
Chapter 5: Achieving Good Performance 
 
Typically, it is fairly straightforward to reason about the performance of sequential 
computations.  For most programs, it suffices simply to count the number of instructions 
that are executed.  In some cases, we realize that memory system performance is the 
bottleneck, so we find ways to reduce memory usage or to improve memory locality.  In 
general, programmers are encouraged to avoid premature optimization by remembering 
the 90/10 rule, which states that 90% of the time is spent in 10% of the code.  Thus, a 
prudent strategy is to write a program in a clean manner, and if its performance needs 
improving, to identify the 10% of the code that dominates the execution time.  This 10% 
can then be rewritten, perhaps even rewritten in some alternative language, such as 
assembly code or C. 
 
Unfortunately, the situation is much more complex with parallel programs.  As we will 
see, the factors that determine performance are not just instruction times, but also 
communication time, waiting time, dependences, etc.  Dynamic effects, such as 
contention, are time-dependent and vary from problem to problem and from machine to 
machine.  Furthermore, controlling the costs is much more complicated.  But before 
considering the complications, consider a fundamental principle of parallel computation.  

Amdahl’s Law 
Amdahl's Law observes that if 1/S of a computation is inherently sequential, then the 
maximum performance improvement is limited to a factor of S.  The reasoning is that the 
parallel execution time, TP, of a computation with sequential execution time, TS, will be 
the sum of the time for the sequential component and the parallel component. For P 
processors we have 
 

TP = 1/S ⋅ TS + (1-1/S) ⋅ TS / P 
 
Imagining a value for P so large that the parallel portion takes negligible time, the 
maximum performance improvement is a factor of S.  That is, the proportion of 
sequential code in a computation determines its potential for improvement using 
parallelism.  
 
Given Amdahl's Law, we can see that the 90/10 rule does not work, even if the 90% of 
the execution time goes to 0.  By leaving the 10% of the code unchanged, our execution 
time is at best 1/10 of the original, and when we use many more than 10 processors, a 10x 
speedup is likely to be unsatisfactory.   
 



The situation is actually somewhat worse than Amdahl’s Law implies.  One obvious 
problem is that the parallelizable portion of the computation might not be improved to an 

unlimited extent—that is, there is probably an upper limit on the number of processors 
that can be used and still improve the performance—so the parallel execution time is 
unlikely to vanish. Furthermore, a parallel implementation often executes more total 
instruction than the sequential solution, making the (1-1/S) ⋅ TS an under estimate.    
 
Many, including Amdahl, have interpreted the law as proof that applying large numbers 
of processors to a problem will have limited success, but this seems to contradict news 
reports in which huge parallel computers improve computations by huge factors.  What 
gives?  Amdahl’s law describes a key fact that applies to an instance of a computation. 
Portions of a computation that are sequential will, as parallelism is applied, dominate the 
execution time.  The law fixes an instance, and considers the effect of increasing 
parallelism.  Most parallel computations, such as those in the news, fix the parallelism 
and expand the instances.  In such cases the proportion of sequential code diminishes 
relative to the overall problem as larger instances are considered.  So, doubling the 
problem size may increase the sequential portion negligibly, making a greater fraction of 
the problem available for parallel execution.  
 
In summary, Amdahl’s law does not deny the value of parallel computing. Rather, it 
reminds us that to achieve parallel performance we must be concerned with the entire 
program. 

Measuring Performance 
As mentioned repeatedly, the main point of parallel computing is to run computations 
faster. Faster obviously means “in less time,” but we immediately wonder, “How much 
less?”  To understand both what is possible and what we can expect to achieve, we use 
several metrics to measure parallel performance, each with its own strengths and 
weaknesses. 
 
Execution Time 
Perhaps the most intuitive metric is execution time.  Most of us think of the so called 
“wall clock” time as synonymous with execution time, and for programs that run for 
hours and hours, that equivalence is accurate enough.  But the elapsed wall clock time 
includes operating system time for loading and initiating the program, I/O time for 
reading data, paging time for the compulsory page misses, check-pointing time, etc.  For 

Amdahl’s Law. The “law” was enunciated in a 1967 paper by Gene Amdahl, an IBM 
mainframe architect [Amdahl, G.M., Validity of the single-processor approach to 
achieving large scale computing capabilities.  In AFIPS Conference Proceedings, AFIPS 
Press 30:483-485, 1967].  It is a “law” in the same sense that the Law of Supply and 
Demand is a law: It describes a relationship between two components of program 
execution time, as expressed by the equation given in the text.  Both laws are powerful 
tools to explain the behavior of important phenomena, and both laws assume as constant 
other quantities that affect the behavior.  Amdahl’s Law applies to a program instance. 
 



short computations—the kind that we often use when we are analyzing program 
behavior—these items can be significant contributors to execution time.  One argument 
says that because they are not affected by the user programming, they should be factored 
out of performance analysis that is directed at understanding the behavior of a parallel 
solution; the other view says that some services provided by the OS are needed, and the 
time should be charged. It is a complicated matter that we take up again at the end of the 
chapter. 
 
In this book we use execution time to refer to the net execution time of a parallel program 
exclusive of initial OS, I/O, etc. charges.  The problem of compulsory page misses is 
usually handled by running the computation twice and measuring only the second one.  
When we intend to include all of the components contributing to execution time, we will 
refer to wall clock time.  
 
Notice that execution times (and wall clock times for that matter) cannot be compared if 
they come from different computers.  And, in most cases it is not possible to compare the 
execution times of programs running different inputs even for the same computer. 
 
FLOPS   
Another common metric is FLOPS, short for floating point operations per second, which 
is often used in scientific computations that are dominated by floating point arithmetic.  
Because double precision floating point arithmetic is usually significantly more 
expensive than single precision, it is common when reporting FLOPS to state which type 
of arithmetic is being measured.  An obvious downside to using FLOPS is that it ignores 
other costs such as integer computations, which may also be a significant component of 
computation time.  Perhaps more significant is that FLOPS rates can often be affected by 
extremely low-level program modifications that allow the programs to exploit a special 
feature of the hardware, e.g. a combined multiply/add operation.  Such “improvements” 
typically have little generality, either to other computations or to other computers.  
 
A limitation of both of the above metrics is that they distill all performance into a single 
number without providing an indication of the parallel behavior of the computation.  
Instead, we often wish to understand how the performance of the program scales as we 
change the amount of parallelism. 
 
Speedup 
Speedup is defined as the execution time of a sequential program divided by the 
execution time of a parallel program that computes the same result.  In particular, 
Speedup = TS / TP, where TS is the sequential time and TP is the parallel time running on P 
processors.  Speedup is often plotted on the y-axis and the number of processors on the x-
axis, as shown in Figure 5.1.  
 



 
Figure 5.1. A typical speedup graph showing performance for two programs.  
 
The speedup graph shows a characteristic typical of many parallel programs, namely, that 
the speedup curves level off as we increase the number of processors.  This feature is the 
result of keeping the problem size constant while increasing the number of processors, 
which causes the amount of work per processor to decrease; with less work per processor 
costs such as overhead—or sequential computation, as Amdahl predicted—become more 
significant, causing the total execution not to scale so well. 
 
Efficiency 
Efficiency is a normalized measure of speedup: Efficiency = Speedup/P.  Ideally, speedup 
should scale linearly with P, implying that efficiency should have a constant value of 1.  
Of course, because of various sources of performance loss, efficiency is more typically 
below 1, and it diminishes as we increase the number of processors.  Efficiency greater 
than 1 represents superlinear speedup. 
 
Superlinear Speedup  
The upper curve in the Figure 5.1 graph indicates superlinear speedup, which occurs 
when speedup grows faster than the number of processors.  How is this possible?  Surely 
the sequential program, which is the basis for the speedup computation, could just 
simulate the P processes of the parallel program to achieve an execution time that is no 
more than P times the parallel execution time.  Shouldn’t superlinear speedup be 
impossible? There are two reasons why superlinear speedup occurs.  
 
The most common reason is that the computation’s working set—that is, the set of pages 
needed for the computationally intensive part of the program—does not fit in the cache 
when executed on a single processor, but it does fit into the caches of the multiple 
processors when the problem is divided amongst them for parallel execution. In such 
cases the superlinear speedup derives from improved execution time due to the more 
efficient memory system behavior of the multi-processor execution.  
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The second case of superlinear speedup occurs when performing a search that is 
terminated as soon as the desired element is found. When performed in parallel, the 
search is effectively performed in a different order, implying that the total amount of data 
searched can actually be less than in the sequential case.  Thus, the parallel execution 
actually performs less work.  
 
Issues with Speedup and Efficiency 
Since speedup is a ratio of two execution times, it is a unitless metric that would seem to 
factor out technological details such as processor speed.  Instead, such details insidiously 
affect speedup, so we must be careful in interpreting speedup figures.  There are several 
concerns. 
 
First, recognize that it is difficult to compare speedup from machines of different 
generations, even if they have the same architecture.  The problem is that different 
components of a parallel machine are generally improved by different amounts, changing 
their relative importance.  So, for example, processor performance has increased over 
time, but communication latency has not fallen proportionately. Thus, the time spent 
communicating will not have diminished as much as the time spent computing. As a 
result, speedup values have generally decreased over time.  Stated another way, the 
parallel components of a computation have become relatively more expensive compared 
to the processing components. 
 
The second issue concerns TS, speedup’s numerator, which should be the time for the 
fastest sequential solution for the given processor and problem size.  If TS is artificially 
inflated, speedup will be greater.  A subtle way to increase TS is to turn off scalar 
compiler optimizations for both the sequential and parallel programs, which might seem 
fair since it is using the same compiler for both programs.  However, such a change 
effectively slows the processors and improves—relatively speaking—communication 
latency.  When reporting speedup, the sequential program should be provided and the 
compiler optimization settings detailed. 
 
Another common way to increase TS is to measure the one-processor performance of the 
parallel program.  Speedup computed on this basis is called relative speedup and should 
be reported as such.  True speedup includes the likely possibility that the sequential 
algorithm is different than the parallel algorithm.  Relative speedup, which simply 
compares different runs of the same algorithm, takes as the base case an algorithm 
optimized for concurrent execution but with no parallelism; it will likely run slower 
because of parallel overheads, causing the speedup to look better.  Notice that it can 
happen that a well-written parallel program on one processor is faster than any known 
sequential program, making it the best sequential program.  In such cases we have true 
speedup, not relative speedup.  The situation should be explicitly identified. 
 
Relative speed up cannot always be avoided.  For example, for large computations it may 
be impossible to measure a sequential program on a given problem size, because the data 
structures do not fit in memory. In such cases relative speedup is all that can be reported. 
The base case will be a parallel computation on a small number of processors, and the y-



axis of the speedup plot should be scaled by that amount. So, for example, if the smallest 
possible run has P=4, then dividing by the runtime for P=64, will show perfect speedup 
at y=16. 
 
Another way to inadvertently affect TS is the “cold start” problem.  An easy way to 
accidentally get a large TS value is to run the sequential program once and include all of 
the paging behavior and compulsory cache misses in its timing.  As noted earlier it is 
good practice to run a parallel computation a few times, measuring only the later runs.  
This allows the caches to “warm up,” so that compulsory cache miss times are not 
unnecessarily included in the performance measure, thereby complicating our 
understanding of the program’s speedup.  (Of course, if the program has conflict misses, 
they should and will be counted.)  Properly, most analysts “warm” their programs.  But 
the sequential program should be “warmed,” too, so that the paging and compulsory 
misses do not figure into its execution time.  Though easily overlooked, cold starts are 
also easily corrected.  
 
More worrisome are computations that involve considerable off-processor activity, e.g. 
disk I/O.  One-time I/O bursts, say to read in problem data, are fine because timing 
measurements can by-pass them; the problem is continual off-processor operations.  Not 
only are they slow relative to the processors, but they greatly complicate the speedup 
analysis of a computation.  For example, if both the sequential and parallel solutions have 
to perform the same off-processor operations from a single source, huge times for these 
operations can completely obscure the parallelism because they will dominate the 
measurements. In such cases it is not necessary to parallelize the program at all. If 
processors can independently perform the off-processor operations, then this parallelism 
alone dominates the speedup computation, which will likely look perfect.  Any 
measurements of a computation involving off-processor charges must control their effects 
carefully. 

Performance Trade-Offs 
We know that communication time, idle time, wait time, and many other quantities can 
affect the performance of a parallel computation.  The complicating factor is that attempts 
to lower one cost can increase others.  In this section we consider such complications. 

Communication vs. computation   
Communication costs are a direct expense for using parallelism because they do not arise 
in sequential computing.  Accordingly, it is almost always smart to attempt to reduce 
them.  
 
Overlap Communication and Computation.  One way to reduce communication costs is 
to overlap communication with computation.  Because communication can be performed 
concurrently with computation, and because the computation must be performed anyway, 
a perfect overlap—that is, the data is available when it is needed—hides the 
communication cost perfectly.  Partial overlap will diminish waiting time and give partial 
improvement.  The key, of course, is to identify computation that is independent of the 
communication.  From a performance perspective, overlapping is generally a win without 



costs.  From a programming perspective, overlapping communication and computation 
can complicate the program’s structure. 
 
Redundant Computation.  Another way to reduce communication costs is to perform 
redundant computations.  We observed in Chapter 2, for example, that the local 
generation of a random number, r, by all processes was superior to generating the value 
in one process and requiring all others to reference it.  Unlike overlapping, redundant 
computation incurs a cost because there is no parallelism when all processors must 
execute the random number generator code.  Stated another way, we have increased the 
total number of instructions to be executed in order to remove the communication cost.  
Whenever the cost of the redundant computation is less than the communication cost, 
redundant computation is a win.  
 
Notice that redundant computation also removes a dependence from the original program 
between the generating process and the others that will need the value.  It is useful to 
remove dependences even if the cost of the added computation exactly matches the 
communication cost.  In the case of the random number generation, redundant 
computation removes the possibility that a client process will have to wait for the server 
process to produce it.  If the client can generate its own random number, it does not have 
to wait. Such cases complicate the assessing the trade-off.   

Memory vs. parallelism 
Memory usage and parallelism interact in many ways.  Perhaps the most favorable is the 
“cache effect” that leads to superlinear parallel performance, noted above.  With all 
processors having caches, there is more fast memory in a parallel computer.  But there 
are other cases where memory and parallelism interact.   
 
Privatization.  For example, parallelism can be increased by using additional memory to 
break false dependences. One memorable example is the use of private_count  
variables in the Count 3s program, which removed the need for threads to interact each 
time they recorded the next 3. The effect was to increase the number of count variables 
from 1 to t , the number of threads. It is a tiny memory cost for a big savings in reduced 
dependences 
 
Batching.  One way to reduce the number of dependences is to increase the granularity of 
interaction.  Batching is a programming technique in which work or transmissions are 
performed as a group.  For example, rather than transmitting elements of an array, 
transmit a whole row or column; rather than grabbing one task from the task queue, get 
several.  Batching effectively raises the granularity (see below) of fine-grain interactions 
to reduce their frequency.  The added memory is simply required to record the items of 
the batch, and like privatization, is almost always worth the memory costs. 
 
Memoization.  Memoization stores a computed value to avoid re-computing later.  An 
example is a stencil optimization:  A value is computed based on some combination of 
the scaled values of its neighbors, shown schematically below, 



 
where color indicates the scaling coefficient; elements such as the corner elements are 
multiplied by the scale factor four times as the stencil “moves through the array,” and 
memoizing this value can reduce the number of multiplies and memory references. 
[DETAILED EXAMPLE HERE.] It is a sensible program optimization that removes instruction 
executions that, strictly speaking, may not result in parallelism improvements.  However, 
in many cases memoization will result in better parallelism, as when the computation is 
redundant or involves non-local data values. 
 
Padding.  Finally, we note that false sharing—references to independent variables that 
become dependent because they are allocated to the same cache line—can be eliminated 
by padding data structures to push the values onto different cache lines. 

Overhead vs. parallelism   
Parallelism and overhead are sometimes at odds.  At one extreme, all parallel overhead, 
such as lock contention, can be avoided by using just one process.  As we increase the 
number of threads the contention will likely increase.  If the problem size remains fixed 
each processor has less work to perform between synchronizations, causing 
synchronization to become a larger portion of the overall computation.  And a smaller 
problem size implies that there is less computation available to overlap with 
communication, which will typically increase the wait times for data.  
 
It is the overhead of parallelism that is usually the reason why P cannot increase without 
bound.  Indeed, even computations that could conceptually be solved with a processor 
devoted to each data point will be buried by overhead before P=n.  Thus, we find that 
most programs have an upper limit for each data size at which the marginal value of an 
additional processor is negative, that is, adding a processor causes the execution time to 
increase.  
 
Parallelize Overhead.  Recall that in Chapter 4, when lock contention became a serious 
concern, we adopted a combining tree to solve it.  In essence, the threads split up the task 
of accumulating intermediate values into several independent parallel activities.  
 
[THIS SECTION CONTINUES WITH THESE TOPICS] 
 
Load balance vs. parallelism.  Increased parallelism can also improve load balance, as 
it's often easier to distribute evenly a large number of fine-grained units of work than a 
smaller number of coarse-grained units of work. 
 
Granularity tradeoffs.  Many of the above tradeoffs are related to the granularity of 
parallelism.  The best granularity often depends on both algorithmic characteristics, such 
as the amount of parallelism and the types of dependences, and hardware characteristics, 



such as the cache size, the cache line size, and the latency and bandwidth of the machine's 
communication substrate. 
 
Latency vs. bandwidth.   As discussed in Chapter 3, there are many instances where 
bandwidth can be used to reduce latency. 
 
Scaled speedup vs. Fixed-Size speedup 
Choosing a problem size can be difficult. 

What should we measure?   
The kernel or the entire program? 
Amdahl’s law says that everything is important!  
 
Operating System Costs 
Because operating systems are so integral to computation, it is complicated to assess their 
effects on performance.  
 
Initialization. 
How is memory laid out in the parallel computer? 
 

Summary 
 

Exercises 
 



 

Chapter 6: Programming with Threads  
 
Recall in Chapter 1 that we used threads to implement the count 3's program.  In this 
chapter we'll explore thread-based programming in more detail using the standard POSIX 
Threads interface.  We'll first explain the basic concepts needed to create threads and to 
let them interact with one another.  We'll then discuss issues of safety and performance 
before we step back and evaluate the overall approach. 
 

Thread Creation and Destruction 
 

Consider the following standard code: 
 
 1 #include <pthread.h> 
 2 int err; 
 3 
 4 void main ()  
 5 { 
 6    pthread_t tid[MAX];   /* An array of Thread I D's, one for each */ 
 7             /* thread that is created */ 
 8 
 9    for (i=0; i<t; i++) 
10    { 
11       err = pthread_create (&tid[i], NULL, count 3s_thread, i);  
12    } 
13  
14    for (i=0; i<t; i++) 
15    { 
16       err = pthread_join_(tid[i], &status[i]) 
17    } 
18 } 
 

The above code shows a main() function, which then creates—and launches—t  
threads in the first loop, and then waits for the t  threads to complete in the second loop.  
We often refer to the creating thread as the parent and the created threads as children. 
 
The above code differs from the pseudocode in Chapter 1 in a few details.  Line 1 
includes the pthreads header file, which declares the various pthreads routines and 
datatypes.  Each thread that is created needs its own thread ID, so these thread ID's are 
declared on line 6.  To create a thread, we invoke the pthread_create()  routine 
with four parameters.  The first parameter is a pointer to a thread ID, which will point to a 
valid thread ID when this thread successfully returns.  The second argument provides the 
thread’s attributes; in this case, the NULL value specifies default attributes.  The third 
parameter is a pointer to the start function, which the thread will execute once it’s 
created.  The fourth argument is passed to the start routine, in this case, it represents a 
unique integer between 0 and t-1  that is associated with each thread.  The loop on line 
16 then calls pthread_join() to wait for each of the child threads to terminate.  If 



instead of waiting for the child threads to complete, the main() routine finishes and 
exits using  pthread_exit() , the child threads will continue to execute. Otherwise, 
the child threads will automatically terminate when main() finishes, since the entire 
process will have terminated. See Code Specs 1 and 2. 
 

 
Code Spec 1. pthread_create().  The POSIX Threads thread creation function.  
 

pthread_join() 
int pthread_join (                 // wait for a th read to terminate 
  pthread_t tid,                   // thread IT to wait for 
  void **status                    // exit status 
); 

 
Arguments: 

• The ID of the thread to wait for. 
• The completion status of the exiting thread will be copied into *status  unless 

status is NULL, in which case the completion status is not copied. 
 
Return value: 

• 0 for success.  Error code from <errno.h> otherwise. 
 
Notes: 

• Once a thread is joined, the thread no longer exists, its thread ID is no longer 
valid, and it cannot be joined with any other thread. 

 

pthread_create() 
int pthread_create (      // create a new thread 
  pthread_t *tid,                 // thread ID 
  const pthread_attr_t *attr,     // thread attribu tes 
  void *(*start_routine) (void *),// pointer to fun ction to execute 
  void *arg                       // argument to fu nction 
  ); 
 

Arguments: 
• The thread ID of the successfully created thread.  
• The thread's attributes, explained below; the NULL value specifies default 

attributes. 
• The function that the new thread will execute once it is created. 
• An argument passed to the start_routine(),  in this case, it represents a 

unique integer between 0 and t-1  that is associated with each thread. 
 
Return value: 

• 0 if successful.  Error code from <errno.h> otherwise. 
 
Notes: 

• Use a structure to pass multiple arguments to the start routine. 
 



 
Code Spec 2. pthread_join().  The POSIX Threads rendezvous function pthread_join(). 
 

Thread ID’s 
Each thread has a unique ID of type pthread_t. As with all pthread data types, a 
thread ID should be treated as an opaque type, meaning that individual fields of the 
structure should never be accessed directly.  Because child threads do not know their 
thread ID, the two routines allow a thread to determine its thread ID, pthread_self(), and 
to compare two thread ID’s, pthread_equal(), see Code Specs 3 and 4. 
 

Code Spec 3. pthread_self().  The POSIX Threads function to fetch a thread’s ID. 
 

 
Code Spec 4. pthread_equal().  The POSIX Threads function to compare two thread IDs for equality. 
 

Destroying Threads 
There are three ways that threads can terminate. 

1. A thread can return from the start routine. 
2. A thread can call pthread_exit().  
3. A thread can be cancelled by another thread. 

In each case, the thread is destroyed and its resources become unavailable.   

pthread_self() 
pthread_t pthread_self ();         // Get my thread  ID 

 
Return value: 

• The ID of the thread that called this function. 
 
 

pthread_equal() 
int pthread_equal (                 // Test for equ ality 
  pthread_t t1,     // First operand thread ID 
  pthread_t t2    // Second operand thread ID 
); 

 
Arguments: 

• Two thread ID’s 
 
Return value: 

• Non-zero if the two thread ID’s are the same (following the C convention). 
• 0 if the two threads are different. 

 



 

Code Spec 5. pthread_exit().  The POSIX Threads thread termination function pthread_exit(). 
 

Thread Attributes 
Each thread maintains its own properties, known as attributes, which are stored in a 
structure of type pthread_attr_t.   For example, threads can be either detached or 
joinable.  Detached threads cannot be joined with other threads, so they have slightly 
lower overhead in some implementations of POSIX Threads. For parallel computing, we 
will rarely need detached threads.  Threads can also be either bound or unbound.  Bound 
threads are scheduled by the operating system, whereas unbound threads are scheduled 
by the Pthreads library.  For parallel computing, we typically use bound threads so that 
each thread provides physical concurrency.  

 
POSIX Threads provides routines to initialize thread attributes, set their attributes, and 
destroy attributes, as shown in Code Spec 6.  
 
Code Spec 6. pthread attributes.  An example of how thread attributes are set in the POSIX Threads 

interface. 

void pthread_exit() 
void pthread_exit (                    // terminate a th read 
  void *status       // completion status 
); 

 
Arguments: 

• The completion status of the thread that has exited.  This pointer value is 
available to other threads. 

 
Return value: 

• None 
 
Notes: 

• When a thread exits by simply returning from the start routine, the thread’s 
completion status is set to the start routine’s return value. 

 

Thread Attributes 
pthread_attr_t  attr;              // Declare a thr ead attribute 
pthread_t       tid;                
 
pthread_attr_init(&attr);          // Initialize a thread attribute 
pthread_attr_setdetachstate(&attr, // Set the threa d attribute 
                            PTHREAD_CREATE_UNDETACH ED); 
 
pthread_create (&tid, &attr, start_func, NULL); // Use the attribute 
                                                // to create a thread 
pthread_join(tid, NULL);            
pthread_attr_destroy(&attr);       // Destroy the t hread attribute  
 



Example 
The following example illustrates a potential pitfall that can occur because of the 
interaction between parent and child threads.  The parent thread simply creates a child 
thread and waits for the child to exit.  The child thread does some useful work and then 
exits, returning an error code.  Do you see what’s wrong with this code? 
  
 1 #include <pthread.h> 
 2 
 3 void main () 
 4 { 
 5    pthread_t tid;      
 6    int *status;           
 7 
 8    pthread_create (&tid, NULL, start, NULL);  
 9    pthread_join_(tid, &status); 
10 } 
11  
12 void start()  
13 { 
14    int errorcode; 
15    /* do something useful. . . */ 
16    
17    if (. . . ) 
18       errorcode = something; 
19    pthread_exit(&errorcode); 
20 } 
 

The problem occurs in the call to pthread_exit()  on line 17, where the child is 
attempting to return an error code to the parent.  Unfortunately, because errorcode  is 
declared to be local to the start()  function, the memory for errorcode  is allocated 
on the child thread’s stack.  When the child exits, its call stack is de-allocated, and the 
parent has a dangling pointer to errorcode .  At some point in the future, when a new 
procedure is invoked, it will over-write the stack location where errorcode  resides, 
and the value of errorcode  will change.  
 

Mutual Exclusion 
We can now create and destroy threads, but to allow threads to interact constructively, we 
need methods of coordinating their interaction.  In particular, when two threads share 
access to memory, it is often useful to employ a lock, called a mutex, to provide mutual 
exclusion or mutually exclusive access to the variable. As we saw in Chapter 1, without 
mutual exclusion, race conditions can lead to unpredictable results, because when 
multiple threads execute the following code, the count  variable, which is shared among 
all threads, will not be atomically updated. 
 
 
    for (i=start; i<start+length_per_thread; i+ +) 
    {  
 if (array[i] == 3) 
 { 
     count++; 



 } 
    } 

 
The solution, of course, is to protect the update of count using a mutex, as shown below:  
     
 1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER ; 
 2 
 3 void count3s_thread (int id) 
 4 { 
 5    /* Compute portion of array that this thread should work on */ 
 6    int length_per_thread = length/t; 
 7    int start = id * length_per_thread; 
 8 
 9    for (i=start; i<start+length_per_thread; i+ +) 
10    { 
11       if (array[i] == 3) 
12    { 
13       pthread_mutex_lock(&lock); 
14       count++; 
15       pthread_mutex_unlock(&lock); 
16    } 
17    } 
18 } 
 
 

Line 1 shows how a mutex can be statically declared.  Like threads, mutexes have 
attributes, and by initializing the mutex to PTHREAD_MUTEX_INITIALIZER, the 
mutex is assigned default attributes.  To use this mutex, its address is passed to the lock 
and unlock routines on lines 13 and 15, respectively.  The appropriate discipline, of 
course, is to bracket all critical sections, that is, code that must be executed atomically by 
only one thread at a time, by the locking of a mutex upon entrance and the unlocking of a 
mutex upon exit.  Only one thread can acquire the mutex at any one time, so a thread will 
block if it attempts to acquire a mutex that is already held by another thread.  When a 
mutex is unlocked, or relinquished, one of the threads that was blocked attempting to 
acquire the lock will become unblocked and granted the mutex.  The POSIX Threads 
standard defines no notion of fairness, so the order in which the locks are acquired is not 
guaranteed to match the order in which the threads attempted to acquire the locks. 
 
It is an error to unlock a mutex that has not been locked, and it is an error to lock a mutex 
that is already held.  The latter will lead to deadlock, in which the thread cannot make 
progress because it is blocked waiting for an event that cannot happen.  We will discuss 
deadlock and techniques to avoid deadlock in more detail later in the chapter. 



 

Code Spec 7.  The POSIX Threads routines for acquiring and releasing mutexes. 

Serializability 
It’s clear that our use of mutexes provides atomicity: the thread that acquires the mutex m 

will execute the code in the critical section until it relinquishes the mutex.  Thus, in our 
above example, the counter will be updated by only one thread at a time.  Atomicity is 
important because it ensures serializability:  A concurrent execution is serializable if the 
execution is guaranteed to execute in an order that corresponds to some serial execution 
of those threads. 

Mutex Creation and Destruction 
In our above example, we knew that only one mutex was needed, so we were able to 
statically allocate it.  In cases where the number of required mutexes is not known a 
priori , we can instead allocate and deallocate mutexes dynamically.  Code Spec 8 shows 
how such a mutex is dynamically allocated, initialized with default attributes, and 
destroyed. 

Acquiring and Releasing Mutexes 
 
int pthread_mutex_lock(             // Lock a mutex  
   pthread_mutex_t *mutex);          
 
int pthread_mutex_unlock(           // Unlock a mut ex 
   pthread_mutex_t *mutex); 
 
int pthread_mutex_trylock(          // Non-blocking  lock 
   pthread_mutex_t *mutex);           
 

Arguments: 
• Each function takes the address of a mutex variable. 

 
Return value: 

• 0 if successful.  Error code from <errno.h> otherwise. 
 
Notes: 

• The pthread_mutex_trylock()  routine attempts to acquire a mutex but 
will not block.  This routine returns EBUSY if the mutex is locked. 



 
Code Spec 8.  The POSIX Threads routines for dynamically creating and destroying mutexes. 

 
Code Spec 9.  An example of how dynamically allocated mutexes are used in the POSIX Threads interface. 

Synchronization 
Mutexes are sufficient to provide atomicity for critical sections, but in many situations we 
would like a thread to synchronize its behavior with that of some other thread.  For 
example, consider a classic bounded buffer problem in which one or more threads put 

Mutex Creation and Destruction 
 
int pthread_mutex_init(   // Initialize a mutex 
   pthread_mutex_t *mutex, 
   pthread_mutexattr_t *attr); 
 
int pthread_mutex_destroy (    // Destroy a mutex 
   pthread_mutex_t *mutex);   
 
int pthread_mutexattr_init(  // Initialize a mutex attribute 
   pthread_mutexattr_t *attr);           
 
int pthread_mutexattr_destroy ( // Destroy a mutex attribute 
   pthread_mutexattr_t *attr); 
 

Arguments: 
• The pthread_mutex_init()  routine takes two arguments, a pointer to a 

mutex  and a pointer to a mutex attribute.  The latter is presumed to have 
already been initialized. 

• The pthread_mutexattr_init()  and 
pthread_mutexattr_destroy()  routines take a pointer to a mutex 
attribute as arguments. 

 
Notes: 

• If the second argument to pthread_mutex_init()  is NULL, default 
attributes will be used. 

Dynamically Allocated Mutexes 
 
pthread_mutex_t *lock;             // Declare a poi nter to a lock 
 
lock = (pthread_mutex_lock_t *) malloc(sizeof (pthr ead_mutex_t)); 
 
pthread_mutex_init(lock, NULL);           
   /* 
    * Code that uses this lock. 
    */ 
 
pthread_mutex_destroy (lock); 
free (lock);  



items into a circular buffer while other threads remove items from the same buffer.  As 
shown in Figure 1, we would like the producers to stop producing data—to wait—if the 
consumer is unable to keep up and the buffer becomes full, and we would like the 
consumers to wait if the buffer is empty. 

 
Figure 1.  A bounded buffer with producers and consumers.  The Put and Get cursors indicate where the 
producers will insert the next item and where the consumers will remove its next item, respectively.  When 
the buffer is empty, the consumers must wait.  When the buffer is full, the producers must wait.  
 
Such synchronization is supported by condition variables, which are a more general form 
of synchronization than joining threads.  A condition variable allows threads to wait until 
some condition becomes true, at which point one of the waiting threads is non-
deterministically chosen to stop waiting.  We can think of the condition variable as a gate 
(see Figure 2).  Threads wait at the gate until some condition is true.  Other threads open 
the gate to signal that the condition has become true, at which point one of the waiters is 
allowed to enter the gate and resume execution.  If a thread opens the gate when there are 
no threads waiting, the signal has no effect. 

 
Figure 2.  Condition variables act like a gate.  Threads wait outside the gate by calling 
pthread_cond_wait(),  and threads open the gate by calling pthread_cond_signal().   When 
the gate is opened, one waiter is allowed through.  If there are no waiters when the gate is opened, the  
signal has no effect. 
 

We can solve our bounded buffer problem with two condition variables, nonempty  and 
nonfull , as shown below.   
 
 1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER ; 
 2 pthread_cond_t nonempty = PTHREAD_COND_INITIALIZ ER; 
 3 pthread_cond_t nonfull= PTHREAD_COND_INITIALIZER ; 
 4 Item buffer[SIZE]; 
 5 int in = 0;                      // Buffer index  for next insertion 
 6 int out = 0;                     // Buffer index  for next removal 

Get Put 

Circular Buffer 

Get Put 

Empty Buffer 

Get Put 

Full Buffer  

signaler 

waiter 

signaler 
waiter 

waiter 



 7     
 8 void put (Item x)                // Producer thr ead 
 9 { 
10    pthread_mutex_lock(&lock); 
11    while (in – out) == SIZE)     // While buffer  is full 
12       pthread_cond_wait(&nonfull, &lock); 
13    buffer[in % SIZE] = x; 
14    in++; 
15    pthread_cond_signal(&nonempty); 
16    pthread_mutex_unlock(&lock); 
17 } 
18 
19 Item get()                       // Consumer thr ead 
20 { 
21    Item x; 
22    pthread_mutex_lock(&lock); 
23    while (out – in)              // While buffer  is empty 
24       pthread_cond_wait(&nonempty, &lock); 
25    x = buffer[out % SIZE]; 
26    out++; 
27    pthread_cond_signal(&nonfull); 
28    pthread_mutex_unlock(&lock); 
29    return x; 
30 } 
 

Of course, since multiple threads will be updating these condition variables, we need to 
protect their access with a mutex, so Line 1 declares a mutex.  The remaining 
declarations define a buffer, buffer , and its two cursors, in  and out , which indicate 
where to insert the next item and where to remove the next item.  The two cursors wrap 
around when they exceed the bounds of buffer , yielding a circular buffer. 
 
Given these data structures, the producer thread executes the put()  routine, which first 
acquires the mutex to access the condition variables.  (This code omits the actual creation 
of the producer and consumer threads, which are assumed to iteratively invoke the 
put()  and get()  routines, respectively.)  If the buffer is full, the producer waits on the 
nonfull  condition so that it will later be awakened when the buffer becomes non-full.  
If this thread blocks, the mutex that it holds must be relinquished to avoid deadlock.  
Because these two events—the releasing of the mutex and the blocking of this waiting 
thread—must occur atomically, they must be performed by pthread_cond_wait(),  
so the mutex is passed as a parameter to pthread_cond_wait().   When the 
producer resumes execution after returning from the wait on Line 12, the protecting 
mutex will have been re-acquired by the system on behalf of the producer.   
 
In a moment we will explain the need for the while  loop on Line 11, but for now 
assume when the producer executes Line 13, the buffer is not full, so it is safe to insert a 
new item and to bump the In  cursor by one.  At this point, the buffer cannot be empty 
because the producer has just inserted an element, so the producer signals that the buffer 
is nonempty, waking one more consumers that may be waiting on an empty buffer.  If 
there are no waiting consumers, the signal is lost.  Finally, the producer releases the 



mutex and exits the routine.  The consumer thread executes the get()  routine, which 
operates in a very similar manner. 

 
Code Spec 10.  pthread_cond_wait():  The POSIX Thread routines for  waiting on condition variables. 
 

 
Code Spec 11.  pthread_cond_signal().  The POSIX Threads routines for signaling a condition variable. 
 

pthread_cond_signal() 
 
int pthread_cond_signal( 
   pthread_cond_t *cond);  // Condition to signal 
 
int pthread_cond_broadcast ( 
   pthread_cond_t *cond);  // Condition to signal 
 

Arguments: 
• A condition variable to signal. 

 
Return value: 

• 0 if successful.  Error code from <errno.h> otherwise. 
 
Notes: 

• These routines have no effect if there are no threads waiting on cond .  In 
particular, there is no memory of the signal when a later call is made to 
pthread_cond_wait().  

• The pthread_cond_signal()  routine may wake up more than one 
thread, but only one of these threads will hold the protecting mutex. 

• The pthread_cond_broadcast()  routine wakes up all waiting threads.  
Only one awakened thread will hold the protecting mutex. 

pthread_cond_wait() 
 
int pthread_cond_wait( 
   pthread_cond_t *cond,  // Condition to wait on 
   pthread_mutex_t *mutex);  // Protecting mutex 
 
int pthread_cond_timedwait ( 
   pthread_cond_t *cond, 
   pthread_mutex_t *mutex, 
   const struct timespec *abstime); // Time-out value   
 

Arguments: 
• A condition variable to wait on. 

• A mutex that protects access to the condition variable.  The mutex is released 
before the thread blocks, and these two actions occur atomically.  When this 
thread is later unblocked, the mutex is reacquired on behalf of this thread. 

•  

Return value: 
• 0 if successful.  Error code from <errno.h> otherwise. 



Protecting Condition Variables 
Let us now return to the while  loop on Line 11 of the bounded buffer program.  If our 
system has multiple producer threads, this loop is essential because 
pthread_cond_signal()  can wake up multiple waiting threads1, of which only one 
will hold the protecting mutex at any particular time.  Thus, at the time of the signal, the 
buffer is not full, but when any particular thread acquires the mutex, the buffer may have 
become full again, in which case the thread should call pthread_cond_wait()  
again.  When the producer thread executes Line 13, the buffer is necessarily not full, so it 
is safe to insert a new item and to bump the In  cursor.   
 
We see on Lines 15 and 27 that the call to pthread_cond_signal()  is also 
protected by the lock.  The following example shows that this protection is necessary. 
 

 
Figure 3.  Example of why a signaling thread needs to be protected by a mutex. 
 
In this example, the waiting thread, in this case the consumer, acquires the protecting 
mutex and finds that the buffer is empty, so it executes pthread_cond_wait().   If 
the signaling thread, in this case the producer, does not protect the call to 
pthread_cond_signal()  with a mutex, it could insert an item into the buffer 
immediately after the waiting thread found it empty.  If the producer then signals that the 
buffer is non-empty before the waiting thread executes the call to 
pthread_cond_wait(),  the signal will be dropped and the consumer thread will 
not realize that the buffer is actually not empty.  In the case that the producer only inserts 
a single item, the waiting thread will needlessly wait forever. 
 
The problem, of course, is that there is a race condition involving the manipulation of the 
buffer.  The obvious solution is to protect both the call to pthread_cond_signal()  
with the same mutex that protects the call to pthread_cond_wait (), as shown in the 
code for our bounded buffer solution.  Because both the Put()  and Get()  routines are 
protected by the same mutex, we have three critical sections related to the nonempty 
buffer, as shown in Figure 4, and in no case can the signal be dropped while a waiting 
thread thinks that the buffer is empty. 

                                                 
1 These semantics are due to implementation details.  In some cases it can be expensive to ensure that 
exactly one waiter is unblocked by a signal. 
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Figure 4.  Proper locking of the signaling code prevents race conditions.  By identifying and protecting 
three critical sections pertaining to the nonempty buffer, we guarantee that each of A, B, and C will execute 
atomically, so our problem from Figure 3 is avoided: There is no way for the Put()  routine’s signal to be 
dropped while a thread executing the Get()  routine thinks that the buffer is empty. 
 
We have argued that the call to pthread_cond_signal() must be protected by the 
same mutex that protects the waiting code.  However, notice that the race condition 
occurs not from the signaling of the condition variable, but with the access to the shared 
buffer.  Thus, we could instead simply protect any code that manipulates the shared 
buffer, which implies that the Put() code could release the mutex immediately after 
inserting an item into the buffer but before calling pthread_cond_signal().   This 
new code is not only legal, but it produces better performance because it reduces the size 
of the critical section, thereby allowing more concurrency. 

lock (mutex) 
while (out – in) 
  pthread_cond_wait(&nonempty, lock); 
remove(item); 
 
 

insert(item); 
pthread_cond_signal(&nonempty); 

Put() 

Get() 

 time 

insert(item); 
pthread_cond_signal(&nonempty); Critical section A 

Critical section B 

Critical section C 
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insert(item); 
pthread_cond_signal(&nonempty); 

Case 2: Order B, A, C 

lock (mutex) 
while (out – in) 
  pthread_cond_wait(&nonempty, lock); 
remove(item); 
 
 
 

Case 3: Order B, C, A 

 time 

insert(item); 
pthread_cond_signal(&nonempty); 

 time 

lock (mutex) 
while (out – in) 
  pthread_cond_wait(&nonempty, lock); 
 

remove(item); 

lock (mutex) 
while (out – in) 
  pthread_cond_wait(&nonempty, lock); 
 
remove(item); 
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Creating and Destroying Condition Variables  
Like threads and mutexes, condition variables can be created and destroyed either 
statically or dynamically.  In our bounded buffer example above, the static condition 
variables were both given default attributes by initializing them to 
PTHREAD_COND_INITIALIZER. Condition variables can be dynamically allocated as 
indicated in Code Spec 12. 

 
Code Spec 12.  The POSIX Threads routines for dynamically creating and destroying condition variables. 
 

Waiting on Multiple Condition Variables 
In some cases a piece of code cannot execute unless multiple conditions are met.  In these 
situations the waiting thread should test all conditions simultaneously, as shown below. 
 
 1 EatJuicyFruit()   
 2 {                                 
 3    pthread_mutex_lock(&lock); 
 4    while (apples==0 && oranges==0)   
 5    {      
 6       pthread_cond_wait(&more_apples, &lock); 
 7       pthread_cond_wait(&more_oranges, &lock); 
 8    } 
 9    /* Eat both an apple and an orange */ 
10    pthread_mutex_unlock(&lock); 
11 } 

 
By contrast, the following code, which waits on each condition in turn, fails because 
there is no guarantee that both conditions will be true at the same time.  That is, after 
returning from the first call to pthread_cond_wait()  but before returning from the 
second call to pthread_cond_wait (), some other thread may have removed an apple, 
making the first condition false. 
 
 1 EatJuicyFruit()   
 2 {                                 

Dynamically Allocated Condition Variables 
 
int pthread_cond_init( 
   pthread_cond_t *cond,  // Condition variable 
   const pthread_condattr_t *attr); // Condition at tribute 
 
int pthread_cond_destroy ( 
   pthread_cond_t *cond);  // Condition to destroy 
 

Arguments: 
• Default attributes are used if attr  is NULL. 

 
Return value: 

• 0 if successful.  Error code from <errno.h> otherwise. 



 3    pthread_mutex_lock(&lock); 
 4    while (apples==0)       
 5       pthread_cond_wait(&more_apples, &lock); 
 6    while (oranges==0) 
 7       pthread_cond_wait(&more_oranges, &lock); 
 8    
 9    /* Eat both an apple and an orange */ 
10    pthread_mutex_unlock(&lock); 
11 } 

Thread-Specific Data 
It is often useful for threads to maintain private data that is not shared.  For example, we 
have seen examples where a thread index is passed to the start function so that the thread 
knows what portion of an array to work on.  This index can be used to give each thread a 
different element of an array, as shown below: 
  
 1  . . . 
 2 
 3    for (i=0; i<t; i++) 
 4       err = pthread_create (&tid[i], NULL, start _function, i);  
 5 
 6 void start_function(int index) 
 7 { 
 8    private_count[index] = 0; 
 9 . . . 
 

A problem occurs, however, if the code that accesses index  occurs in a function, 
foo(),  which is buried deep within other code.  In such situations, how does foo()  
get the value of index ?  One solution is to pass the index  parameter to every 
procedure that calls foo(),  including procedures that call foo()  indirectly through 
other procedures.  This solution is cumbersome, particularly for those procedures that 
require the parameter but do not directly use it. 
 
Instead, what we really want is a variable that is global in scope to all code but which can 
have different values for each thread.  POSIX Threads supports such a notion in the form 
of thread-specific data, which uses a set of keys, which are shared by all threads in a 
process, but which map to different pointer values for each thread.  (See Figure 4.) 
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Figure 5.  Example of thread-specific data in POSIX Threads.  Thread-specific data are accessed by keys, 
which map to different memory locations in different threads. 
 
As a special case, the error values for POSIX Threads routines are returned in thread-
specific data, but such data does not use the interface defined by Code Specs 13-17.  
Instead, each thread has its own value of errno . 
 

 
Code Spec 13.  Example of how thread-specific data is used.  Once initialized with this code, any 
procedure can access the value of my_index . 
 

 
Code Spec 14.  pthread_key_create.  POSIX Thread routine for creating a key for thread-specific data. 
 

pthread_key_create 
 
int pthread_key_create ( 
   pthread_key_t *key,              // The key to c reate 
   void (*destructor) (void*));     // Destructor f unction 
 

Arguments: 
• A pointer to the key to create. 
• A destructor function.  NULL indicates no destructor. 

 
Return value: 

• 0 if successful.  Error code from <errno.h> otherwise. 
  
Notes: 

• Avoid accessing index in a tight inner loop because each access requires a 
procedure call. 

Thread-Specific Data 
 
pthread_key_t *my_index; 
#define index (pthread_getspecific (my_index)) 
 
main()  
{ 
   . . . 
   pthread_key_create(&my_index, 0); 
   . . . 
} 
 
void start_routine(int id) 
{   
   pthread_setspecific (my_index, id); 
   . . . 
} 
 

Notes: 
• Avoid accessing index in a tight inner loop because each access requires a 

procedure call. 



 
Code Spec 15.  pthread_key_delete.  POSIX Thread routine for deletin a key. 
 

 
Code Spec 16.  pthread_setspecific.  POSIX Thread routine for setting the value of thread-specific data. 

pthread_setspecific 
 
int pthread_setspecific ( 
   pthread_key_t *key,              // Key to set 
   void *value));                   // Value to set  
 

Arguments: 
• A pointer to the key to be set. 
• The value to set. 

 
Return value: 

• 0 if successful.  Error code from <errno.h> otherwise. 
  
Notes: 

• It is an error to call pthread_setspecific()  before the key has been 
created or after the key has been deleted. 

pthread_key_delete 
 
int pthread_key_delete ( 
   pthread_key_t *key);              // The key to delete 
 

Arguments: 
• A pointer to the key to delete. 

 
Return value: 

• 0 if successful.  Error code from <errno.h> otherwise. 
  
Notes: 

• Destructors will not be called. 



 
Code Spec 17.  pthread_getspecific.  POSIX Thread routine for getting the value of some  thread-specific 
data. 
 

Safety Issues 
 
Many types of errors can occur from the improper use of locks and condition variables.  
We’ve already mentioned the problem of double-locking, which occurs when a thread 
attempts to acquire a lock that it already holds.  Of course, problems also arise if a thread 
accesses some shared variable without locking it, or if a thread acquires a lock and does 
not relinquish it.  One particularly important problem is that of avoiding deadlock.  This 
section discusses various methods of avoiding deadlock and other potential bugs. 
 

Deadlock 
There are four necessary conditions for deadlock: 

1. Mutual exclusion:  a resource can be assigned to at most one thread. 
2. Hold and wait: a thread that holds resources can request new resources. 
3. No preemption:  a resource that is assigned to a thread can only be released by the 

thread that holds it. 
4. Circular wait: there is a cycle in which each thread waits for a resource that is 

assigned to another thread.  (See Figure 6.) 
 
Of course, for threads-based programming, mutexes are resources that can cause 
deadlock.  There are two general approaches to dealing with deadlock: (1) prevent 
deadlocks, and (2) allow deadlock to occur, but detect their occurrence and then break the 
deadlock.  We will focus on the deadlock avoidance, because POSIX Threads does not 
provide a mechanism for breaking locks. 

pthread_getspecific 
 
int pthread_getspecific ( 
   pthread_key_t *key);             // Key to value  
 

Arguments: 
• Key whose value is to be retrieved. 

 
Return value: 

• Value of key  for the calling thread. 

  
Notes: 

• The behavior is undefined if a thread calls pthread_getspecific() 
before the key is created or after the key is deleted. 



 
Figure 6.  Deadlock example.  Threads T1 and T2 hold locks L1 and L2, respectively, and each thread 
attempts to acquire the other lock, which cannot be granted. 

Lock Hierarchies 
A simple way to prevent deadlocks is to prevent cycles in the resource allocation graph.  
We can prevent cycles by imposing an ordering on the locks and by requiring all threads 
to acquire their locks in the same order.  Such a discipline is known as a lock hierarchy. 
 
One problem with a lock hierarchy is that it requires programmers to know a priori what 
locks a thread needs to acquire.  Suppose that after acquiring locks L1, L3, and L7, a 
thread finds that it needs to also acquire lock L2, which would violate the lock hierarchy.  
One solution would be for the thread to release locks L3 and L7, and then reacquire locks 
L2, L3, and L7 in that order.  Of course, this strict adherence to the lock hierarchy is 
expensive.  A better solution would be to attempt to lock L2 using 
pthread_mutex_trylock() (see Code Spec 7), which either obtains the lock or 
immediately returns without blocking.  If the thread is unable to obtain lock L2, it must 
resort to the first solution. 
 

Monitors 
The use of locks and condition variables is error prone because it relies on programmer 
discipline.  An alternative is to provide language support, which would allow a compiler 
to enforce mutual exclusion and proper synchronization.  A monitor is one such language 
construct, and although almost no modern language provides such a construct, it can be 
implemented in an object oriented setting, as we will soon see.  A monitor encapsulates 
code and data and enforces a protocol that ensures mutual exclusion.  In particular, a 
monitor has a set of well-defined entry points, its data can only be accessed by code that 
resides inside the monitor, and at most one thread can execute the monitor’s code at any 
time.  Monitors also provide condition variables for signaling and waiting, and they 
ensure that the use of these condition variables obeys the monitor’s protocol.  Figure 7 
shows a graphical depiction of a monitor. 
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Figure 7.  Monitors provide an abstraction of synchronization in which only one thread can access the 
monitor’s data at any time.  Other threads are blocked either waiting to enter the monitor or waiting on 
events inside the monitor. 
 
We can implement monitors in an object oriented language, such as C++, as shown 
below. 
 
 1 class BoundedBuffer 
 2 {                                // Emulate a mo nitor 
 3 private: 
 4    pthread_mutex_t lock;         // Synchronizat ion variables  
 5    pthread_cond_t nonempty, nonfull;     
 6    Item *buffer;                 // Shared data 
 7    int in, out;                  // Cursors 
 8    CheckInvariant(); 
 9  
10 public: 
11    BoundedBuffer(int size);      // Constructor 
12    ~BoundedBuffer();             // Destructor 
13    void put(Item x); 
14    Item get(); 
15 } 
16      
17 // Constructor and Destructor 
18 BoundedBuffer::Bounded (int size) 
19 { 
20    // Initialize synchronization variables 
21    pthread_mutex_init(&lock, NULL); 
22    pthread_cond_init(&nonempty, NULL); 
23    pthread_cond_init(&nonfull, NULL); 
24 
25    // Initialize the buffer 
26    buffer = new Item[size]; 
27    in = out = 0; 
28 } 
29 
30 BoundedBuffer::~BoundedBuffer() 
31 { 
32    pthread_mutex_destroy(&lock); 
33    pthread_cond_destroy(&nonempty); 
34    pthread_cond_destroy(&nonfull); 
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35    delete buffer; 
36 } 
37  
38 // Member functions 
39 BoundedBuffer::Put(Item x) 
40 { 
41    pthread_mutex_lock(&lock); 
42    while (in – out == size)      // while buffer  is full 
43       pthread_cond_wait(&nonfull, &lock); 
44    buffer[in%size] = x; 
45    in++; 
46    pthread_cond_signal(&nonempty); 
47    pthread_mutex_unlock(&lock); 
48 } 
49 
50 Item BoundedBuffer::Get() 
51 { 
52    pthread_mutex_lock(&lock); 
53    while (in = out)              // while buffer  is empty 
54       pthread_cond_wait(&nonempty, &lock); 
55    x = buffer[out%size]; 
56    out++; 
57    pthread_cond_signal(&nonfull); 
58    pthread_mutex_unlock(&lock); 
59    return x; 
60 } 

 
Monitors not only enforce mutual exclusion, but they provide an abstraction that can 
simplify how we reason about concurrency.  In particular, the limited number of entry 
points facilitates the preservation of invariants.  Monitors have internal functions and 
external functions.  Internal functions assume that the monitor lock is held.  By contrast, 
external functions must acquire the monitor lock before executing, so external functions 
cannot invoke each other.  In this setting invariants are properties that can are assumed to 
be true upon entry and which must be restored upon exit.  These invariants may be 
violated while the monitor lock is held, but they must be restored before the monitor lock 
is released.  This use of invariants is graphically depicted in Figure 8. 

 
Figure 8.  Monitors and invariants.  The red circles represent program states in which the invariants may be 
violated.  The blue circles represent program states in which the invariants are assumed to be maintained. 
 
For example, in our bounded buffer example, we have two invariants: 

1. The distance between the In and Out cursors is at most the size of the buffer. 
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2. The In cursor is not left of the Out cursor.  (In Figure 1, the Put arrow is not left of 
the Get arrow.) 

Once we have identified our invariants, we can write a routine that checks all invariants, 
and this routine can be invoked before every entrance to the monitor and after every exit 
from the monitor.  The use of such invariants can be a significant debugging tool.  For 
example, the following code checks these invariants to help debug the monitor’s internal 
routines. 
 
 1 BoundedBuffer::CheckInvariant()  
 2 {                                 
 3    if (in – out > size)           // Check invar iant (1) 
 4       return (0);  
 5    if (in < out)                  // Check invar iant (2)     
 6       return (0); 
 7    return (1); 
 8 } 
 9   
10 Item BoundedBuffer::Get() 
11 { 
12    pthread_mutex_lock(&lock); 
13    assert(CheckInvariant());     // Check on every ent rance  
14    while (in = out)              // while buffer  is empty 
15    { 
16       assert(CheckInvariant());  // Check on every exit 
17       pthread_cond_wait(&nonempty, &lock); 
18       assert(CheckInvariant());  
19    } 
20    x = buffer[out%size]; 
21    out++; 
22    pthread_cond_signal(&nonfull); 
23    assert(CheckInvariant());  
24    pthread_mutex_unlock(&lock); 
25    return x; 
26 } 

 
As we have mentioned before, the call to pthread_cond_wait()  may implicitly 
release the lock, so it is a potential monitor exit, and the return from 
pthread_cond_wait()  will implicitly re-acquire the lock, so it is a monitor 
entrance. 

Re-entrant Monitors 
While monitors help enforce a locking discipline, they do not ensure that all concurrency 
problems go away.  For example, if a procedure in a monitor attempts to re-enter the 
monitor by calling an entry procedure, deadlock will occur.  To avoid this problem, the 
procedure should first restore all invariants, release the monitor lock, and then try to re-
enter the monitor.  Of course, such a structure means that atomicity is lost.  This same 
problem occurs if a monitor procedure attempts to re-enter the monitor indirectly by 
calling some external procedure that then tries to enter the monitor, so monitor 
procedures should invoke external routines with care. 
 



Monitor functions that take a long time or wait for some outside event will prevent other 
threads from entering the monitor.  To avoid such problems, such functions can often be 
rewritten to wait on a condition, thereby releasing the lock and increasing parallelism.  As 
with re-entrant routines, such functions will need to restore invariants before releasing the 
lock. 
 

Performance Issues 
We saw in Chapter 3 that dependences among threads constrain parallelism. Because 
locks dynamically impose dependences among threads, the granularity of our locks can 
greatly affect parallelism.  At one extreme, the coarsest locking scheme uses a single lock 
for all shared variables, which is simple but severely limits concurrency when there is 
sharing.  At the other extreme, fine-grained locks may protect small units of data.  For 
example, in our Count 3’s example, we might use a different lock to protect each node of 
the accumulation tree.  As an intermediate point, we might use one lock for the entire 
accumulation tree.  As we reduce the lock granularity, the overhead of locking increases 
while the amount of available parallelism increases. 
 

Readers and Writers Example: Granularity Issues 
Just as there are different granularities for locking, there are different granularities of 
condition variables.  Consider a resource that can be shared by multiple readers or 
accessed exclusively by a single writer.  To coordinate access to such a resource, we can 
provide four routines—AcquireExclusive() , ReleaseExclusive() , 
AcquireShared() , and ReleaseShared() —that readers and writers can invoke.  
These routines are each protected by a single mutex, and they collectively use two 
condition variables.  To acquire the resource in exclusive mode, a thread waits on the 
wBusy condition variable, which ensures that no readers are still accessing the resource.  
When the last reader is done accessing a resource in shared mode, it signals the wBusy 
condition to allow the writer to proceed.  Likewise, when a writer is done accessing the 
resource in exclusive mode, it signals the rBusy  condition to allow any readers to have 
access to the resource; and before accessing the shared resource, threads wait on the 
rBusy  condition variable. 
 
 1 int readers;                     // Negative val ue => active writer 
 2 pthread_mutex_t lock; 
 3 pthread_cond_t rBusy, wBusy;     // Use separate  condition variables 
 4                                  // for readers and writers 
 5 AcquireExclusive()      
 6 {   
 7    pthread_mutex_lock(&lock); 
 8    while (readers != 0) 
 9       pthread_cond_wait(&wBusy, &lock); 
10    readers = -1; 
11    pthread_mutex_unlock(&lock); 
12 } 
13    
14 AcquireShared() 



15 { 
16    pthread_mutex_lock(&lock);    
17    readWaiters++; 
18    while (readers<0) 
18       pthread_cond_wait(&rBusy, &lock); 
19    readWaiters--; 
20    pthread_mutex_unlock(&lock);    
21 }   
22   
23 ReleaseExclusive() 
24 { 
25    pthread_mutex_lock(&lock);    
26    readers = 0; 
27    pthread_cond_broadcast(&rBusy);  // Only wake  up readers 
28    pthread_mutex_unlock(&lock);     
29 } 
30 
31 ReleaseShared( 
32 { 
33    int doSignal; 
34     
35    pthread_mutex_lock(&lock); 
36    readers--; 
37    doSignal = (readers==0) 
38    pthread_mutex_unlock(&lock); 
39    if (doSignal)                    // Signal is  performed outside  
40       pthread_cond_signal(&wBusy);  // of critic al section 
41 } 
 

Two points about this code are noteworthy.  
 
First, the code uses two condition variables, but it’s natural to wonder if one condition 
variable would suffice.  In fact, one condition variable could be used, as shown below, 
and the code would be functionally correct.  Unfortunately, by using a single condition 
variable, the code suffers from spurious wakeups in which writers can be awoken only to 
immediately go back to sleep.  In particular, when ReleaseExclusive()  is called 
both readers and writers are signaled, so writers will suffer spurious wakeups whenever 
any reader is also waiting on the condition.  Our original solution avoids spurious 
wakeups by using two condition variables, which forces exclusive access and shared 
access to alternate as long as there is demand for both types of access. 
 
 1 int readers;                     // Negative val ue => active writer 
 2 pthread_mutex_t lock; 
 3 pthread_cond_t busy;             // Use one cond ition variable to 
 4                                  // indicate whe ther data if busy 
 5 AcquireExclusive()      
 6 {   
 7    pthread_mutex_lock(&lock);    // This code su ffers from spurious 
 8    while (readers != 0)          // wakeups!!! 
 9       pthread_cond_wait(&busy, &lock); 
10    readers = -1; 
11    pthread_mutex_unlock(&lock); 
12 } 
13    



14 AcquireShared() 
15 { 
16    pthread_mutex_lock(&lock);    
17    while (readers<0) 
18       pthread_cond_wait(&busy, &lock); 
19    readers++; 
20    pthread_mutex_unlock(&lock);    
21 }   
22   
23 ReleaseExclusive() 
24 { 
25    pthread_mutex_lock(&lock);    
26    readers = 0; 
27    pthread_cond_broadcast(&busy); 
28    pthread_mutex_unlock(&lock);     
29 } 
30  
31 ReleaseShared( 
32 { 
33    pthread_mutex_lock(&lock); 
34    readers--; 
35    if (readers==0) 
36       pthread_cond_signal(&busy); 
37    pthread_mutex_unlock(&lock);    
38 } 

 
Second, the ReleaseShared() routine signals the wBusy condition variable outside 
of the critical section to avoid the problem of spurious lock conflicts, in which a thread is 
awoken by a signal, executes a few instructions, and then immediately blocks in attempt 
to acquire the lock.  If the ReleaseShared() were instead to execute the signal inside 
of the critical section, as shown below, then any writer that would be awakened would 
almost immediately block trying to acquire the lock.   
 
31 ReleaseShared( 
32 { 
33    pthread_mutex_lock(&lock); 
34    readers--; 
35    if (readers==0) 
36       pthread_cond_signal(&wBusy);  // Wake up w riters inside of 
37    pthread_mutex_unlock(&lock);     // the criti cal section 
38 } 

 
The decision to move the signal outside of the critical section represents a tradeoff, 
because it allows a new reader to enter the critical section before the 
ReleaseShared()  routine is able to awaken a waiting writer, allowing readers to 
again starve out writers, albeit with much less probability than would occur with a single 
condition variable. 
  

Thread Scheduling 
[This might be out of place—perhaps it belongs much earlier.] 



POSIX Threads supports two scheduling scopes.  Threads in system contention scope are 
called bound threads because they are bound to a particular processor, and they are 
scheduled by the operating system.  By contrast, threads in process contentions scope are 
called unbound threads because they can execute on any of the Pthreads library’s set of 
processors.  These unbound threads are scheduled by the Pthreads library.  For parallel 
computing, we typically use bound threads.  
 
[Need a few more details: what is the default scope?  
 Are scheduling priorities an optional feature of POSIX Threads? 
 If not, talk here about scheduling attributes and priority inversion.] 

Overlapping Synchronization with Computation 
As we mentioned in Chapter 4, it is often useful to overlap long-latency operations with 
independent computation.  For example, in Figure 9 Thread 0 reaches the barrier well 
before Thread 1, so would be profitable for Thread 0 to do some useful work rather than 
simply sit idle.   

 
Figure 9.  It’s often useful to do useful work while waiting for some long-latency operation to complete. 
 
To take advantage of such opportunities, we often need to create split-phase operations, 
which separate a synchronization operation into two phases: initiation and completion, as 
shown in Figure 10. 

 
Figure 10.  Split-phase barrier allows a thread to do useful work while waiting for other threads to arrive at 
a barrier. 
 
To see a concrete example of how split-phase operations can help, consider a 2D 
successive relaxation program, which is often used—often in 3D form—to solve systems 
of differential equations, such as the Navier-Stokes equations for fluid flow.  This 
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computation starts with an array of n+2 values: n interior values and 2 boundary values.  
At each iteration, it replaces each interior value with the average of its 2 neighbor values, 

 
Figure 11.  A 2D relaxation replaces, on each iteration, all interior values by the average their two nearest 
neighbors. 
 
The code for computing a 2D relaxation with a single-phase barrier is shown below.  
Here, we assume that we have t  threads, each of which is responsible for computing the 
relaxation of n/t  values. 
 
 1 double *val, *new;               // Hold n value s 
 2 int n;                           // Number of in terior values 
 3 int t;                           // Number of th reads 
 4 int iterations                   // Number of it erations to perform 
 5       
 6 thread_main(int index)  
 7 {    
 8    int n_per_thread = n / t; 
 9    int start = index * n_per_thread; 
10     
11    for (int i=0; i<iterations, i++) 
12    { 
13       // Update values 
14       for (int j=start; j<start+n_per_thread; j+ +) 
15       { 
16          new[j] = (val[j-1] + val[j+1]) / 2.0;   // Compute average    
17       } 
 
18       swap(new, val); 
19       // Synchronize  
20       barrier(); 
21    } 
22 }   
 

With a split-phase barrier, the main routine is changed as follows: 
 
 6 thread_main(int index)  
 7 {    
 8    int n_per_thread = n / t; 
 9    int start = index * n_per_thread; 
10  
11    for (int i=0; i<iterations, i++) 
12    { 
13       // Update local boundary values 
14       int j = start; 
15       val[j] = (val[j-1] + val[j+1]) / 2.0; 

0.00 0.34 0.21 0.86 0.65 0.11 0.43 0.97 0.51 1.00 

n = 8  

boundary value interior values boundary value 



16       j = start+n_pre_thread -1; 
17       val[j] = (val[j-1] + val[j+1]) / 2.0; 
18 
19       // Start barrier 
20       barrier.arrived(); 
21     
22       // Update local interior values 
23       for (j=start+1; j<start+n_per_thread-1; j+ +) 
24       { 
25          new[j] = (val[j-1] + val[j+1]) / 2.0;   // Compute average 
26       } 
27       swap(new, val); 
28 
29       // Complete barrier  
30       barrier.wait(); 
31    } 
32 } 
 

The code to implement the split-phase barrier seems straightforward enough.  As shown 
below, we can implement a Barrier class that keeps a counter of the number of threads 
that should arrive at the barrier.  To initiate the synchronization, each thread calls the 
arrived()  routine, which increments the counter.  The last thread to arrive at the 
barrier (line 30) then signals all waiters to wakeup and resume execution; the last thread 
also sets the counter to 0 in preparation for the next use of the barrier.  To complete the 
synchronization, the wait()  routine checks to see if the counter is non-zero, in which 
case it waits for the last thread to arrive.  Of course, a lock is used to provide mutual 
exclusion, and a condition variable is used to provide synchronization. 
 
 1 class Barrier  
 2 { 
 3    int nThreads;                 // Number of th reads 
 4    int count;                    // Number of th reads participating 
 5    pthread_mutex_t lock;  
 
 6    pthread_cond_t all_here; 
 7 public:    
 8    Barrier(int t); 
 9    ~Barrier(void); 
10    void arrived(void);          // Initiate a ba rrier 
11    int done(void);              // Check for com pletion 
12    void wait(void);             // Wait for comp letion 
13 } 
14    
15 int Barrier::done(void) 
16 {           
17    int rval; 
18    pthread_mutex_lock(&lock);   
19     
20    rval = !count;               // Done if the c ount is zero 
21     
22    pthread_mutex_unlock(&unlock);  
23    return rval; 
24 } 
25  

Deleted: 31



26 void Barrier::arrived(void) 
27 { 
28    pthread_mutex_lock(&lock); 
29    count++                      // Another threa d has arrived 
30     
31    // If last thread, then wake up any waiters 
32    if (count==nThreads) 
33    { 
34       count = 0; 
35       pthread_cond_broadcast (&all_here); 
36    } 
37     
38    pthread_mutex_unlock(&lock); 
39 } 
40 
41 void Barrier::wait(void) 
42 { 
43    pthread_mutex_lock(&lock); 
44 
45    // If not done, then wait 
46    if (count != 0) 
47    { 
48       pthread_cond_wait(&all_here, &lock); 
49    } 
50 
51    pthread_mutex_lock(&lock); 
52 } 
 

Unfortunately, the code presented above does not work correctly!  In particular, consider 
an execution with two threads and two iterations, as shown in Figure 12.  Initially, the 
counter is 0, and Thread 0’s arrival increments the value to 1.  Thread 1’s arrival 
increments the counter to 2, and because Thread 1 is the last thread to arrive at the 
barrier, it resets the counter to 0 and wakes up any waiting threads, of which there are 
none.  The problem arises when Thread 1 gets ahead of Thread 0 and executes its next 
iteration—and hence its next calls to arrive()  and wait() —before Thread 0 invokes 
wait()  for its first iteration.  In this case, Thread 1 will increment the counter to 1, and 
when Thread 0 arrives at the wait, it will wait block.  At this point, Thread 0 is blocked 
waiting for the completion of the barrier in the first iteration, while Thread 1 is blocked 
waiting for the completion of the second iteration, resulting in deadlock. Of course, the 
first barrier has completed, but Thread 0 is unaware of this important fact. 
 

 
Figure 12.  Deadlock with our initial implementation of a split-phase barrier. 
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Of course, we seem to have become quite unlucky to have Thread 0 execute so slowly 
relative to Thread 1, but because our barrier needs to work in all cases, we need to handle 
this race condition. 
 
The problem in Figure 12 occurs because Thread 0 was looking at the state of the counter 
for the wrong invocation of the barrier.  A solution then is to keep track of the current 
phase of the barrier.  In particular, the arrived()  method returns a phase number, 
which is then passed to the done()  and wait()  methods.  The correct code is shown 
below. 
 
 1 class Barrier  
 2 { 
 3    int nThreads;                 // Number of th reads 
 4    int count;                    // Number of th reads participating 
 5    int phase;                    // Phase # of t his barrier 
 6    pthread_mutex_t lock;  
 7    pthread_cond_t all_here; 
 8 public:    
 9    Barrier(int t); 
10    ~Barrier(void); 
11    void arrived(void);          // Initiate a ba rrier 
12    int done(int p);             // Check for com pletion of phase p  
13    void wait(int p);            // Wait for comp letion of phase p 
13 } 
14    
15 int Barrier::done(int p) 
16 {           
17    int rval; 
18    pthread_mutex_lock(&lock); 
19 
20    rval = (phase != p)          // Done if the p hase # has changed 
21     
22    pthread_mutex_unlock(&unlock);  
23    return rval; 
24 } 
25  
26 void Barrier::arrived(void) 
26 { 
27    int p; 
28    pthread_mutex_lock(&lock); 
29     
30    p = phase;                   // Get phase num ber 
31    count++                      // Another threa d has arrived 
32     
33    // If last thread, then wake up any waiters, go to next phase 
34    if (count==nThreads) 
35    { 
36       count = 0; 
37       pthread_cond_broadcast (&all_here); 
38       phase = 1 – phase; 
39    } 
40     
41    pthread_mutex_unlock(&lock); 
42    return p; 



43 } 
44 
45 void Barrier::wait(int p) 
46 { 
47    pthread_mutex_lock(&lock); 
48 
49    // If not done, then wait 
50    while (p == phase) 
51    { 
52       pthread_cond_wait(&all_here, &lock); 
53    } 
54 
55    pthread_mutex_lock(&lock); 
56 } 

 
Since the interface to the barrier routines have changed, we need to modify our relaxation 
code as shown below. 
 
 6 thread_main(int index)  
 7 {    
 8    int n_per_thread = n / t; 
 9    int start = index * n_per_thread; 
10    int phase; 
11  
12    for (int i=0; i<iterations, i++) 
13    { 
14       // Update local boundary values 
15       int j = start; 
16       val[j] = (val[j-1] + val[j+1]) / 2.0; 
17       j = start+n_pre_thread -1; 
18       val[j] = (val[j-1] + val[j+1]) / 2.0; 
19 
20       // Start barrier 
21       phase = barrier.arrived(); 
22     
23       // Update local interior values 
24       for (j=start+1; j<start+n_per_thread-1; j+ +) 
25       { 
26          new[j] = (val[j-1] + val[j+1]) / 2.0;   // Compute average 
27       } 
28       swap(new, val); 
29 
30       // Complete barrier  
31       barrier.wait(phase); 
32    } 
33 } 

 
With this new barrier implementation, the situation in Figure 12 no longer results in 
deadlock.  As depicted in Figure 13, Thread 0’s invocation of wait(0)  explicitly waits 
for the completion of the first invocation of the barrier, so when it executes line 50 in the 
wait()  routine, it falls out of the while loop and never calls 
pthread_cond_wait().   Thus, deadlock is avoided. 



 
Figure 13.  Deadlock does not occur with our new split-phase barrier. 
 

 
Figure 14.  Performance benefit of split-phase barrier on a Sun E4000. n=10,000,000, 10 iterations. 

 

Java Threads 
 
[Discussion of Java threads and a larger discussion of hiding concurrency inside of 
libraries.   

• Nice model:  explicit and convenient support for some common cases, but 
provides the freedom to use lower-level locks and condition variables where 
necessary.  Can also hide concurrency inside of specific classes. 

• Synchronized methods and synchronized classes 
• Wait() and Notify() 

 
Can we come up with examples where modular decisions about locking and 
synchronization are sub-optimal?  In particular, we need examples where the context in 
which the data structure is used affects the synchronization policies.] 
 

Critique 
 
[What’s good about threads.  What’s bad about threads.] 
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Exercises 
 

1. Our bounded buffer example uses a single mutex to protect both the nonempty  
and nonfull  condition variables.  Could we instead use one mutex for each 
condition variable?  What are the tradeoffs? 

  
A: Yes, but this would not be a good tradeoff because both the producer and 
consumer access both condition variables, so both routines would have to acquire 
both locks instead of just one lock.  Thus, there is added locking overhead but no 
greater concurrency. 
 

2. The pthread_cond_wait() routine takes the address of the protecting mutex as a 
parameter so that the routine can atomically block the waiting thread and release 
the lock that is held by the waiting thread.  Explain why these two operations 
must be performed atomically. 
 
A: If the two operations are not atomic, there are two cases: either (1) the thread is 
blocked first or (2) the lock is released first.  In case (1), we have deadlock.  In 
case (2), the code that blocks the waiting thread must first acquire the lock so that 
it knows that it is the only thread that is manipulating the queues associated with 
the condition variable, so the solution is possible but increases the latency of the 
operation.  [Perhaps need to think about this answer some more.] 

 
 

 
3.  
 
 

Shared virtual memory.   Why can’t threads-based programs execute on 
machines that do not support shared memory?  Why can’t we use software to 
provide a virtually shared address space on top of such machines?  This question 
was heavily studied in the 1980’s and 1990’s.  The basic issue is that the Shared 
Virtual Memory system needs to handle all data movement, and it is difficult to 
do this efficiently without knowledge of the application’s sharing behavior.  In 
particular, there is a tradeoff regarding the granularity of sharing:  Large units of 
sharing can amortize inter-processor communication costs, at the expense of false 
sharing.  Small units of sharing reduce false sharing but increase the overhead of 
moving data.  In general, we’d ideally like the shared virtual memory system’s 
granularity of sharing to match the application’s logical granularity of sharing.  
Of course, even if the underlying shared virtual memory system were extremely 
efficient, there is still the question of whether threads-based programming is the 
right programming model. 
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