéi, and many other quantities can
affect the performance of a parallel computatidhe complicating factor is that attempts
to lower one cost can increase others. In thissewe consider such complications.

Communication vs. computation

Communication costs are a direct expense for ysangllelism because they do not arise
in sequential computing. Accordingly, it is almasivays smart to attempt to reduce
them.

Overlap Communication and Computatio®ne way to reduce communication costs is
to overlap communication with computation. Becacm@munication can be performed
concurrently with computation, and because the egatipn must be performed anyway,
a perfect overlap—that is, the data is availablemit is needed—hides the
communication cost perfectly. Partial overlap wilninish waiting time and give partial
improvement. The key, of course, is to identifynpautation that is independent of the
communication. From a performance perspectiverlapping is generally a win without

costs. From a programming perspective, overlappémymunication and computation
can complicate the program’s structure.

Redundant ComputatiomrAnother way to reduce communication costs isetidqrm
redundant computations. We observed in Chapter 2xample, that the local
generation of a random numberpy all processes was superior to generating dheev
in one process and requiring all others to refezéncUnlike overlapping, redundant
computation incurs a cost because there is nolelsal when all processors must
execute the random number generator code. Statgdex way, we have increased the
total number of instructions to be executed in otdeemove the communication cost.
Whenever the cost of the redundant computatioesis than the communication cost,
redundant computation is a win.

Notice that redundant computatialso removes a dependerfoem the original program
between the generating process and the otherwilthated the value. It is useful to
remove dependences even if the cost of the addaguwtation exactly matches the
communication cost. In the case of the random raurgbneration, redundant
computation removes the possibility that a cliemicpss will have to wait for the server
process to produce it. If the client can geneitatewn random number, it does not have
to wait. Such cases complicate the assessingatie-uff.

Memory vs. parallelism

Memory usage and parallelism interact in many wadsrhaps the most favorable is the
“cache effect” that leads to superlinear parale&gfgrmance, noted above. With all
processors having caches, there is more fast meimarparallel computer. But there
are other cases where memory and parallelism @itera

Privatization. For example, parallelism can be increased bygusilditional memory to

break false dependences. One memorable example isé oprivate_count

variables in the Count 3s program, which removedniied for threads to interact each
time they recorded the next 3. The effect was toeiase the number of count variables
from 1 tot , the number of threads. It is a tiny memory costf big savings in reduced
dependences

Batching. One way to reduce the number of dependencednsngase the granularity of
interaction. Batching is a programming techniquahich work or transmissions are
performed as a group. For example, rather thaismnéting elements of an array,
transmit a whole row or column; rather than gragtine task from the task queue, get
several. Batching effectively raises the grantygsee below) of fine-grain interactions
to reduce their frequency. The added memory iplsimequired to record the items of
the batch, and like privatization, is almost alwaysth the memory costs.

Memoization. Memoization stores a computed value to avoidomguting later. An
example is a stencil optimization: A value is catgal based on some combination of
the scaled values of its neighbors, shown scheailgticelow,

where color indicates the scaling coefficient; edeis such as the corner elements are
multiplied by the scale factor four times as thenstl “moves through the array,” and
memoizing this value can reduce the number of pligs and memory references.
[DETAILED EXAMPLE HERE] It is a sensible program optimization that remamsgruction
executions that, strictly speaking, may not resufiarallelism improvements. However,
in many cases memoization will result in bettergfialism, as when the computation is
redundant or involves non-local data values.

Padding. Finally, we note that false sharing—referenceimdependent variables that
become dependent because they are allocated $aitie cache line—can be eliminated
by padding data structures to push the valuesdifferent cache lines.

Overhead vs. parallelism

Parallelism and overhead are sometimes at oddendéextreme, all parallel overhead,
such as lock contention, can be avoided by usisiggoe process. As we increase the
number of threads the contention will likely incsea If the problem size remains fixed
each processor has less work to perform betweerhsynizations, causing
synchronization to become a larger portion of therall computation. And a smaller
problem size implies that there is less computadizailable to overlap with
communication, which will typically increase theit@mes for data.

It is the overhead of parallelism that is usudtly teason whi? cannot increase without
bound. Indeed, even computations that could cdna#p be solved with a processor
devoted to each data point will be buried by ovadheefordP=n. Thus, we find that
most programs have an upper limit for each dawaiavhich the marginal value of an
additional processor is negative, that is, addipgogessor causes the execution time to
increase.

Parallelize Overhead Recall that in Chapter 4, when lock contentiendme a serious
concern, we adopted a combining tree to solviniessence, the threads split up the task
of accumulating intermediate values into severd¢pendent parallel activities.

[THIS SECTION CONTINUES WITH THESE TOPIGS

Load balance vs. parallelism. Increased parallelism can also improve load lu@aas
it's often easier to distribute evenly a large nandf fine-grained units of work than a
smaller number of coarse-grained units of work.

Granularity tradeoffs. Many of the above tradeoffs are related to tlamglarity of
parallelism. The best granularity often dependbath algorithmic characteristics, such
as the amount of parallelism and the types of dégmees, and hardware characteristics,

such as the cache size, the cache line size, ardténcy and bandwidth of the machine's
communication substrate.

Latency vs. bandwidth. As discussed in Chapter 3, there are many iostawhere
bandwidth can be used to reduce latency.

Scaled speedup vs. Fixed-Size speedup
Choosing a problem size can be difficult

What should we measure?

Thekernel or the entire program?
Amdabhl’s law says that everything is important!

Operating System Costs

Because operating systems are so integral to catiuitit is complicated to assess their
effects on performance.

Initialization.

How is memory laid out in the parallel computer?

Summary

Exercises

Chapter 6: Programming with Threads

Recall in Chapter 1 that we used threads to imphitie count 3's program. In this
chapter we'll explore thread-based programminganendetail using the standard POSIX
Threads interface. We'll first explain the basiacepts needed to create threads and to
let them interact with one another. We'll thercdss issues of safety and performance
before we step back and evaluate the overall approa

Thread Creation and Destruction

Consider the following standard code:

1 #include <pthread.h>

2interr;

3

4 void main ()

5

6 pthread_t tid[MAX]; /* An array of Thread | D's, one for each */
7 /* thread that is created */

9 for (i=0; i<t; i++)

11 err = pthread_create (&tid[i], NULL, count 3s_thread, i);
12 }

14 for (i=0; i<t; i++)

16 err = pthread_join_(tid[i], &status][i])
17 '}

The above code showsyain() function, which then creates—and launchés—
threads in the first loop, and then waits fortthiireads to complete in the second loop.
We often refer to the creating thread aspéyeent and the created threadscasgldren.

The above code differs from the pseudocode in @hdpin a few details. Line 1
includes the pthreads header file, which decldresarious pthreads routines and
datatypes. Each thread that is created needwittloead ID, so these thread ID's are
declared on lin@. To create a thread, we invoke fitaread_create() routine

with four parameters. The first parameter is af@oito a thread ID, which will point to a
valid thread ID when this thread successfully nesurThe second argument provides the
thread’s attributes; in this case, the NULL valpedfies default attributes. The third
parameter is a pointer to the start function, whirghthread will execute once it's
created. The fourth argument is passed to thersiatine, in this case, it represents a
unigue integer betwedhandt-1 that is associated with each thread. The loolinen

| 16then callgpthread_join() to wait for each of the child threads to terminalfe.

instead of waiting for the child threads to comgJeéhemain() routine finishes and
exits usingpthread_exit() , the child threads will continue to execute. OtVise,
the child threads will automatically terminate whreain() finishes, since the entire
process will have terminated. See Code Specs 2.and

pthread_create()

int pthread_create (I create a new thread
pthread_t *tid, /I thread 1D
const pthread_attr_t *attr, // thread attribu tes
void *(*start_routine) (void *),// pointer to fun ction to execute
void *arg /I argument to fu nction
)
Arguments:

e The thread ID of the successfully created thread.
e The thread's attributes, explained below;NbeL value specifies default

attributes.
e The function that the new thread will execute oihé created.
e An argument passed to thiart_routine(), in this case, it represents a

unigue integer betweenandt-1 that is associated with each thread.

Return value:
¢ 0 if successful. Error code from <errno.h> othepwi

Notes:
e Use a structure to pass multiple arguments tottre routine.

Code Spec 1pthread_create(). The POSIX Threads threadiorefinction.

pthread_join()

int pthread_join (/I wait for a th read to terminate
pthread_t tid, /I thread IT to wait for
void **status /I exit status

)i

Arguments:

¢ The ID of the thread to wait for.

e The completion status of the exiting thread willdogied intosstatus unless
status iNULL, in which case the completion status is not capied

Return value:
¢ 0O for success. Error code from <errno.h> otherwise

Notes:

e Once athread is joined, the thread no longer®xistthread ID is no longer
valid, and it cannot be joined with any other tlakea

Code Spec 2pthread_join(). The POSIX Threads rendezvoustfan pthread_join().

Thread ID’s

Each thread has a unique ID of typeead_t. As with all pthread data types, a
thread ID should be treated asamaque type, meaning that individual fields of the
structure should never be accessed directly. Becehild threads do not know their
thread ID, the two routines allow a thread to datee its thread ID, pthread_self(), and
to compare two thread ID’s, pthread_equal(), sedeCRpecs 3 and 4.

pthread_self()
pthread_t pthread_self (); /I Get my thread ID

Return value:
 The ID of the thread that called this function.

Code Spec 3pthread_self(). The POSIX Threads function toHe thread's ID.

pthread_equal()

int pthread_equal (/I Test for equ ality
pthread_t t1, /I First operand thread 1D
pthread_t t2 /I Second operand thread 1D

)

Arguments:

e Two thread ID’s

Return value:
* Non-zero if the two thread ID’s are the same (fwlloy the C convention).
e 0 if the two threads are different.

Code Spec 4pthread_equal(). The POSIX Threads functiorotmare two thread IDs for equality.

Destroying Threads
There are three ways that threads can terminate.
1. A thread can return from the start routine.
2. A thread can calpthread_exit().
3. Athread can beancelled by another thread.
In each case, the thread is destroyed and itsmesobecome unavailable.

void pthread_exit()

void pthread_exit (/l terminate a th read
void *status /I completion status

)i

Arguments:

e The completion status of the thread that has exiféds pointer value is
available to other threads.

Return value:
* None

Notes:
« When a thread exits by simply returning from thetstoutine, the thread’s
completion status is set to the start routine’srrevalue.

Code Spec 5pthread_exit(). The POSIX Threads thread tertioandunction pthread_exit().

Thread Attributes

Each thread maintains its own properties, knowat@butes, which are stored in a
structure of typethread_attr _t. For example, threads can be eittietached or
joinable. Detached threads cannot be joined with othewatls, so they have slightly

lower overhead in some implementations of POSIXe@ts. For parallel computing, we
will rarely need detached threads. Threads cantsseithebound or unbound. Bound

threads are scheduled by the operating systemgatemnbound threads are scheduled
by the Pthreads library. For parallel computing,typically use bound threads so that

each thread provides physical concurrency.

POSIX Threads provides routines to initialize tlir@tributes, set their attributes, and

destroy attributes, as shown in Code Spec 6.

ode Spec 6pthread attribu

Thread Attributes

pthread_attr_t attr; /I Declare a thr ead attribute
pthread_t tid;

pthread_attr_init(&attr); /I Initialize a thread attribute
pthread_attr_setdetachstate(&attr, // Set the threa d attribute
PTHREAD_CREATE_UNDETACH ED);
pthread_create (&tid, &attr, start_func, NULL); // Use the attribute
1 to create a thread

pthread_join(tid, NULL);
pthread_attr_destroy(&attr); /I Destroy the t hread attribute

interface.

Example

The following example illustrates a potential gittaat can occur because of the
interaction between parent and child threads. pvent thread simply creates a child
thread and waits for the child to exit. The clificead does some useful work and then
exits, returning an error code. Do you see whatteng with this code?

1 #include <pthread.h>

2

3 void main ()

44

5 pthread_t tid;

6 int *status;

7

8 pthread_create (&tid, NULL, start, NULL);
9 pthread_join_(tid, &status);
10}

11

12 void start()

13{

14 int errorcode;

15 /* do something useful. . . */
16

17 if(...)

18 errorcode = something;
19 pthread_exit(&errorcode);
20}

The problem occurs in the call pthread_exit() on line 17, where the child is
attempting to return an error code to the paréhtfortunately, becauserrorcode is
declared to be local to thstart() function, the memory fogrrorcode is allocated
on the child thread’s stack. When the child exisscall stack is de-allocated, and the
parent has a dangling pointereimorcode . At some point in the future, when a new
procedure is invoked, it will over-write the stdokation wheresrrorcode resides,
and the value ofrrorcode will change.

Mutual Exclusion

We can now create and destroy threads, but to dlosads to interact constructively, we
need methods of coordinating their interaction panticular, when two threads share
access to memory, it is often useful to employck,lealled anutex, to providemutual
exclusionor mutually exclusive access to the variable. Assaw in Chapter 1, without
mutual exclusion, race conditions can lead to utiptable results, because when
multiple threads execute the following code, dbent variable, which is shared among
all threads, will not be atomically updated.

| for (i=start; i<start+length_per_thread; i+ +)
if (array[i] == 3)
{

count++;

}

The solution, of course, is to protect the upd&isoant using a mutex, as shown below:

1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER ;

2

3 void count3s_thread (int id)

4{

5 /* Compute portion of array that this thread should work on */
6 intlength_per_thread = length/t;

7 int start =id * length_per_thread,;

8

9 for (i=start; i<start+length_per_thread; i+ +)
10 {

11 if (array[i] == 3)

12 {

13 pthread_mutex_lock(&lock);
14 count++;

15 pthread_mutex_unlock(&lock);
16

17 '}

18}

Line 1 shows how a mutex can be statically declatglle threads, mutexes have
attributes, and by initializing the mutexRAHREAD_MUTEX_INITIALIZER, the

mutex is assigned default attributes. To userthigex, its address is passed to the lock
and unlock routines on lines 13 and 15, respegtivEhe appropriate discipline, of
course, is to bracket adtitical sections, that is, code that must be executed atomically by
only one thread at a time, by the locking of a mutpon entrance and the unlocking of a
mutex upon exit. Only one thread can acquire th&erat any one time, so a thread will
block if it attempts to acquire a mutex that iealty held by another thread. When a
mutex is unlocked, arelinquished, one of the threads that was blocked attempting to
acquire the lock will become unblocked and gratiedmutex. The POSIX Threads
standard defines no notion of fairness, so therandehich the locks are acquiredrist
guaranteed to match the order in which the threstespted to acquire the locks.

Itis an error to unlock a mutex that has not Heeked, and it is an error to lock a mutex
that is already held. The latter will leaddeadlock, in which the thread cannot make
progress because it is blocked waiting for an etrattcannot happen. We will discuss
deadlock and techniques to avoid deadlock in metaildater in the chapter.

Acquiring and Releasing Mutexes

int pthread_mutex_lock(/I Lock a mutex
pthread_mutex_t *mutex);

int pthread_mutex_unlock(/I 'Unlock a mut ex
pthread_mutex_t *mutex);

int pthread_mutex_trylock(/I Non-blocking lock
pthread_mutex_t *mutex);

Arguments:
« Each function takes the address of a mutex variable

Return value:
¢ 0if successful. Error code from <errno.h> otherwi

Notes:
« Thepthread_mutex_trylock() routine attempts to acquire a mutex put
will not block. This routine returnSBUSYif the mutex is locked.

Code Spec 7 The POSIX Threads routines for acquiring andasing mutexes.

Serializability

It's clear that our use of mutexes provides atotyti¢he thread that acquires the mutex
will execute the code in the critical section uittielinquishes the mutex. Thus, in our
above example, the counter will be updated by onbythread at a time. Atomicity is
important because it ensusializability: A concurrent execution is serializable if the
execution is guaranteed to execute in an orderctiraésponds teomeserial execution
of those threads.

Mutex Creation and Destruction

In our above example, we knew that only one mutag meeded, so we were able to
statically allocate it. In cases where the nundfeequired mutexes is not knovan
priori, we can instead allocate and deallocate mutexesndigzally. Code Spec 8 shows
how such a mutex is dynamically allocated, inigatl with default attributes, and
destroyed.

Mutex Creation and Destruction

int pthread_mutex_init(/I Initialize a mutex
pthread_mutex_t *mutex,
pthread_mutexattr_t *attr);

int pthread_mutex_destroy (/I Destroy a mutex
pthread_mutex_t *mutex);

int pthread_mutexattr_init(/I Initialize a mutex attribute
pthread_mutexattr_t *attr);

int pthread_mutexattr_destroy (/I Destroy a mutex attribute
pthread_mutexattr_t *attr);

Arguments:
e Thepthread_mutex_init() routine takes two arguments, a pointer tg a
mutex and a pointer to a mutex attribute. Thietas presumed to have
already been initialized.
e Thepthread_mutexattr_init() and
pthread_mutexattr_destroy() routines take a pointer to a mutex
attribute as arguments.

Notes:
« If the second argument fithread _mutex_init() is NULL, default
attributes will be used.

Code Spec 8 The POSIX Threads routines for dynamically drepind destroying mutexes.

Dynamically Allocated Mutexes

pthread_mutex_t *lock; /I Declare a poi nter to a lock
lock = (pthread_mutex_lock_t *) malloc(sizeof (pthr ead_mutex _t));
pthread_mutex_init(lock, NULL);

/~k

* Code that uses this lock.
*/

pthread_mutex_destroy (lock);
free (lock);

Code Spec 9 An example of how dynamically allocated muteassused in the POSIX Threads interface.

Synchronization

Mutexes are sufficient to provide atomicity fortimal sections, but in many situations we
would like a thread to synchronize its behaviohwitat of some other thread. For
example, consider a classic bounded buffer prolobewhich one or more threads put

items into a circular buffer while other threadsiowe items from the same buffer. As
shown in Figure 1, we would like the producerstap$roducing data—to wait—if the
consumer is unable to keep up and the buffer besdutie and we would like the
consumers to wait if the buffer is empty.

Circular Buffer

© 0|0

cel

Empty Buffer Full Buffer
©|0|0 @)

@
Ge? fPut Pu ﬁeet

Figure 1. A bounded buffer with producers and consum@ise Put and Get cursors indicate where the
producers will insert the next item and where thestimers will remove its next item, respectivélyhen
the buffer is empty, the consumers must wait. Wherbuffer is full, the producers must wait.

Such synchronization is supporteddmpdition variables, which are a more general form
of synchronization than joining threads. A coratitvariable allows threads to wait until
some condition becomes true, at which point onth@fvaiting threads is non-
deterministically chosen to stop waiting. We daink of the condition variable as a gate
(see Figure 2). Threads wait at the gate untilesoandition is true. Other threads open
the gate to signal that the condition has becouoes it which point one of the waiters is
allowed to enter the gate and resume executioa.tifead opens the gate when there are
no threads waiting, the signal has no effect.

o yd)
= waltel

waitel

waitel

Figure 2. Condition variables act like a gate. Threadi watside the gate by calling
pthread_cond_wait(), and threads open the gate by callotigread_cond_signal(). When
the gate is opened, one waiter is allowed throdfthere are no waiters when the gate is opere, t
signal has no effect.

We can solve our bounded buffer problem with twodition variablesnonempty and
nonfull , as shown below.

1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER ;

2 pthread_cond_t nonempty = PTHREAD_COND_INITIALIZ ER;

3 pthread_cond_t nonfull= PTHREAD_COND_INITIALIZER ;

4 Iltem buffer[SIZE];

5intin =0; /I Buffer index for next insertion
6 intout=0; /I Buffer index for next removal

7

8 void put (Item x) /I Producer thr ead
9{

10 pthread_mutex_lock(&lock);

11 while (in — out) == SIZE) // While buffer is full

12 pthread_cond_wait(&nonfull, &lock);
13 buffer[in % SIZE] = x;

14 in++;

15 pthread_cond_signal(&nonempty);

16 pthread_mutex_unlock(&lock);

17}

18

19 Item get() /I Consumer thr ead

20{

21 ltemx;

22 pthread_mutex_lock(&lock);

23 while (out —in) /I While buffer is empty

24 pthread_cond_wait(&nonempty, &lock);
25 x = buffer[out % SIZE];

26 out++;

27 pthread_cond_signal(&nonfull);

28 pthread_mutex_unlock(&lock);

29 return x;

Of course, since multiple threads will be updatimgse condition variables, we need to
protect their access with a mutex, so Line 1 deslarmutex. The remaining
declarations define a buffdsuffer , and its two cursorén andout , which indicate
where to insert the next item and where to rembeenext item. The two cursors wrap
around when they exceed the boundbudfer , yielding a circular buffer.

Given these data structures, the producer threecligas th@ut() routine, which first
acquires the mutex to access the condition vasahf€his code omits the actual creation
of the producer and consumer threads, which atevass to iteratively invoke the

put() andget() routines, respectively.) If the buffer is fulhet producer waits on the
nonfull condition so that it will later be awakened whiee buffer becomes non-full.
If this thread blocks, the mutex that it holds mostrelinquished to avoid deadlock.
Because these two events—the releasing of the namigxhe blocking of this waiting
thread—must occur atomically, they must be perfarimgpthread_cond_wait(),

so the mutex is passed as a parametethieead cond_wait(). When the
producer resumes execution after returning fromathié on Linel2, the protecting
mutex will have been re-acquired by the systemeadral§ of the producer.

In a moment we will explain the need for thikile loop on Linell, but for now
assume when the producer executes LBjghe buffer is not full, so it is safe to insert a
new item and to bump the cursor by one. At this point, the buffer cannetdmpty
because the producer has just inserted an elestetite producer signals that the buffer
is nonempty, waking one more consumers that mayaigng on an empty buffer. If
there are no waiting consumers, the signal is I1Bgtally, the producer releases the

mutex and exits the routine. The consumer threadwdes thget() routine, which
operates in a very similar manner.

pthread_cond_wait()

int pthread_cond_wait(
pthread_cond_t *cond, /I Condition to wait on
pthread_mutex_t *mutex); /I Protecting mutex

int pthread_cond_timedwait (
pthread_cond_t *cond,
pthread_mutex_t *mutex,
__const struct timespec *abstime); // Time-out value

Arguments:
« A condition variable to wait on.
« A mutex that protects access to the condition égiaThe mutex is released
before the thread blocks, and these two actionsratomically. When this
thread is later unblocked, the mutex is reacquiretdehalf of this thread.
Return value:
« 0if successful. Error code from <errno.h> otheerwi

Code Spec 10 pthread_cond_wait(): The POSIX Thread routiieeswaiting on condition variables.

pthread_cond_signal()

int pthread_cond_signal(
pthread_cond_t *cond); /I Condition to signal

int pthread_cond_broadcast (
pthread_cond_t *cond); /I Condition to signal

Arguments:
« A condition variable to signal.

Return value:
« 0if successful. Error code from <errno.h> otherwi

Notes:
« These routines have no effect if there are no tweaiting orcond . In
particular, there is no memory of the signal whéater call is made to
pthread_cond_wait().

« Thepthread_cond_signal() routine may wake up more than one
thread, but only one of these threads will holdghstecting mutex.
« Thepthread_cond_broadcast() routine wakes up all waiting threads.

Only one awakened thread will hold the protectingen.

Code Spec 11 pthread_cond_signal(). The POSIX Threads restfior signaling a condition variable.

Protecting Condition Variables

| Let us now return to thehile loop on Linell of the bounded buffer program. If our
system has multiple producer threads, this lo@ssential because
pthread_cond_signal() can wake up multiple waiting thredgdsf which only one
will hold the protecting mutex at any particulané. Thus, at the time of the signal, the
buffer is not full, but when any particular threacjuires the mutex, the buffer may have
become full again, in which case the thread shoalidthread_cond_wait()

| again. When the producer thread executes L8¢he buffer is necessarily not full, so it
is safe to insert a new item and to bumplthecursor.

| We see on Line%5 and27 that the call tgpthread_cond_signal() is also
protected by the lock. The following example shakz this protection is necessary.
Signaling Thread Waiting Thread

lock (mutex)

. . while (out — in)

. insert(item);
time¢ pthread_cond_signal(&nonempty); - W Eor ”tf‘t.ted: Bullets and
/I Signal is dropped umbering
pthread_cond_wait(&nonempty, lock);

/I Will wait forever

Figure 3. Example of why a signaling thread needs to loéepted by a mutex.

In this example, the waiting thread, in this cdsedonsumer, acquires the protecting
mutex and finds that the buffer is empty, so it@xespthread cond_wait(). If

the signaling thread, in this case the producezsamt protect the call to
pthread_cond_signal() with a mutex, it could insert an item into the flenf
immediately after the waiting thread found it empti/the producer then signals that the
buffer is non-empty before the waiting thread exesthe call to

pthread_cond_wait(), the signal will be dropped and the consumer threifid

not realize that the buffer is actually not emplty.the case that the producer only inserts
a single item, the waiting thread will needlesshjitforever.

The problem, of course, is that there is a racéition involving the manipulation of the
buffer. The obvious solution is to protect both ttall topthread_cond_signal()

with the same mutex that protects the cafittread_cond_wait (), as shown in the
code for our bounded buffer solution. Because bwPut() andGet() routines are
protected by the same mutex, we have three crimations related to the nonempty
buffer, as shown in Figure 4, and in no case carsinal be dropped while a waiting
thread thinks that the buffer is empty.

! These semantics are due to implementation detimilsome cases it can be expensive to ensure that
exactly one waiter is unblocked by a signal.

Put()

insert(item);
pthread cond_signal(&nonempty);

} Critical section A

Get()

lock (mutex)
while (out = in)
pthread_cond_wait(&nonempty, lock);

} Critical section B

remove(item);

| } Critical section C

Signaling Thread

Waiting Thread

Case 1: Order A, B, C

insert(item);
pthread cond signal(&nonempty);

’ tim

lock (mutex)
while (out—in)

remove(item);

Case 2: Order B, A, C

lock (mutex)
while (out —.in)
pthread cond wait(&nonempty, lock);

’ tim

insert(item);
pthread_cond_ signal(&nonempty):

remove(item);

Case 3: Order B, C_A

lock (mutex)
while (out—in)
pthread cond wait(&nonempty, lock);

<

remove(item):;

’ tim

insert(item);
pthread cond_signal(&nonempty);

Figure 4. Proper locking of the signaling code preventereonditions. By identifying and protecting

three critical sections pertaining to the nonenipiiffer, we guarantee that each of A, B, and C extécute

atomically, so our problem from Figure 3 is avoid&Here is no way for theut()

| dropped while a thread executing tBet() routine thinks that the buffer is empty.

We have argued that the callgthread_cond_signal()
same mutex that protects the waiting code. Howengadice that the race condition

routine’s signal to be

must be protected by the

occurs not from the signaling of the condition aate, but with the access to the shared

buffer. Thus, we could instead simply protect aagte that manipulates the shared
buffer, which implies that theut() code could release the mutex immediately after

inserting an item into the buffer but before calpthread_cond_signal().

new code is not only legal, but it produces bgitgformance because it reduces the size

of the critical section, thereby allowing more comency.

i

R

R

For mat t ed: Bullets and
Numbering

For mat t ed: Bullets and
Numbering

For mat t ed: Bullets and
Numbering

Creating and Destroying Condition Variables

Like threads and mutexes, condition variables @aorbated and destroyed either
statically or dynamically. In our bounded buffeaeple above, the static condition
variables were both given default attributes byiatizing them to
PTHREAD_COND_INITIALIZER. Condition variables can be dynamically allocaed
indicated in Code Spec 12

Dynamically Allocated Condition Variables

int pthread_cond_init(

pthread_cond_t *cond, /I Condition variable

const pthread_condattr_t *attr); / Condition at tribute
int pthread_cond_destroy (

pthread_cond_t *cond); /I Condition to destroy
Arguments:

- Default attributes are usedaftr is NULL

Return value:
- 0if successful. Error code from <errno.h> othepwi

Code Spec 12 The POSIX Threads routines for dynamically drepind destroying condition variables.

Waiting on Multiple Condition Variables

In some cases a piece of code cannot execute unilgsple conditions are met. In these
situations the waiting thread should test all cbods simultaneously, as shown below.

1 EatJuicyFruit()

2{

pthread_mutex_lock(&lock);

while (apples==0 && oranges==0)

pthread_cond_wait(&more_apples, &lock);
pthread_cond_wait(&more_oranges, &lock);

©oo~NOO UL~ W

[* Eat both an apple and an orange */
10 pthread_mutex_unlock(&lock);
11}

By contrast, the following code, which waits onfeaondition in turn, fails because

there is no guarantee that both conditions willrbe at the same time. That is, after
returning from the first call tpthread_cond_wait() but before returning from the
second call tpthread_cond_wait (), some other thread may have removed an apple,
making the first condition false.

1 EatJuicyFruit()
2{

pthread_mutex_lock(&lock);

while (apples==0)
pthread_cond_wait(&more_apples, &lock);

while (oranges==0)
pthread_cond_wait(&more_oranges, &lock);

©CoOo~NOULA~W

/* Eat both an apple and an orange */
10 pthread_mutex_unlock(&lock);
11}

Thread-Specific Data

It is often useful for threads to maintain privetga that is not shared. For example, we
have seen examples where a thread index is pas#eel $tart function so that the thread
knows what portion of an array to work on. Thidér can be used to give each thread a
different element of an array, as shown below:

1

2

3 for (i=0; i<t; i++)

4 err = pthread_create (&tid[i], NULL, start _function, i);

(&)

6 void start_function(int index)
74

8 private_count[index] = 0;
9

A problem occurs, however, if the code that aceeisskex occurs in a function,
foo(), which is buried deep within other code. In suithagions, how doefo()

get the value oindex ? One solution is to pass timelex parameter to every
procedure that calf®o(), including procedures that cétlo() indirectly through
other procedures. This solution is cumbersomeicodarly for those procedures that
require the parameter but do not directly use it.

Instead, what we really want is a variable thafi@bal in scope to all code but which can
have different values for each thread. POSIX Tdseaipports such a notion in the form
of thread-specific data, which uses a set &kys, which are shared by all threads in a
process, but which map to different pointer valiseseach thread. (See Figure 4.)

Memor

Thrcad 0 keyl

key2
Thrga

Figure 5. Example of thread-specific data in POSIX Threa@lsread-specific data are accessed by keys,
which map to different memory locations in differémreads.

As a special case, the error values for POSIX Tdweautines are returned in thread-
specific data, but such data does not use thdastedefined by Code Specs 13-17.
Instead, each thread has its own valueraio

Thread-Specific Data

pthread_key_t *my_index;
#define index (pthread_getspecific (my_index))

main()

{
.pﬁiread_key_create(&my_index, 0);
} ce
void start_routine(int id)
pthread_setspecific (my_index, id);
} .

Notes:
« Avoid accessing index in a tight inner loop becageseh access requires a
procedure call.

Code Spec 13 Example of how thread-specific data is usedcednitialized with this code, any
procedure can access the valuenyf_index .

pthread_key_create

int pthread_key_create (

pthread_key t *key, /I The key to ¢ reate
void (*destructor) (void*)); // Destructor f unction
Arguments:

e A pointer to the key to create.
¢ A destructor functionNULL indicates no destructor.

Return value:
- 0if successful. Error code from <errno.h> othepwi

Notes:
« Avoid accessing index in a tight inner loop becageeh access requires a
procedure call.

Code Spec 14 pthread_key_create. POSIX Thread routine feating a key for thread-specific data.

pthread_key delete

int pthread_key_delete (
pthread_key _t *key); /I The key to delete

Arguments:
e A pointer to the key to delete.

Return value:
« 0if successful. Error code from <errno.h> otherwi

Notes:
- Destructors will not be called.

Code Spec 15 pthread_key_delete. POSIX Thread routine féetdea key.

pthread_setspecific

int pthread_setspecific (

pthread_key t *key, /I Key to set
void *value)); /I Value to set
Arguments:

e A pointer to the key to be set.
e The value to set.

Return value:
« 0if successful. Error code from <errno.h> otherwi

Notes:
« Itis an error to calpthread_setspecific() before the key has been
created or after the key has been deleted.

Code Spec 16 pthread_setspecific. POSIX Thread routine &ttirsg the value of thread-specific data.

pthread_getspecific

int pthread_getspecific (
pthread_key _t *key); /I Key to value

Arguments:
e Key whose value is to be retrieved.

Return value:
« Value ofkey for the calling thread.

Notes:
« The behavior is undefined if a thread callsread_getspecific()
before the key is created or after the key is ddlet

Code Spec 17 pthread_getspecific. POSIX Thread routine ftigg the value of some thread-specific
data.

Safety Issues

Many types of errors can occur from the improper efslocks and condition variables.
We've already mentioned the problem of double-Ingkiwhich occurs when a thread
attempts to acquire a lock that it already hol@$.course, problems also arise if a thread
accesses some shared variable without locking if,aothread acquires a lock and does
not relinquish it. One particularly important plei is that of avoiding deadlock. This
section discusses various methods of avoiding deka@ind other potential bugs.

Deadlock

There are four necessary conditions for deadlock:
1. Mutual exclusion: a resource can be assigned to at most one thread
2. Hold and wait: a thread that holds resources can request neuneEs.
3. No preemption: a resource that is assigned to a thread canbentgleased by the
thread that holds it.
4. Circular wait: there is a cycle in which each thread waits fogsource that is
assigned to another thread. (See Figuye

Of course, for threads-based programming, muteseegeaources that can cause
deadlock. There are two general approaches tindesith deadlock: (1) prevent
deadlocks, and (2) allow deadlock to occur, buectetheir occurrence and then break the
deadlock. We will focus on the deadlock avoidabezause POSIX Threads does not
provide a mechanism for breaking locks.

requeste acquire(

Resource Allocation Gral

Figure 6. Deadlock example. Threads T1 and T2 hold ladkand L2, respectively, and each thread
attempts to acquire the other lock, which cannagraated.

Lock Hierarchies

A simple way to prevent deadlocks is to preventeym the resource allocation graph.
We can prevent cycles by imposing an ordering eridbks and by requiring all threads
to acquire their locks in the same order. Suclsegline is known as bock hierarchy.

One problem with a lock hierarchy is that it reggiprogrammers to knoavpriori what
locks a thread needs to acquire. Suppose thataaftgliring locks L1, L3, and L7, a
thread finds that it needs to also acquire lockvich would violate the lock hierarchy.
One solution would be for the thread to releaskdd@® and L7, and then reacquire locks
L2, L3, and L7 in that order. Of course, thisdtedherence to the lock hierarchy is
expensive. A better solution would be to atterodbtk L2 using
pthread_mutex_trylock() (see Code Spec 7), which either obtains the lock or
immediately returns without blocking. If the thdeia unable to obtain lock L2, it must
resort to the first solution.

Monitors

The use of locks and condition variables is erronp because it relies on programmer
discipline. An alternative is to provide languaygport, which would allow a compiler
to enforce mutual exclusion and proper synchroimatA monitor is one such language
construct, and although almost no modern languamédes such a construct, it can be
implemented in an object oriented setting, as wkesaon see. A monitor encapsulates
code and data and enforces a protocol that ensuresl exclusion. In particular, a
monitor has a set of well-defined entry pointsdidga can only be accessed by code that
resides inside the monitor, and at most one thcaacexecute the monitor’'s code at any
time. Monitors also provide condition variables $ggnaling and waiting, and they
ensure that the use of these condition variablegothe monitor's protocol. Figure 7
shows a graphical depiction of a monitor.

/ Monitor \

@ Entering threads

Entry1() Entry2()))
Waiting threads

= A

Figure 7. Monitors provide an abstraction of synchronizatin which only one thread can access the
monitor’s data at any time. Other threads arekddeither waiting to enter the monitor or waitomg
events inside the monitor.

We can implement monitors in an object orientedjleage, such as C++, as shown
below.

1 class BoundedBuffer

2{ /I Emulate a mo nitor
3 private:

4 pthread_mutex_t lock; /I Synchronizat ion variables
5 pthread_cond_t nonempty, nonfull;

6 Item *buffer; /I Shared data

7 intin, out; /I Cursors

8 Checklnvariant();

9

10 public:

11 BoundedBuffer(int size); // Constructor

12 ~BoundedBuffer(); /I Destructor

13 void put(ltem x);

14 Item get();

15}

16

17 /I Constructor and Destructor

18 BoundedBuffer::Bounded (int size)
19

20 /I Initialize synchronization variables
21 pthread_mutex_init(&lock, NULL);
22 pthread_cond_init(&nonempty, NULL);
23 pthread_cond_init(&nonfull, NULL);

25 // Initialize the buffer
26 buffer = new Item][size];
27 in=out=0;

30 BoundedBuffer::~BoundedBuffer()
31¢

32 pthread_mutex_destroy(&lock);

33 pthread_cond_destroy(&nonempty);
34 pthread_cond_destroy(&nonfull);

35 delete buffer;

36}

37

38 // Member functions

39 BoundedBuffer::Put(ltem x)

40 {

41 pthread_mutex_lock(&lock);

42 while (in — out == size) /[while buffer
43 pthread_cond_wait(&nonfull, &lock);
44 buffer[in%size] = x;

45 int++;

46 pthread_cond_signal(&nonempty);

47 pthread_mutex_unlock(&lock);

48}

49

50 Item BoundedBuffer::Get()

51

52 pthread_mutex_lock(&lock);

53 while (in = out) /I while buffer

54 pthread_cond_wait(&nonempty, &lock);

55 x = buffer[out%size];

56 out++;

57 pthread_cond_signal(&nonfull);
58 pthread_mutex_unlock(&lock);
59 return x;

is full

is empty

Monitors not only enforce mutual exclusion, butytipeovide an abstraction that can
simplify how we reason about concurrency. In paitr, the limited number of entry
points facilitates the preservation of invarianit$onitors haventernal functions and
external functions. Internal functions assume that the itootock is held. By contrast,
external functions must acquire the monitor locfobe executing, so external functions
cannot invoke each other. In this settingariants are properties that can are assumed to
be true upon entry and which must be restored epidn These invariants may be
violated while the monitor lock is held, but theyshbe restored before the monitor lock
is released. This use of invariants is graphicaddlgicted in Figure 8.

‘ invariants are tru

‘ invariants may b
violated

—> state transition

Figure 8. Monitors and invariants. The red circles repneprogram states in which the invariants may be
violated. The blue circles represent program statevhich the invariants are assumed to be maiethi

For example, in our bounded buffer example, we haweeinvariants:
1. The distance between the In and Out cursors iat the size of the buffer.

2. The In cursor is not left of the Out cursor. (liguire 1, the Put arrow is not left of
the Get arrow.)
Once we have identified our invariants, we canengitroutine that checks all invariants,
and this routine can be invoked before every entgdo the monitor and after every exit
from the monitor. The use of such invariants camsignificant debugging tool. For
example, the following code checks these invaritmteelp debug the monitor’s internal
routines.

1 BoundedBuffer::ChecklInvariant()

2{

if (in — out > size) /I Check invar iant (1)
return (0);

if (in < out) /I Check invar iant (2)
return (0);

return (1);

}

10 Item BoundedBulffer::Get()

11

12 pthread_mutex_lock(&lock);

13 assert(CheckInvariant()); // Check on every ent rance
14 while (in = out) /I while buffer is empty

15 {

16 assert(Checklnvariant()); // Check on every exit

17 pthread_cond_wait(&nonempty, &lock);

18 assert(Checklnvariant());

©oOo~NO UL~ W

20 x = buffer[out%size];

21 out++;

22 pthread_cond_signal(&nonfull);
23 assert(Checklnvariant());
24 pthread_mutex_unlock(&lock);
25 return x;

As we have mentioned before, the calptbread cond_wait() may implicitly
release the lock, so it is a potential monitor,exiid the return from
pthread_cond_wait() will implicitly re-acquire the lock, so it is a mdor
entrance.

Re-entrant Monitors

While monitors help enforce a locking disciplineey do not ensure that all concurrency
problems go away. For example, if a procedurerimoaitor attempts to re-enter the
monitor by calling an entry procedure, deadlock aaicur. To avoid this problem, the
procedure should first restore all invariants, astethe monitor lock, and then try to re-
enter the monitor. Of course, such a structurensé@t atomicity is lost. This same
problem occurs if a monitor procedure attemptstemnter the monitor indirectly by
calling some external procedure that then trieenter the monitor, so monitor
procedures should invoke external routines witle car

Monitor functions that take a long time or wait Bmme outside event will prevent other
threads from entering the monitor. To avoid suabjems, such functions can often be
rewritten to wait on a condition, thereby releading lock and increasing parallelism. As
with re-entrant routines, such functions will neéedestore invariants before releasing the
lock.

Performance Issues

We saw in Chapter 3 that dependences among thceadtain parallelism. Because
locks dynamically impose dependences among thrédaggranularity of our locks can
greatly affect parallelism. At one extreme, tharsest locking scheme uses a single lock
for all shared variables, which is simple but selyelimits concurrency when there is
sharing. At the other extreme, fine-grained logiesy protect small units of data. For
example, in our Count 3's example, we might us#fardnt lock to protect each node of
the accumulation tree. As an intermediate poietiwight use one lock for the entire
accumulation tree. As we reduce the lock granylattie overhead of locking increases
while the amount of available parallelism increases

Readers and Writers Example: Granularity Issues

Just as there are different granularities for Ingkihere are different granularities of
condition variables. Consider a resource thatbeashared by multiple readers or
accessed exclusively by a single writer. To cowth access to such a resource, we can
provide four routines-AcquireExclusive() , ReleaseExclusive() ,
AcquireShared() , andReleaseShared() —that readers and writers can invoke.
These routines are each protected by a single mamekthey collectively use two
condition variables. To acquire the resource itlestve mode, a thread waits on the
wBusy condition variable, which ensures that no readegsstill accessing the resource.
When the last reader is done accessing a resoust@ied mode, it signals thBusy
condition to allow the writer to proceed. Likewisehen a writer is done accessing the
resource in exclusive mode, it signals tBasy condition to allow any readers to have
access to the resource; and before accessingahedstesource, threads wait on the
rBusy condition variable.

1 int readers; /I Negative val ue => active writer
2 pthread_mutex_t lock;

3 pthread_cond_t rBusy, wBusy; // Use separate condition variables
4 /I for readers and writers

5 AcquireExclusive()

6 {

7 pthread_mutex_lock(&lock);

8 while (readers !=0)

9 pthread_cond_wait(&wBusy, &lock);
10 readers =-1;

11 pthread_mutex_unlock(&lock);

12}

13

14 AcquireShared()

16 pthread_mutex_lock(&lock);

17 readWaiters++;

18 while (readers<0)

18 pthread_cond_wait(&rBusy, &lock);
19 readWaiters--;

20 pthread_mutex_unlock(&lock);

23 ReleaseExclusive()

24 {

25 pthread_mutex_lock(&lock);

26 readers =0;

27 pthread_cond_broadcast(&rBusy); // Only wake
28 pthread_mutex_unlock(&lock);

29}

30

31 ReleaseShared(

324

33 int doSignal;

34

35 pthread_mutex_lock(&lock);
36 readers--;

37 doSignal = (readers==0)

38 pthread_mutex_unlock(&lock);

39 if (doSignal) /I Signal is

40 pthread_cond_signal(&wBusy); // of critic

Two points about this code are noteworthy.

up readers

performed outside
al section

First, the code uses two condition variables, teiniatural to wonder if one condition
variable would suffice. In fact, one condition iednle could be used, as shown below,
and the code would be functionally correct. Unfnétely, by using a single condition
variable, the code suffers frogpurious wakeups in which writers can be awoken only to
immediately go back to sleep. In particular, wieteaseExclusive() is called

both readers and writers are signaled, so writdrsuffer spurious wakeups whenever
any reader is also waiting on the condition. Qiginal solution avoids spurious
wakeups by using two condition variables, whiclcésr exclusive access and shared
access to alternate as long as there is demarflotypes of access.

1int readers; /I Negative val

2 pthread_mutex_t lock;

3 pthread_cond_t busy; /I Use one cond
4 /I indicate whe

5 AcquireExclusive()

6{

7 pthread_mutex_lock(&lock); // This code su
8 while (readers !=0) /I wakeups!!!

9 pthread_cond_wait(&busy, &lock);
10 readers =-1;

11 pthread_mutex_unlock(&lock);

12}

13

ue => active writer

ition variable to
ther data if busy

ffers from spurious

14 AcquireShared()

15

16 pthread_mutex_lock(&lock);

17 while (readers<0)

18 pthread_cond_wait(&busy, &lock);
19 readers++;

20 pthread_mutex_unlock(&lock);
21}

22

23 ReleaseExclusive()

24 {

25 pthread_mutex_lock(&lock);

26 readers =0;

27 pthread_cond_broadcast(&busy);
28 pthread_mutex_unlock(&lock);
29}

30

31 ReleaseShared(

32{

33 pthread_mutex_lock(&lock);

34 readers--;

35 if (readers==0)

36 pthread_cond_signal(&busy);
37 pthread_mutex_unlock(&lock);
38}

Second, th&keleaseShared() routine signals thesBusy condition variable outside
of the critical section to avoid the problemsptiriouslock conflicts, in which a thread is
awoken by a signal, executes a few instructiond,then immediately blocks in attempt
to acquire the lock. If thReleaseShared() were instead to execute the signal inside
of the critical section, as shown below, then amyewthat would be awakened would
almost immediately block trying to acquire the lock

31 ReleaseShared(

32{

33 pthread_mutex_lock(&lock);

34 readers--;

35 if (readers==0)

36 pthread_cond_signal(&wBusy); // Wake up w riters inside of
37 pthread_mutex_unlock(&lock); // the criti cal section
38}

The decision to move the signal outside of thecalisection represents a tradeoff,
because it allows a new reader to enter the drgeetion before the

ReleaseShared() routine is able to awaken a waiting writer, allog/readers to
again starve out writers, albeit with much lessopiality than would occur with a single
condition variable.

Thread Scheduling
[This might be out of place—perhaps it belongs meatiier.]

POSIX Threads supports two scheduling scopes. atlisrin system contention scope are
calledbound threads because they are bound to a particulaegsor, and they are
scheduled by the operating system. By contrastatis in process contentions scope are
calledunbound threads because they can execute on any of thead#library’s set of
processors. These unbound threads are schedutbd Byhreads library. For parallel
computing, we typically use bound threads.

[Need a few more details: what is the default s€ope
Are scheduling priorities an optional feature X Threads?
If not, talk here about scheduling attributes pridrity inversion.]

Overlapping Synchronization with Computation

As we mentioned in Chapter 4, it is often usefubterlap long-latency operations with
independent computation. For example, in Figufé@®ad O reaches the barrier well
before Thread 1, so would be profitable for Thr@dad do some useful work rather than
simply sit idle.

Thread 0 Thread 1

v

barrier()

tim <---- Formatted: Bullets and
Do useful w Numbering

work

v

Figure 9. It's often useful to do useful work while waigifior some long-latency operation to complete.

barrier()

To take advantage of such opportunities, we oftsdrio creatsplit-phase operations,
which separate a synchronization operation intoihases: initiation and completion, as
shown in Figure 10.

/I Initiate synchronization
barrier.arrived();

/I Do useful work

/I Complete synchronization
barrier.wait();

Figure 10. Split-phase barrier allows a thread to do usefurk while waiting for other threads to arrive at
a barrier.

To see a concrete example of how split-phase dpasatan help, consider a 2D
successive relaxation program, which is often useftier in 3D form—to solve systems
of differential equations, such as the Navier-Ssodguations for fluid flow. This

computation starts with an array of n+2 valuesitarior values and 2 boundary values.
At each iteration, it replaces each interior vakith the average of its 2 neighbor values,

boundary value interior values

boundary value

Figure 11 A 2D relaxation replaces, on each iterationjraérior values by the average their two nearest

neighbors.

The code for computing a 2D relaxation with a sAghase barrier is shown below.
Here, we assume that we havéhreads, each of which is responsible for comguitire

relaxation ofn/t values.

1 double *val, *new; /I Hold n value
2intn; /I Number of in
3intt; /I Number of th

4 int iterations /I Number of it

5

6 thread_main(int index)

7{

8 intn_per_thread=n/t;
9 int start = index * n_per_thread;

11 for (int i=0; i<iterations, i++)

12 {

13 /I Update values

14 for (int j=start; j<start+n_per_thread; j+

{

16 new[j] = (val[j-1] + val[j+1]) / 2.0;
}

18 swap(new, val);

19 /I Synchronize
20 barrier();

s
terior values

reads

erations to perform

+)

/I Compute average

With a split-phase barrier, the main routine isrded as follows:

6 thread_main(int index)

74

8 intn_per_thread=n/t;

9 int start = index * n_per_thread;

11 for (int i=0; i<iterations, i++)
13 /I Update local boundary values

14 int j = start;
15 val[j] = (val[j-1] + val[j+1]) / 2.0;

16 j = start+n_pre_thread -1;
17 val[j] = (val[j-1] + val[j+1]) / 2.0;

19 /I Start barrier
20 barrier.arrived();

21

22 /I Update local interior values

23 for (j=start+1; j<start+n_per_thread-1; j+ +)

24 {

25 new[j] = (val[j-1] + val[j+1]) / 2.0; /I Compute average
26

27 swap(new, val);

28

29 /I Complete barrier
30 barrier.wait();

The code to implement the split-phase barrier setragghtforward enough. As shown
below, we can implement a Barrier class that keepsunter of the number of threads
that should arrive at the barrier. To initiate iyachronization, each thread calls the
arrived() routine, which increments the counter. The lasdad to arrive at the
also sets the counter to O in preparation for #he nse of the barrier. To complete the
synchronization, thevait() routine checks to see if the counter is non-zarahich
case it waits for the last thread to arrive. Qirse, a lock is used to provide mutual
exclusion, and a condition variable is used to jg®gynchronization.

1 class Barrier

2{
3 intnThreads; / Number of th reads
4 int count; /I Number of th reads participating

5 pthread_mutex_t lock;

6 pthread_cond_t all_here;
7 public:

8 Barrier(int t);

9 ~Barrier(void);

10 void arrived(void); /'Initiate a ba rrier
11 int done(void); /I Check for com pletion
12 void wait(void); /I Wait for comp letion
13}

14

15 int Barrier::done(void)

16 {

17 intrval;

18 pthread_mutex_lock(&lock);

19

20 rval = Icount; /I Done if the ¢ ount is zero
21

22 pthread_mutex_unlock(&unlock);
23 returnrval;

26 void Barrier::arrived(void)

27

28 pthread_mutex_lock(&lock);

29 count++ /I Another threa d has arrived
30

31 /I'lf last thread, then wake up any waiters
32 if (count==nThreads)

34 count = 0;
35 pthread_cond_broadcast (&all_here);
36 }

38 pthread_mutex_unlock(&lock);

41 void Barrier::wait(void)

42 {

43 pthread_mutex_lock(&lock);
44

45 // If not done, then wait

46 if (count !=0)

48 pthread_cond_wait(&all_here, &lock);
49 }

51 pthread_mutex_lock(&lock);

Unfortunately, the code presented above does nidk eavrectly! In particular, consider
an execution with two threads and two iteratiossslgown in Figure 12. Initially, the
counter is 0, and Thread 0’s arrival incrementsviidae to 1. Thread 1's arrival
increments the counter to 2, and because Thresathe last thread to arrive at the
barrier, it resets the counter to 0 and wakes ypaaiting threads, of which there are
none. The problem arises when Thread 1 gets affeButead 0 and executes its next
iteration—and hence its next callsaive() andwait() —before Thread 0 invokes
wait() for its first iteration. In this case, Thread ill\mcrement the counter to 1, and
when Thread 0 arrives at the wait, it will wait thko At this point, Thread 0 is blocked
waiting for the completion of the barrier in thesfiiteration, while Thread 1 is blocked
waiting for the completion of the second iteratiasulting in deadlock. Of course, the
first barrier has completed, but Thread 0 is unavedithis important fact.

Thread O Thread 1 count
barrier.arrive() 0
barrier.arrive() é
tim barrier.wait() <---- Formatted: Bullets and
Numbering

barrier.arrive()

barrier.wait(); 1

barrier.wait();

Figure 12 Deadlock with our initial implementation of disjphase barrier.

Of course, we seem to have become quite unluckgve Thread O execute so slowly
relative to Thread 1, but because our barrier need®rk in all cases, we need to handle
this race condition.

The problem in Figure 12 occurs because ThreadsOoeking at the state of the counter
for the wrong invocation of the barrier. A solutithen is to keep track of the current
phase of the barrier. In particular, toeived() method returns a phase number,
which is then passed to tdene() andwait() methods. The correct code is shown
below.

1 class Barrier

2{

3 int nThreads; /I Number of th reads

4 int count; /I Number of th reads participating
5 int phase; /I Phase # of t his barrier

6 pthread_mutex_t lock;

7 pthread_cond_t all_here;

8 public:
9 Barrier(int t);
10 ~Barrier(void);

11 void arrived(void); /I Initiate a ba rrier

12 int done(int p); /I Check for com pletion of phase p
13 void wait(int p); /I Wait for comp letion of phase p
13}

14

15 int Barrier::done(int p)

16 {

17 intrval;

18 pthread_mutex_lock(&lock);

19

20 rval = (phase != p) /I Done if the p hase # has changed
21

22 pthread_mutex_unlock(&unlock);
23 returnrval;

26 void Barrier::arrived(void)
26 {

27 intp;

28 pthread_mutex_lock(&lock);

30 p=phase; /I Get phase num ber
31 count++ /I Another threa d has arrived

33 /I If last thread, then wake up any waiters, go to next phase
34 if (count==nThreads)

35 {

36 count = 0;

37 pthread_cond_broadcast (&all_here);

38 phase = 1 — phase;

39 }

41 pthread_mutex_unlock(&lock);
42 return p;

43}

44

45 void Barrier::wait(int p)

46 {

47 pthread_mutex_lock(&lock);

49 // If not done, then wait
50 while (p == phase)

52 pthread_cond_wait(&all_here, &lock);
53 }

55 pthread_mutex_lock(&lock);

Since the interface to the barrier routines hawsngbd, we need to modify our relaxation
code as shown below.

6 thread_main(int index)

7{

8 intn_per_thread=n/t;

9 int start = index * n_per_thread;
10 int phase;

12 for (int i=0; i<iterations, i++)

13 {

14 /I Update local boundary values
15 int j = start;

16 val[j] = (val[j-1] + val[j+1]) / 2.0;

17 j = start+n_pre_thread -1;
18 val[j] = (val[j-1] + val[j+1]) / 2.0;
19

20 /I Start barrier
21 phase = barrier.arrived();

22

23 /I Update local interior values

24 for (j=start+1; j<start+n_per_thread-1; j+ +)

25 {

26 new[j] = (val[j-1] + val[j+1]) / 2.0; /I Compute average
27

28 swap(new, val);

29

30 /Il Complete barrier
31 barrier.wait(phase);

With this new barrier implementation, the situatinr-igure 12 no longer results in
deadlock. As depicted in Figure 13, Thread 0'®aation ofwait(0) explicitly waits
for the completion of the first invocation of tharker, so when it executes line 50 in the
wait() routine, it falls out of the while loop and newalls

pthread_cond_wait(). Thus, deadlock is avoided.

Thread 0 Thread 1 count phase

barrier.arrive() 0 0
barrier.arrive() é L
tim barrier.wait(0) <«---- Formatted: Bullets and
. . Numbering
barrier.arrive()

barrier.wait(1); 1 1

barrier.wait(0);

Figure 13, Deadlock does not occur with our new split-pHaeseier.

Tpe

M Not split-phase ****{For mat t ed: Bullets and

Numbering

[| Split-phase

Figure 14. Performance benefit of split-phase barrier ua E4000. n=10,000,000, 10 iterations.

Java Threads

[Discussion of Java threads and a larger discussitiding concurrency inside of
libraries.

* Nice model: explicit and convenient support fomgocommon cases, but
provides the freedom to use lower-level locks ambdion variables where
necessary. Can also hide concurrency inside @ifgpelasses.

e Synchronized methods and synchronized classes

e Wait() and Notify()

Can we come up with examples where modular dedsabout locking and
synchronization are sub-optimal? In particular,need examples where the context in
which the data structure is used affects the symihation policies.]

Critique

[What's good about threads. What's bad about tteéa

Shared \irtual memory. Why can’t threads-based programs execute on
machines that do not support shared memory? Wiy wa use software to
provide a virtually shared address space on tguaoti machines? This questig
was heavily studied in the 1980’s and 1990’s. basic issue is that the Share
Virtual Memory system needs to handle all data moset, and it is difficult to
do this efficiently without knowledge of the applion’s sharing behavior. In
particular, there is a tradeoff regarding the glarty of sharing: Large units of]
sharing can amortize inter-processor communicatasts, at the expense of false
sharing. Small units of sharing reduce false sigabout increase the overhead of
moving data. In general, we'd ideally like the i@thvirtual memory system’s
granularity of sharing to match the applicatior@gital granularity of sharing.
Of course, even if the underlying shared virtuahmgy system were extremely|
efficient, there is still the question of whethlerdads-based programming is th
right programming mode

5

1]

Exercises

1. Our bounded buffer example uses a single mutexaiegt both thewonempty
andnonfull condition variables. Could we instead use oneerfdr each
condition variable? What are the tradeoffs?

A: Yes, but this would not be a good tradeoff beedlooth the producer and
consumer access both condition variables, so loatines would have to acquire
both locks instead of just one lock. Thus, theradded locking overhead but no
greater concurrency.

2. The pthread_cond_wait() routine takes the addregeqrotecting mutex as a
parameter so that the routine can atomically btbekwaiting thread and release
the lock that is held by the waiting thread. Explahy these two operations
must be performed atomically.

A: If the two operations are not atomic, theretare cases: either (1) the thread is
blocked first or (2) the lock is released firsh dase (1), we have deadlock. In
case (2), the code that blocks the waiting threastirst acquire the lock so that
it knows that it is the only thread that is mangiinlg the queues associated with
the condition variable, so the solution is possihleincreases the latency of the
operation. [Perhaps need to think about this ansax@e more.]

Bibliographic Notes
The four necessary conditions for deadlock west fitentified by Coffman, et al.

Hoare and Brinch Hansen proposed slightly diffekemtations of monitors in the mid-
seventies.

E.G. Coffman, M.J. Elphick, and A. Shoshani, “Systeeadlocks, Computing Surveys
volume 3, pp. 67-78, June 1971.

C.A.R. Hoare, “Monitors, An Operating System Stauictg Concept,'Communications
of the ACM volumel7, pp. 549-557, Oct 1974; ErratunCmmmunications of the ACM
volume 18, p. 95, Feb 1975.

P. Brinch Hansen, “The Programming Language CopatifPascal,TEEE Transactions
on Software Engineeringolume SE-1, pp. 199-207, June 1975.

