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Chapter 3: Understanding Parallelism  

Introduction 
The advantages of parallelism have been understood since Babbage’s attempts to build a 
mechanical computer. Almost from the beginning of electronic computation parallel 
hardware has been used in the implementation of sequential computers. Efforts to build 
true parallel computers began in the 1970’s and have continued at an accelerating pace, 
driven by advances in silicon technology. Industrial and academic researchers have 
studied every imaginable aspect of parallel computation. There is much to learn, and it 
cannot all be presented in complete detail in a single chapter. So, we begin with an 
informal tour of almost the entire parallel landscape, knowing that many sights will 
demand further attention in later chapters. For now, it suffices to gain an appreciation of 
the opportunities and challenges of parallel computation. 
 
We look at parallelism from different perspectives. The first is performance, since 
improving performance is the point of parallel computation. The second perspective 
concerns the structural features of an algorithm that contribute to or hinder performance. 
Finally, we discuss general parallel problem solving approaches.   

Opportunities For Performance Improvement 
As the add-a-vector-of-numbers example of Chapter 1 indicates, programs can embody 
different amounts of parallelism despite requiring the same amount of work (in that case 
the same number of additions). The naïve summation loop produced a sequential 
specification, which if executed as specified, requires O(n) time because no provision 
was made for other processes to contribute to the solution. The tree summation was 
described in a way that allows sub-computations to be performed simultaneously, which 
with sufficient processing capacity, would lead to an O(log2  n) time execution. Is this the 
best solution available? What limitations might prevent the best performance? Are there 
opportunities that are not being exploited? We discuss such issues in this section.  
 

Parallelism vs. Performance 
Ideally, a problem that takes T time to execute on a single processor can be solved in T/P 
time if we can formulate a solution to the problem that exhibits P-fold parallelism.  Thus, 
it is tempting to think that our goal is simply to maximize parallelism, but this is not true. 
 
Consider again the summation of Chapter 1 chapter.  For n values, we maximize 
parallelism by using P=n/2 processors, which allows us in each step to perform all pair-
wise additions simultaneously.  The total algorithm takes O(log2 n) time using P 
processors.   

Inherently Sequential. There are computations that are inherently sequential, meaning that 
all algorithms to solve them have limited parallelism. One such computation is the circuit 
value problem, which takes a circuit specification over logical operators OR, AND and NOT 
taking m inputs, and an m-length binary sequence, and evaluates the circuit on the input 
sequence.  
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Now consider a variant of the algorithm, which we call the Schwartz algorithm. It makes 
each processor responsible for log2 n data items instead of 2 items.  (In Figure 3.1, the 
leaves, which represent data stored on the parent processor, are a total of log2 n items.)  
The idea is that because the height of the summation tree is log2 n, the tree height defines 
the computation time; by beginning with each processor finding the sum of log2 n local 
elements, the execution time is only doubled over the naïve solution. That is, in 
essentially the same time a significantly larger problem can be solved. 
 
Because we are looking at this idea somewhat “backwards,” let’s put it into numerical 
terms. Adding a 1000 items using the original tree-based summation takes 10 steps (log2 
1000) using 500 threads of concurrency.  If each leaf, rather than being a singleton, were 
a sequence of 10 items, then a 10,000 item summation could be performed by the same 
number of threads in 28 steps (9 for each local sum, and 10 to combine them). Using the 
original summation solution would have required 5,000 threads of concurrency and 
completed the task in 14 steps. Often, the amount of available parallelism is very small 
compared to the amount of data, making the idea very attractive. 
 
Schwartz’s algorithm shows that trying to maximize parallelism is not always smart. In 
our original algorithm to process nlog2 n data, we would use P= (n log2 n)/2 processors, 
and we would get a running time of O(log2 (nlog2 n)) = O(log2 n + loglog2 n) time. In 
essence, we use a larger tree having greater depth with the original algorithm. Schwartz’s 
algorithm is not only a simple way to see that maximizing parallelism is not always 
smart, but it is an excellent solution technique. We will apply it often in Chapter 4. 
 

 
Figure 3.1. Schwartz’s approach to the summation computation. Processing nodes are indicated by boxes; 
the leaves each represent O(log2 n) items. 
 
Our discussion of Schwartz's algorithm makes two points.  First, parallelism alone is not 
the goal.  Instead, we need to consider the resources used to exploit this parallelism.  
Second, when performance is the goal, we need to understand what performance means.  
The next two sections describe these two topics in turn. 
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Threads and Processes 
To help us reason about the resources needed to exploit parallelism, we will use two 
common abstractions for encapsulating resources—threads and processes. 
 
A thread refers to a thread of control, logically consisting of program code, a program 
counter, a call stack, and some modest amount of thread-specific data including a set of 
general purpose registers.  Threads share access to the memory, so threads can 
communicate with other threads by reading from or writing to memory that is visible to 
them all. (Threads also share access to the file system.)  Programming with threads is 
known as thread-based parallel programming or shared memory parallel programming.  
 
A process is a thread of control that has its own private address space. When multiple 
processes execute concurrently, they require some mechanism for communicating with 
each other, since they do not share memory. One cumbersome mechanism might be to 
communicate through the file system, but a more direct approach is to send messages 
from one process to another.  Parallel programming with processes is often referred to as 
message passing parallel programming or non-shared memory parallel programming.  A 
key issue in message passing parallel programming is problem decomposition, since 
portions of the computation’s data structures must be allocated to the separate process 
memories, that is, they usually cannot be wholly replicated within each process. 
 
In addition to the obvious difference between threads and processes—the distinction 
between shared and separate memory spaces—there are also distinctions of “weight” and 
“agility.” Threads are usually seen as “lighter weight,” being created and completing 
dynamically throughout a computation. Processes, by contrast, are “heavier weight,” 
taking more time to setup and tear down. Though created dynamically, usually in 
response to input conditions, they often persist throughout most or all of a computation. 
Processes can “come and go,” but with the (memory) setup time being much greater, they 
tend to be longer lived. 

Latency and Bandwidth 
Since performance is the goal, it is important to agree upon what performance means.  
We often speak of speeding up a computation, but realize that there are two possible 
goals: latency and bandwidth. 
 
Latency.  Latency refers to the amount of time it takes to complete a given piece of work.   
 
Bandwidth.  Bandwidth instead refers to the amount of work that can be completed per 
unit time. 
 
Thus, latency is measured in terms of time or some derivative of time, such as clock 
cycles.  Bandwidth is measured in terms of work per unit time.  The distinction between 
latency and bandwidth is important because they represent different issues with different 
solutions.  For example, consider a web server that returns web pages.  The web server’s 
bandwidth can be increased by using multiple processors that allow multiple requests to 
be served simultaneously, but such parallelism does not reduce the latency of any 
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individual request.  Alternatively, a web server could employ multiple physically 
distributed caches that can both decrease the latency of individual requests—for clients 
that are close to one of the caches—and increase the server’s overall bandwidth.  In many 
cases, latency can be reduced at the cost of increased bandwidth.  For example, to hide 
long latencies to memory, modern microprocessors often perform data prefetching to 
speculatively bring data to caches, where its latency to processors is lower.  However, 
because prefetching invariably brings in some data that is not used, it increases the 
demand for memory system bandwidth.  This idea of trading bandwidth for latency is not 
new:  The Multics operating system used the idea in the 1960s when it introduced the 
notion of context switching to hide the latency of expensive disk I/O. 
 
The use of latency and bandwidth is common in some, but not all, parallel computation 
subcommunities, so our use of it throughout this book somewhat broadens its application. 
We will use latency to refer to the length of execution time or the duration of the 
computation, and bandwidth to refer to the capacity of a processor, its instruction 
execution rate.  We have slightly expanded the scope of latency and bandwidth to unify 
terminology. There should be little confusion when encountering alternate terms in the 
literature.    

Sources of Reduced Performance 
While we ideally would hope that P processors could speed up a computation by a factor 
of P, there are many reasons why this might not be the case.  We explore these factors in 
this section. 
 
Overhead. Any cost that is incurred in the parallel solution but not in the serial solution is 
considered overhead.  There is overhead in setting up threads and processes to execute 
concurrently and also some for tearing them down, as the following schematic indicates.  

 
Because memory allocation and its initialization are expensive, processes incur greater 
setup overhead than threads. After the first process is set up, all subsequent thread and 
process setups incur overhead not present in a sequential computation. These costs must 
be charged against the benefits of parallelism; see the section, Measuring Performance 
below.  
 
Communication. Communication among threads and processes is a major component of 
overhead. Since a sequential computation doesn’t have to (cannot!) communicate, all 
communication is a charge against the benefits of parallelism. These costs have been 
described in detail in Chapter 2, and though they are different depending on the 
communication mechanism chosen—shared memory, 1-sided or message passing—they 
are all substantial compared to a local memory reference. To be clear, there is always a 
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communication charge unless the data is local; the components of the charge are given in 
Table 3.1. 
 
Synchronization.  Synchronization is a form of overhead that arises when one thread or 
process must wait for another.  Synchronization is implicit in many forms of message 
passing, while synchronization is often explicit when programming with threads. 
 
 
Table 3.1: Sources of communication overhead by communication mechanism. 

Mechanism Components of Communication Cost 
Shared Memory Transmission delay, coherency operations, reference protection, 

unavailability 
1-sided Transmission delay, reference protection, unavailability 
Message Passing Transmission delay, data marshalling, message formation, 

demarshalling, unavailability 
   
Contention.  Contention is the degradation of system throughput caused by competition 
for a shared resource.  For example, we saw in Chapter 1 how lock contention can reduce 
network throughput by creating excessive network traffic, and we saw how false sharing 
can degrade performance by causing data values to bounce back and forth among 
different caches. 
 
Idle Time. When we conceptualize a parallel computation, we imagine that the 
processors are all working all of the time, but they might not be. The main reason is that a 
process or thread cannot proceed because there is no work to do or because the needed 
data is not yet available. As the next section on Dependences demonstrates, idle time 
manifests itself in many ways.  
 
Load Imbalance.  One common source of idle time is an uneven distribution of work to 
processors, which is known as load imbalance.  For example, the Schwartz algorithm has 
an advantage over the standard prefix summation because the former keeps all processors 
busy with useful work much of the time, thereby allowing larger (by a factor of log2 n) 
problems to be solved with the same number of processors.  
 
Balancing load is straightforward for easy tasks like summation, but most computations 
are much more complex. We sometimes display the allocation of array computation, 
especially for the process model, by showing the array and its decomposition among 
processors; Figure 3.2 shows a schematic example for the LU Decomposition 
computation, a widely used algorithm for solving systems of linear equations. As shown 
in Figure 3.2(a) the LU computation builds a lower (black) and upper (white) triangle 
beginning at left; the area of the computation is shown in gray, and after every iteration 
of the computation one row and one column are added to the completed portion of the 
array. Figure 3.2(b) shows sixteen processors logically arranged as a grid, and (c) shows 
how the array might be allocated to processor memories in a process model of the 
computation. Though the allocation of data is balanced, i.e. each processor is assigned 
roughly the same number of array elements, the work is not balanced. For example, after 
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the first 25% of the rows and columns have been added to the result arrays, there is no 
more work to do for the seven processors on the left and top sides of the array. That is, 
nearly half of the processors will be idle after one quarter of the rows/columns have been 
processed. Though it is true that the amount of work per iteration diminishes as the active 
(gray) portion of the array shrinks, this allocation of work is still quite unbalanced. 
Indeed, the last 25% of the rows/columns are computed by processor PF. Or putting it 
another way, the last 25% of the rows/columns are computed sequentially. 
 
Redundant Computation. P processors will not speed up a sequential computation by a 
factor of P if the parallel version of the computation requires more instructions. But extra 
instructions are almost always required. For example, if the sequential computation 
requires the program to loop k times, and if the parallel computation also requires each 
process to loop k times, then the loop overhead instructions—initialization, incrementing, 
testing for termination—are not sped up by parallelism. As another example, recall the 
example of generating a random number from Chapter 2; although it was smart to repeat 
the computation to avoid non-local communication, having each process generate its own 
random number means there will be no parallel improvement of that portion of the 
computation. Of course, the programmer’s goal is to make most of the computation non-
redundant. 
 

(a)       (b)    (c) 
Figure 3.2: Schematic diagram of (a) the LU Decomposition algorithm, (b) sixteen processors (indexed in 
hexadecimal) arranged in a logical grid, and (c) the allocation of the array elements to the processors, e.g. 
processor P0 is assigned that part of the array in the upper left that has completed. 
 

Parallel Structure 
By the end of the chapter we will conclude that the ideal parallel computation is one that 
has large blocks of independent computation that can be executed concurrently. With 
separate parts of the problem being performed on different processors, there will be little 
idle time and the solution will be found fast. To prepare to embrace “blocks of 
independent” computation, we must understand what “dependent” computation is. That 
is, our ideal case will be formed from normal computation in which we avoid certain 
performance limiting characteristics of programming. In this section we discuss such 
features in terms of the concept of dependences. 

Dependences  
A dependence is an ordering relationship between two computations. Dependences can 
arise in different ways in different contexts.  For example, a dependence can occur 
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between two processes when one process waits for a message to arrive from another 
process.  Dependences can also be defined in terms of read and write operations.  
Consider a program that requires that a particular memory location be read after an 
update (write) to the same memory location; as an example, recall the count variable in 
Figure 1.7.  In this case, there is a dependence between the write operation and the read 
operation.  If the order of the two operations is swapped, the value read would not reflect 
the update, so the dependence would be violated by the swap and the semantics of the 
program would be altered. Any execution ordering that obeys all dependences will 
produce the same result as the originally specified program.  Thus, the notion of 
dependences allows us to distinguish those execution orderings that are necessary for 
preserving program correctness from those that are not. 
 
Dependences provide a general way to describe limits to parallelism, so they are not only 
useful for reasoning about correctness, but they also provide a way to reason about 
potential sources of performance loss.  For example, a data dependence that crosses a 
thread or process boundary creates a need to synchronize or communicate between the 
two threads or processes.  By knowing the data dependence exists we can understand the 
consequences for parallelism even if we don’t know what aspect of the computation 
caused the ordering relationship in the first place.  To make this point more concrete, let 
us consider a specific type of dependence, known as data dependences. 
 
Data dependence.  A data dependence is an ordering on a pair of memory operations that 
must be preserved to maintain correctness.  There are three kinds of data dependences: 

• Flow dependence:  read after write  
• Anti dependence:  write after read 
• Output dependence:  write after write 

 
Flow dependences are also called true dependences because they represent fundamental 
orderings of memory operations.  By contrast, anti and output dependences are 
collectively referred to as false dependences because they arise from the re-use of 
memory rather than from a fundamental ordering of the operations.   
 
To understand the difference between true and false dependences, consider the following 
program sequence: 
 

1. sum = a + 1; 
2. first_term = sum * scale1; 
3. sum = b + 1; 
4. second_term = sum * scale2; 

 
There are flow dependences (via sum) relating lines 1 and 2, and there are flow 
dependences relating lines 3 and 4. Further, there is an anti dependence on sum between 
line 2 and line 3. This anti dependence prevents the first pair of statements from 
executing concurrently with the second pair.  But we see that by renaming sum in the 
first pair of statements as first_sum and by renaming the sum in the second pair of 
statements as second_sum,  
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1. first_sum = a + 1; 
2. first_term = first_sum * scale1; 
3. second_sum = b + 1; 
4. second_term = second_sum * scale2; 

 
the pairs can execute concurrently.  Thus, at the cost of increasing the memory usage by a 
word, we have increased the program’s concurrency.  By contrast, flow dependences 
cannot be removed by renaming variables.  It may appear that the flow dependences can 
be removed simply by substituting for sum in the second and fourth lines,  
 

1. first_term = (a + 1) * scale1; 
2. second_term = (b + 1) * scale2; 

 
but this doesn’t eliminate the dependence because no matter how it is expressed the 
addition must precede the multiplication for both terms. The flow—the write of the sum 
(possibly to an internal register) to the read as an operand (possibly from an internal 
register)—remains. 

Dependences Limit Parallelism 
To understand how dependences limit parallelism, recall the following code from Chapter 
1, which specifies the summation of a set of n numbers: 
 

sum = 0 
for (i=0; i<n; i++) { 
    sum += x[i];  
} 

 
This program, which we described as sequential, is abstracted in Figure 3.3(a); the more 
parallel tree solution is shown in 3.3(b).  In the figure, an edge not involving a leaf 
represents a flow dependence, because the computation of the lower function will write 
into memory, and the upper function will read that memory. The key difference between 
the two algorithms is now evident. In Figure 3.3(a) the sequential solution defines a 
sequence of flow dependences; they are true dependences whose ordering must be 
respected. By contrast Figure 3.3(b) specifies shorter chains of flow dependences, 
imposing fewer ordering constraints and permitting more concurrency. In effect, when 
we gave the C specification for adding the numbers, we were specifying more than just 
which numbers to add. (We needed the extra fact of associativity of addition to know that 
the two solutions produce the same result.) 
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Figure 3.3. Schematic diagram of sequential and tree-based addition algorithms. 
 
The point is that care must be exercised, when programming, to avoid introducing 
dependences that do not matter to the computation, because such dependences will 
unnecessarily limit parallelism. (Knowing that f() is addition allows powerful compiler 
techniques to transform this code into a more parallel form, but such technology has a 
limited scope of application.)  

Granularity 
A key concept for managing the constraints imposed by dependences is the notion of 
granularity. We identify and explain two closely related ways in which this term is used: 

• Granularity of work 
• Granularity of interactions 

Notice that grain size is usually described using terms coarse and fine, though large and 
small are also used. 
 
Granularity of Interaction. Interaction measures the frequency of dependences crossing 
the boundaries of threads or processes, where frequency is measured in number of useful 
instructions separating the interactions. Thus, coarse grain refers to threads and processes 
that only infrequently depend on data or events in other threads or processes, and 
conversely, fine grain interactions are those that occur often. As mentioned earlier 
dependences that cross thread or process boundaries introduce communication with its 
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associated overhead. Further, frequent interactions imply that waiting time can 
accumulate as threads and processes stall. For threads sharing through memory the cost 
for communicating is lower and the amount of work between interactions may be similar, 
suggesting that fine grain interactions may be worthwhile, especially if used in 
abundance. Because the overhead of message passing is typically large, processes work 
best with coarse grain interactions.  
 
Granularity of Work. Work is usually measured by such things as number of instructions 
executed, or number of data values assigned to a thread or process. Accordingly, a coarse 
grain computation has a large time and/or memory footprint. Conversely, a fine grain 
computation has only few values processed locally and contributes mainly by being used 
in large quantity. Consistent with earlier points, threads often support fine grain 
parallelism and processes support course grained parallelism. Other semantic nuances 
include the sense that fine grain computations are more flexible, being available for 
smaller opportunities for parallelism. By contrast, coarse grain computations can provide 
better opportunities for amortizing overhead and hiding latency, as we discuss below.  
 
Applying Granularity Concepts. The key point is that no fixed granularity is best for all 
situations.  Instead, it is important to match the granularity of the computation with both 
the underlying hardware’s available resources and the solution’s particular needs.  For 
example, the original prefix summation described in Chapter 1 was a fine grain 
computation involving a small amount of work and fine grain interactions with the 
adjacent threads. The Schwartz variant of the computation increased the grain size at the 
start of the computation, performing much more work before communicating. This larger 
granularity led to better performance. Notice that the fine grain interaction remains in the 
“accumulation” part of the Schwartz computation. To “coarsen” this part of the 
computation, the degree of the tree must be increased, where the degree, presently 2, is 
the number of children of each parent. For other problems a coarse granularity might lead 
to poor load balance.  
 
In the limit the coarsest computations involve huge amounts of computation and no 
interaction. SETI@home is such an example. Subproblems are distributed to personal 
computers and solved entirely locally; the only communication comes at the end to report 
the results. In this setting the parallel computer can be an Internet-connected collection of 
PCs. Such super-coarse grain is essential because of the huge cost of communication.  
 
At the other end of the spectrum are threads running on Chip Multiprocessors (CMPs) 
that provide low latency communication among processors that reside on the same chip, 
making fine grain threads practical. 
 
Most parallel computation falls between these extremes.  

Locality 
A concept that is closely related to granularity is that of locality.  Computations can 
exhibit both temporal locality—memory references that are clustered in time—and spatial 
locality—memory references that are clustered by address.  Recall that locality is an 
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important phenomenon in computing, being the reason why caches work, so improving 
locality in a program is always a good thing.  Of course, the processors of parallel 
machines also use caches, so all of the benefits of temporal and spatial locality are 
available. Keeping references local to a thread or process ensures that these benefits will 
be realized. Indeed, algorithms like the Schwartz approach that operate on blocks of data 
rather than single items, virtually always exploit spatial locality, and are preferred. 
 
In the parallel context, locality has the added benefit of minimizing dependences among 
threads or processes, thereby reducing overhead and contention. As outlined above, non-
local references imply some form of data communication, which is pure overhead that 
limits parallel performance. Furthermore, by making non-local references, the threads or 
processes will often contend with each other somewhere in the execution, either colliding 
on the shared variable in the case of threads or colliding in the interconnection network in 
the case of processes. Thus, non-locality has the potential of introducing two kinds of 
overhead. 
 
A simple example makes both parts clear: Consider a set of threads Counting 3s in a large 
set of numbers using the scalable algorithm (Try 4 in Chapter 1); by working on a 
contiguous block of memory, a thread exploits spatial locality; by making the 
intermediate additions to a local accumulation variable, it benefits from temporal locality. 
Moreover, by combining with the global variable at the end rather than with each 
addition, it reduces the number of dependences among threads until the communication is 
absolutely necessary to achieve the final result.  With the reduced number of 
dependences, locality is improved while overhead and contention are reduced.  Note that 
this use of a local accumulation variable is another example of using a small amount of 
extra memory to break false dependences. 
 

Forms of Parallelism 
Though we have distinguished between thread-based parallelism and process-based 
parallelism, we have done so to focus on implementation differences, such as granularity 
and communication overhead. Now we are concerned with understanding where the 
parallelism can be found at the algorithmic level. We recognize three general types: 

• data parallelism 
• task parallelism 
• pipelining 

We now consider each, realizing that there is overlap among the categories. 

Data Parallelism 
Data parallelism refers to a broad category of parallelism in which the same computation 
is applied to multiple data items, so the amount of available parallelism is proportional to 
the input size, leading to tremendous amounts of potential parallelism.  For example, the 
first chapter’s “counting the 3s” computation is a data parallel computation: Each element 
must be tested equal to 3, which is a fully parallel operation. Once the individual 
outcomes are known, the number of “trues” can be accumulated using the tree summation 
technique. Notice that the tree add applies to all result elements only for its initial step 
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and has logarithmically diminishing parallelism thereafter. Still, the parallelism is 
generally proportional to the input size, so global sum is considered to be a data parallel 
operation.  
 
As we observed in our discussion of locality and granularity above, the availability of full 
concurrency does not imply that the best algorithms will use it all. The Schwartz 
algorithm showed that foregoing concurrency to increase locality and reduce 
dependences with other threads produces a better result. Indeed, one of the best features 
of data parallelism is that it gives programmers flexibility in writing scalable parallel 
programs: The potential parallelism scales with the size of the input, and since, usually, n 
>> P, programs must be designed to process more data per processor than one item. That 
is, the program should be able to accommodate whatever parallelism is available. (It has 
been claimed that writing programs as if n == P leads to effective programs because 
processors can be virtualized, i.e. the physical processors can simulate any number of 
logical processors, leading to code—it’s claimed—that adapts well to any number of 
processors. This is not our experience. Virtualizing processors leads to extremely fine 
grain specifications that miss both the benefits of locality and the “economies of scale” of 
processing a batch of data. We prefer solutions like Schwartz’s that explicitly handle 
batches of data.)   

Task Parallelism 
The broad classification of task parallelism applies to solutions where parallelism is 
organized around the functions to be performed rather than around the data. The term 
“task” in this case is not to be contrasted necessarily to “thread” as we normally do, 
because the emphasis is on the functional decomposition, which could be implemented 
with either tasks or threads.  
 
For example, a client-server system employs task parallelism by assigning some tasks the 
job of making requests and others the job of servicing requests.  As another example, the 
sub-expressions of a functional program can be evaluated in any order, so functional 
programs naturally exhibit large amounts of task parallelism.  Though it is common for 
task parallel computations to apply an operation to similar data, as data parallel 
computations do, the task parallel approach becomes desirable when the context in which 
the data is evaluate matters significantly.  
 
The challenges to task parallelism are to balance the work and to insure that all the work 
contributes to the result.  In many cases, task parallelism does not scale as well as data 
parallelism. 

Pipelining 
Pipelined parallelism is a special form of task parallelism where a problem is divided into 
sub-problems, which can each be operated on independently, and where there are 
multiple problem instances to be solved.  At any point in time, multiple processes can be 
busy, each working on a sub-problem of a different problem instance.  As is familiar with 
bucket brigades, assembly lines, and pipelined processors, the solution is to run the 
operations concurrently, but on different problem instances. As the pipeline fills and 
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drains, there is less than full parallelism, as the opportunities for concurrency increase 
(fill) and then diminish (drain). A more crucial issue is the balancing of work of each 
operation. For pipelining to be maximally effective, the operations (stages) must 
complete in the same amount of time. Pipeline performance is determined—even for 
pipelines that are not clocked—by the longest running stage. Balancing the stages equals 
out the work, allowing all stages to process at the maximum prevailing rate. 
 
Though pipelining is frequently thought of as a parallelism approach for cases defined by 
only a fixed length sequence of operations, it arises more generally. The number of 
(potential) stages is often determined by the input size. In such cases data dependences 
entail receiving input value(s) from one or more neighbors, computing, and then yielding 
the result(s) to opposite neighbor(s). The schematic in Figure 3.4 illustrates the idea. 
Clearly, in addition to maximizing the use of the processors, such computations are 
challenging in terms of avoiding stalls caused by fine grain interactions.   
 

Figure 3.4. Schematic of a 2-dimensional pipelined computation, showing computation (boxes) and data 
flow (arrows). External data is presumed to be initially present; on the first step only the upper-left 
computation is enabled. 
 

Summary 
In this chapter we have introduced many concepts briefly. The goal has been to become 
aware of opportunities and challenges to parallel programming. Because the concepts 
interact in complex ways, it is not possible to understand them completely when treated 
in isolation. Rather, we have introduced them all in a quick, albeit limited, overview of 
the issues, and have prepared ourselves for the next chapter where we will develop 
algorithms and see first hand the consequences of these complexities.    

Exercises 
1. In transactional memory systems, a thread optimistically assumes that it makes no 

references to shared data.  The transaction either commits successfully if there 
was no shared access detected, or the transaction rolls back if there was.  Identify 
the sources of performance loss in a transactional memory system, classifying 
each as overhead, contention, or idle time.  
 

2. Should contention be considered a special case of overhead?  Can there be 
contention in a single-threaded program?  Explain. 

 
3. Should idle time be considered a special case of overhead?  Can there be idle time 

in a single-threaded program?  Explain. 
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4. Does a chess program provide data parallelism or task parallelism?  

 
5. Does quicksort provide data parallelism or task parallelism? 

 
6. Describe a program whose speedup does not increase with increasing problem 

size. 
 

 

Bibliographic Notes 
 
Schwartz’s algorithm has been discovered later by theoreticians who have given it a 
different name.  [Need to look up this name.] J.T. Schwartz, "Ultracomputers", ACM 
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Chapter 4: General Algorithmic Techniques 
 
To become effective programmers, we need to learn a programming language and how to 
use it to express basic problem solving techniques like building data structures. We must 
learn how to analyze programs to determine their running time and memory usage. These 
will be topics for future chapters. For now, perhaps the most important understanding to 
acquire is the ability to “think about the computation ‘right’.”  That is, we want to think 
about solving problems in a way that matches well the languages and computers available 
to us. In this chapter we learn the ‘right’ way to think about parallel computation. 

What Is The Opposite of Sequential? 
Many researchers have claimed that the best way to think about parallel computation is to 
think about the most parallel solution imaginable assuming an unlimited number of 
processors. They acknowledge that unlimited capacity is not realistic, but—their 
argument goes—it is possible to “scale back” parts of the computation to be sequential, 
and arrive at an ideal solution.  
 
So, for example, return to the problem from Chapter 1 in which we want to count the 
number of 3s in an array A. Using the maximum parallelism approach, we expect a 
solution in which one processor initializes the count value 
 

count = 0;      Performed by p0 
 
and then processor i, assigned to the ith  data element, performs the operations 
 

if (A[i] == 3) count = count + 1;   Performed by pi 
 
Such a specification makes sense from an individual data element’s point of view, 
perhaps, but not when viewed more globally, because processors can collide when 
referencing count. Though advocates of the unlimited parallelism approach have 
addressed the issue of collisions with everything from “It’s an error” to “It’s OK, thanks 
to special (Fetch & Add) hardware,” we know from our discussion in Chapters 1 and 2 
that there are difficulties that can arise with existing parallel computers: 

• races can occur caused by the action of other processors changing count 
between the time processor pi accesses it to get its value and the time pi updates it 

• the possibility of races implies that count must be protected by a lock 
• the need for a lock implies the potential for lock contention when A contains 

many 3s and many processors attempt to update it simultaneously 
• lock contention results in lock access being serialized  
• serializing locks implies that for an array of mostly 3’s the execution time is O(n) 

regardless of the number of processors available. 
There may be different “unlimited parallelism” solutions, but this is an obvious one; it 
does not lead to a very parallel result. 
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The great body of literature on unlimited parallelism comes from a study of parallel 
models of computation collectively known as PRAMs, acronymic for Parallel Random 
Access Machines, though many other unlimited parallelism approaches have been 
invented as well. The problem with these approaches is that finding parallelism is usually 
not the difficult aspect of parallel programming. Rather—and this is our motive for 
introducing the topic here—parallel programming is generally concerned with the 
consequences of parallel threads interacting, as the bulleted items just illustrated. These 
are the dependences discussed in Chapter 3. They arise when processors must access 
shared resources and when processors contend for, and therefore must wait on, shared 
resources. Thread interaction influences performance as much as the amount of 
concurrent work embodied in a problem, often more so. To be effective parallel 
programmers, we need to focus on the right part of the problem, and that is on the 
interactions between parallel threads.   

Blocks of Independent Computation 
If dependences between interacting threads are a significant problem, then the ideal 
parallel computation must be one composed of large blocks of independent computation 
with no interactions at all. Such computations exist: SETI@home, the Search for Extra 
Terrestrial Intelligence, is typical; independent computational tasks are downloaded to 
participants’ idle PCs, computed, and the results returned to the server, which compiles 
the results. Other tasks from Monte Carlo simulations to integer factorization have these 
same features. They may be ideal, but they are not typical; nearly all parallel 
computations require that threads interact, and the amount of interaction is correlated 
with the amount of parallelism.  
 
General parallel computations, though more complicated, still benefit whenever they can 
exploit the blocks-of-independent-computation strategy. Our Count 3s solution from 
Chapter 1 used this approach. The final solution (Try 4) partitioned the array among 
several threads, allocated a local variable private_count to each thread to record 
intermediate progress, and at the end combined the local results to compute the global 
result. The application of the principle of blocks-of-independent-computation is evident. 
Further, our initial tries at solving the problem were largely aimed at neutralizing the 
consequences of thread-to-thread dependences: races were avoided with locks, contention 
was removed with the private variables, false sharing was avoided with padding, etc. And 
as the experimental data showed, the program performed. This is one example of many 
that we will see of an important principle: 
 
Guideline #1. Parallel programs are better designed when they emphasize (large) blocks 
of independent computation that minimize the interthread dependences (interactions).   
 
Though our final Count 3s result was quite satisfactory, it was not actually scalable; that 
is, capable of executing well for any amount of parallelism. True, the number of threads 
was a parameter, so if the number of parallel processors P is greater than one, then the 
solution partitions the array into blocks, and P of these can execute concurrently. It is 
fully parallel during the scan of the data array. But there is potential for lock contention 
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during the final step of combining the private_count variables. If P is not likely to 
be a large number, then any serialization due to lock contention is not likely to be a 
serious problem; if P could be large, however, lock contention could harm performance. 
So, to make the solution more scalable, we combine the private_count variables 
pairwise in a tree, using the tree addition algorithm. This solution gets good performance 
using any number of processors, though when P > n/log n, the final combining tree may 
be deeper than necessary, implying that using so many processors is not making the 
computation faster. (We discuss such tuning issues later in Chapter 5.) 
 
Guideline #2. Just as algorithms are written to be independent of the number of input 
values, n, parallel algorithms should also be written to be independent of the number of 
parallel threads, P, and be capable of improved performance using additional processors. 
 
Finally, reviewing this last version of Count 3s computation, notice that it is really just a 
simple variation of the Schwartz computation. Recall that the Schwartz algorithm was 
designed to add array elements, but testing and tallying those elements that equal 3 is a 
trivial variation. The Schwartz algorithm processes a block of elements locally, as our 
Count 3s program does. And to produce the final result the Schwartz algorithm uses a 
tree to combine the intermediate results, as our revised Count 3s solution does. Finally, 
the range of values over which P can vary is the same, as are the considerations of using 
more or fewer processors.  
 
In summary, as we create parallel algorithms, we will attempt to formulate them as 
blocks of maximally independent computation, where “maximally independent” means 
that we try to reduce the interactions (dependences) among the threads. This is a 
challenging task, and we will often find that our best attempts do not attain our 
performance goals. Fortunately, there are many techniques like Schwartz’s approach that 
give us direction and ideas for solving problems in parallel. 

Assigning Work To Processors Statically 
The basic way to assign work is to statically assign data to processors, and require each 
processor to compute on the data it “owns.”  This technique works for a wide variety of 
situations, and is the subject of this section.  This is the data parallel approach, because 
we use the data as the basis for organizing the computation. 

Basic Block Allocations 
Since our goal is to exploit locality, it follows that contiguous portions of a data structure 
should be allocated together on the same processor. (The exceptions to this thinking are 
treated below.) Thus, 1-dimensional arrays are assigned to processors in blocks of 
consecutive indices. For 2-dimensional arrays, allocating by 2-dimensional blocks, that 
is, consecutive indices in both dimensions, generally leads to efficient solutions.  The 
reason 2-dimensional blocks tend to make more sense than allocating, say, whole rows, is 
that blocks can often reduce communication. For example, for computations that rely on 
neighboring values, the so called stencil computations such as 
 

B[i,j] = (A[i-1,j] + A[i,j+1] + A[i+1,j] + A[i, j-1])/ 4.0; 
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there is a surface-to-volume advantage, as can be seen in Figure 4.1. That is, a squarish 
block of array values has the property that the elements that must be referenced by other 
processors for the stencil computation are on the edge (surface), and as the size (volume) 
of the block increases, the number of edge elements grows much more slowly, reducing 
communication costs. This small example isn’t very dramatic, but the difference for a 
32x32 block is 128 versus 2048 values referenced by (communicated to) other 
processors. For higher d-dimensional arrays, allocating as d-dimensional blocks is 
frequently used for the surface to volume advantage, too, but almost as common is to 
allocate only two of the dimensions and keep the other dimension(s) allocated locally. 
The latter choice is often the result insufficiently many processors, or extreme aspect 
ratios.    
 

   (a)     (b) 
Figure 4.1: Two allocations of a 16x16 array to 16 processors: (a) 2-dimensional blocks and (b) rows. For 
the processor with shaded values to compute a 4-nearest neighbor computation requires communication 
with other processors to transmit the hatched values. The row allocation requires twice as many values to 
be transmitted, and because of the surface to volume advantage, the blocked allocation improves as the 
number of local items increases.   
 

The Specifics of Block Layouts  
Our goal, when allocating the array’s blocks, is to balance the data assigned to each 
processor, because the work tends to be proportional to the number of data items. 
Occasionally, everything “divides perfectly,” and each processor is assigned the identical 
amount of work; and sometimes partitioning can be simplified by making the array 
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dimensions multiples of the number of processors. But more often the problem size and 
therefore the size of the arrays, r × c, is dictated by other considerations. In such cases 
there are various ways to allocate the arrays in blocks. 
 
Assume P = uv, that u does not divide r, and that v does not divide c; that is, the divisions  
 

r = a1u + e1 and e1 > 0 
c = a2v + e2 and e2 > 0 

 
have nonzero remainders. To discuss allocations, let  
 

r = a1'(u-1) + e1' and e1' > 0 
c = a2'(v-1) + e2' and e2' > 0 

 
The two most obvious schemes can be called “Direct Division” and “Ceiling-Floor,” see 
Figure 4.2: 
 

Direct Division: Allocate blocks of a1' × a2' elements to (u-1)(v-1) processors, 
allocate blocks of e1' × a2' to (v-1) processors, allocate blocks of a1' × e2' to (u-1) 
processors, and allocate a block of e1' × e2' to one processor. 
Ceiling - Floor: Allocate blocks of a1' × a2' elements to e1'e2' processors, allocate 
blocks of a1' × (a2' - 1) elements to (v - e2') processors, allocate blocks of (a1' - 1) 
× a2' to (u - e1')  processors, and allocate blocks (a1' - 1) × (a2' - 1) elements to the 
remaining (u - e1')(v - e2') processors.  

 
The allocations are the same in their most important respect, the size of the largest block, 
a1' × a2'. This means that if a computation is strictly proportional to the number of local 
data items, both schemes have the same worst case. However, the Direct Division is 
likely to have u+v-1 processors that have significantly less work to do than the others, 
and so are more likely to be idle, waiting on others to complete. Such imbalance often 
wastes parallel resources. The Ceiling - Floor allocation has the advantage that the 
number of elements in each dimension differs by only one, making the quantity of data 
assigned more balanced compared to the Direct Division approach. The work is 
distributed somewhat better. Without additional information about the characteristics of 
the problem, the Ceiling - Floor is slightly better.  
 
Sensitivity to Processor p0: Independent of which allocation is chosen, it is sensible to 
assign the minimum allocation of data to processor p0. This is because p0 is often given 
additional tasks, such as managing I/O, serving as the root of a combining tree, etc. 
(These can generally be thought of as controller functions, relative to the CTA model of 
Chapter 2.) By allocating it the least work, p0 is available to perform the additional duties.  
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   (a)      (b) 
Figure 4.2: Two array-to-processor allocations for a 13 × 13 array on 16 processors; (a) Direct Division, 
(b) Ceiling - Floor. 
 
Fluff or Halo Buffers: Computations like the 4-point nearest neighbor stencil  
 

B[i,j] = (A[i-1,j] + A[i,j+1] + A[i+1,j] + A[i, j-1])/ 4.0; 

 
require values stored on other processors. For the block allocations of the type being 
discussed Figure 4.1(a) shows that for i and j in the top row of the allocation, references 
to A[i-1,j] are off processor to the north, and similarly for the other edge elements of 
the block. Such nearest neighbor references, which are quite common in scientific 
computations, are best solved with the following approach: 
 

• get the necessary values of the adjacent array blocks from the other processors 
• store the values in in-position buffers arranged around the local data block  
• perform the computation on the (now) entirely local data values 

 
The buffers are known as fluff or halo buffers, and are allocated in their proper position 
relative to the other elements in the array block; see Figure 4.3.  
 
Several advantages recommend this approach. First, once the fluff is filled, all references 
in the computation are local. This means that the many processor-dependences implied 
by a loop performing the stencil computation over an array block have been merged into 
b dependences, if the computation references b neighboring processors. The result is a 
large block of dependence-free code to execute. Further, the statement uses the same 
index calculations for all references to A; that is, they can be performed in a single loop 
having no special edge cases. Finally, moving non-local data to the local thread at one 
time offers the opportunity (generally available) to batch the data movement; that is, the 
whole row or column of an adjacent processor, perhaps stored in one or few cache lines, 
might be moved at once. This is a significant advantage, as noted in Chapter 2, because 
typically data transmission takes to + dtb seconds to transmit d bytes, where to is overhead 
and tb is the time per byte. Batching communication saves the multiple overhead charges 
from multiple transmissions, and any additional waiting times caused by them.   
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Figure 4.3: The fluff (shaded) for an array block showing the non-local values on adjacent processors that 
must be moved to fill the fluff; once the fluff is filled, the stencil computation is entirely local. (The 
“missing corners” are not used, but they are allocated to simplify array index calculations.) 

Cyclic and Block Cyclic 
As effective as block allocations are, they are not optimal for all algorithms, because of 
load balancing considerations. For example, as mentioned in Chapter 3, the well-known 
LU decomposition algorithm begins with all rows and columns participating in the initial 
step. As the computation proceeds, however, a row and column are completed with each 
iteration, leading to the schematic shown in Figure 4.4. When all of the rows and columns 
allocated to a processor are completed, it becomes idle. In the figure, 3 of the 4 
processors are idle for half the computation. What should be done? 
 
One solution is to reallocate the data periodically during the computation, but this 
requires moving nearly all of the active values to other processors, which is considered 
extremely expensive. The more practical solution is to use a cyclic or block cyclic 
distribution. The “cyclic” idea is to assign consecutive items to processors in a round-
robin order, or as it’s often described, as if dealing out cards. Thus a cyclic allocation of 
array elements proceeds through the array in, say, row-major order, allocating elements 
to processors. Because keeping track of individual array elements is burdensome, it is 
more common to “deal out” consecutive subarrays, a strategy called block-cyclic 
allocation. 

 
Figure 4.4: Schematic diagram of the LU Decomposition algorithm block-assigned to four processors; the 
final result is a lower (black) and an upper (white) triangular matrices; active computation is gray; a column 
and row are completed and added to each result matrix, respectively, in each iteration. 
 



22 

Figure 4.5 shows a block-cyclic allocation in which consecutive array blocks are assigned 
to separate processors cyclically. The figure shows several features of block-cyclic 
allocations: A block’s dimension (called the chunk size) does not have to divide the 
array’s dimension; the block is simply truncated. Each processor receives blocks from 
throughout the array, implying that as the computation proceeds, completed portions will 
be resident on each processor, as will not-yet-completed portions. Figure 6 shows the 
schematic allocation of Figure 5 as it would appear part way through an LU-type 
computation. Notice how well the remaining work is balanced across the processors. 

 
Figure 4.5: Block-cyclic allocation of 3 × 2 blocks to a 14 × 14 array distributed to four processors 
(colors). 
 
The block-cyclic approach has the great advantage of balancing the work across the 
processors (see Figure 4.6), but this does not come without costs. The most obvious cost 
is the potential of block-cyclic allocation to complicate the algorithm. If the computation 
uses the spatial properties of an array—for example, rows—then because block-cyclic 
breaks some of these relationships, special cases may have to be added to the algorithm. 
This effect can sometimes be neutralized by picking chunk sizes to create easy-to-work-
with patterns in the allocation. Another common recommendation is to allocate relatively 
large blocks, say 64 × 64, as a means of amortizing the overhead of the special checking. 
Of course, allowing the blocks to become too large probably means that the work will be 
less evenly allocated, and that the unbalanced case at the “end” of the computation will 
occur sooner and last longer. It is a delicate matter to balance the competing goals of a 
block-cyclic allocation.  
 
Finally, notice that the block allocations discussed above and the block-cyclic allocations 
discussed here do not exploit locality equally well, even when block-cyclic uses large 
blocks. In general, for a given number of processors and array size, block-cyclic will use 
many smaller blocks whereas the block approach will use a single larger block per 
processor. This means for computations requiring nearest neighbor communication, e.g. 
stencils, the surface to volume advantage of blocks will result in much less 
communication. (The extremely small blocks of Figure 4.5 emphasize this point since 
every element is on the surface!) Of course, for computations compatible with a single 
allocation strategy, it is an easy matter to choose the right one. But, for cases where 
different phases of the computation would benefit from different allocations, it can be 
difficult to find the right compromise. 
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Figure 4.6: The block-cyclic allocation of Figure 4.5 midway through the computation; the blocks to the 
right summarize the active values for each processor.  
 

Assigning Work to Processors Dynamically  
In many cases it is not possible to adopt a fixed work assignment and stay with it. 
Examples include algorithms that create tasks as they proceed, algorithms whose tasks 
have highly variable execution times, adaptive algorithms that apply their computing 
power where the solution needs the greatest work, etc. In these and similar cases the work 
queue strategy may lead to the best assignment of computation. 

Work Queue  
A work queue is a first-in first-out list of task descriptors. If as a computation proceeds 
new work is generated, it is packaged into a task descriptor and is appended to the work 
queue; if as computation proceeds work is completed and a processor becomes available, 
it removes a task descriptor from the queue and begins work on it. The commonly used 
names for these two roles are producer and consumer.  
 
As an example of a trivial task that can be expressed in work queue form, consider the 
3n+1 conjecture (or Collatz Conjecture), which proposes an affirmative answer to the 
question “For any positive integer a0, does the process defined by  
 

 3ai-1 + 1 ai-1 odd 
ai = 
 ai-1 / 2  ai-1 even 

 
converge to 1?” (See http://mathworld.wolfram.com/CollatzProblem.html.) Though 
this conjecture is known to be true for all integers less than 3⋅253, we will program a 
search of the integers as an example, because it illustrates several aspects of work queue 
technique.  
 
Our solution postulates a work queue containing the next integers to test. We initialize 
the queue to the first P positive integers:  
 

void init(work_q: q) {     //setup globally-allocated queue array  
 int i; 
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      for (i=0; i<P; i++) { 
        q[i] = i+1; 
      } 
) 

 
The integers are our task descriptors. As a general principle, it is wise to make the task 
descriptors as small as possible, while making them self-contained. 
 
A worker thread, of which we assume there are P, will consume the first item from the 
work queue, add P to it, and append the result to the work queue.  The rationale for 
adding P is that P threads will be checking integers at once, so advancing by P has the 
effect of skipping those that are (logically) being processed by other threads. (The other 
threads may not all be computing yet, but they will be.) The worker thread has the 
following logic: 
 

int tester(int: limit) {    //test the conjecture   
int a;      //test number 
int n;      //count number of rounds of testing 

  while (n < limit) { 
              n = 0;      //initialize  

   a = consume();     //remove the first element of work q 
        produce(a+P);     //place new item on work q 
   while (a != 1 && n < limit) { 
           if (even(a)) 
          a = a / 2; 
           else 
     a = 3*a + 1; 

          n++; 
        }       // exiting w/a==1 confirms converge 
      }       // exiting means limit was exceeded 
 return a;      // tell what number is the culprit 
) 

 
The tester takes a limit as a parameter. The processing loop is controlled by a != 1 
and by n < limit. Because we think the conjecture is true, we expect the processing 
loop to exit with a == 1, but if there were an integer for which the conjecture is false, 
the loop will exceed the limit. If the limit is reached the worker will stop and return; 
otherwise it continues checking until it is eventually preempted by the parent routine. Of 
course, the parent, receiving a number back from a worker, cannot know if it is a counter-
example to the conjecture, but it can test further to see if the number is actually 
convergent, but that the limit was set too low. This simply requires increasing the size 
of limit and rechecking.  
 
Consider the behavior of the work queue. First, notice that in effect P subsequences are 
being checked simultaneously, but they will not remain in lock step because the amount 
of work required of each check is different. For example, with four processors the queue 
might transition through the states at the beginning 
 
 
 Work Queue  Active Processors [task] 
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 1, 2, 3, 4  -- 
 2, 3, 4, 5  p0[1] 
 3, 4, 5, 6  p0[2] 
 4, 5, 6, 7  p0[2], p1[3] 
 5, 6, 7, 8  p0[2], p1[3], p2[4] 
 6, 7, 8, 9  p0[5], p1[3], p2[4] 
 7, 8, 9, 10  p0[5], p1[3], p2[4], p3[6] 
 
illustrating that because processing 1 is trivial, p0 might return to the queue to get the next 
value, 2, before any of the other processors start; processing 2 is also easy, so it is back 
again quickly. Further, notice that workers do not necessarily process the same 
subsequence.  Indeed, if the timing works out all of the processors could be working on 
the same subsequence at once. Summarizing, although our work queue is regimented, the 
way its tasks are processed can accommodate any timing characteristics.   
 
One important detail has been ignored in the worker code. It is the matter of races 
resulting from multiple threads referencing the work queue simultaneously. We have 
assumed that the two procedures, consume() and produce() contain the appropriate 
synchronization apparatus. Exact details of how to construct the appropriate protection 
are presented in the next chapter. 

The Reduce & Scan Abstractions 
The success of Schwartz’s algorithm for addition and Count 3s computations is not 
accidental. Operations of adding and counting array elements are instances of a general 
form of computation known as reduce and scan. They are well understood, and so, 
efficient solutions are known. By recognizing such computations, we can avoid working 
out their details each time and simply apply standard solutions, such as Schwartz’s 
algorithm. We can save our serious thinking for those parts of a computation that need 
brain power.  
 
Reduce, which can be thought of as short for “reduce the operand data structure to a 
single value by combining with the given operator,” has been a part of programming 
languages since the creation of the array language APL. The operators are often limited 
to the associative and commutative operations add, multiply, and, or, max and min, but 
many operations work. Though some languages have built-in reduce operations, many do 
not, and so we will create our own general routine based on the Schwartz approach. To 
simplify our discussion of reduce, we adopt the notation operator // operand, as in + // 
A, to describe A’s elements being reduced using addition. We might write the Count 3s 
computation + // (A == 3), and expect to implement it by instantiating a general 
Schwartz solution with implementations of these operations. 
 
Scan is a synonym for “parallel prefix,” mentioned in Chapter 1. Scan is related to reduce 
in that scan is the reduce computation in which the intermediate values are saved, 
assuming a specific order of evaluation. Thus, for array A with values  
 

4   2   5   6   1 
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the plus-scan of A is 
 

4   6   11   17   18  

 
Reduce is simply the final value produced in a scan. (We adopt the notation operator \\ 
operand, as in + \\ A.) As with reduce the associative and commutative operations 
add, multiply, and, or, max and min are common, but many other also computations 
work.  
 
To illustrate using the reduce and scan abstractions to compute the bounding-box 
enclosing points in the plane. Let A be an array of n points of the form, 
 

type planePt = record  
   x : int; 
   y : int; 
     end; 

 
then the sequential computation  
 

maxX = A[0].x; 
for (i = 1, i < n, i++)  
{ 
     if (maxX < A[i].x)  
         maxX = A[i].x; 
} 
maxY = A[0].y; 
for (i = 1, i < n, i++)  
{ 
     if (maxY < A[i].y)  
         maxY = A[i].y; 
} 
minX = A[0].x; 
for (i = 1, i < n, i++)  
{ 
     if (minX > A[i].x)  
         minX = A[i].x; 
} 
minY = A[0].y; 
for (i = 1, i < n, i++)  
{ 
     if (minY > A[i].y)  
         minY = A[i].y; 
} 

 
for computing the four defining values for the bounding box is equivalent to four 
applications of reduce, 
 

maxX = max//A.x 
maxY = max//A.y 
minX = min//A.x 
minY = min//A.y 
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which as we saw in Chapter 1 can be efficiently implemented in parallel. Of course, these 
four can be merged into one implementing procedure, so that there is only one pass over 
the data and only one combining tree.  
 

Generalized Reduce, Scan and Vector Operations 
Because reduce and scan are such effective abstractions for thinking about parallel 
computation, we advocate using them, and developing tools for their convenient 
application. Because there are so many programming systems in use, we describe how to 
construct an implementation, rather than giving a specific one. We begin the section with 
reduce, and move on to scan. Finally, we observe that the concepts can be applied to 
general vector operations.  

Structure for Generalized Reduce 
To build a general reduce or scan implementation, visualize the Schwartz algorithm, as 
abstracted in Figure 4.7. Overall, the figure shows local computation performed at the 
leaves of a combining tree, which emits the reduction result at its root. Looking more 
closely at the diagram, we see that a data structure called the tally is used together with 
four functions, two applied on each processor: 
 

init() initializes the process on each processor, setting up the tally data 
structure recording the local result as the reduce performs the accumulation 
operation 
accum(tal, val) performs the actual accumulation by combining the 
running tally with the operand value 

 
Once the local results are found, they must be combined to form the global result, using 
two more functions: 
 

combine(left, right) combines two tally values to create a new tally 
value 
reduceGen(root) takes the global tally value and outputs the correct result 
for reduce. 

 
For example, to compute +//A, the init() routine would initialize a tally variable to 
0; the accum() routine would add its tally to an operand value; the combine() would 
add two local tallies and reduceGen() is a noop that simply returns the result. 
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Figure 4.7: Schematic diagram of the Schwartz algorithm used to implement user-defined reduce. The 
local operations are abstracted in the box; function init() sets up the tally; accum()combines the tally 
and the operand data structure; outside the box, in the combining tree, combine() forms a new tally from 
two others, and reduceGen() produces the final answer from the global tally.  
 
 
For the simple operation of +//A, the four-function formulation is excessively general, 
but this structure is essential in more complex (and more powerful) cases, as illustrated in 
a moment. The key to understanding the roles of the four reduce functions is first to 
recognize that the tally data structure need not have the same type as the operand data, 
and second that the four routines take different argument types. So, for example, imagine 
a user-defined secondMin // A that finds the second smallest element in an array, 
useful perhaps for an array of non-negative numbers with many 0s. In this case the tally 
data structure would have to be a two-element record or array storing the smallest and 
second smallest values. The init() function would set-up the tally, initialized to the + 
infinity for the operand data type; accum() would compare an operand value with the 
tally elements recording the two smallest; combine() would find the two smallest of its 
two tally arguments, and the reduceGen() would return the second smallest value as 
the result. When called at the right points in a parallel procedure implementing 
Schwartz’s algorithm, they produce a parallel secondMin() solution. Figure 4.8 makes 
this logic precise. 
 
 
 

combine (left, right) combine (left, right) combine (left, right) combine (left, right) 

combine (left, right) combine (left, right) 

combine (left, right) 

reduceGen (root) 

local local local local local local local local 

tally: 
 
   init()   accum(tal, val)    accum(tal, val)    accum(tal, val)  
... 
 
operand: A               a1                        a2                         a3 
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type tally = record  
  sm1 : float;       //smallest element 
  sm2 : float;       //second smallest 
     end; 

 
void init(tally: tal) {  //setup globally-allocated tally  
 tal.sm1 = MAX_FLOAT; 
 tal sm2 = MAX_FLOAT; 
) 
void accum(float: elem, tally: tal) {   //local accumulation 
 if (tal.sm1 > elem) { 
     tal.sm2 = tal.sm1; 
     tal.sm1 = elem; 
 }  

elseif (tal.sm2 > elem) { 
     tal.sm2 = elem; 
      } 
} 
void combine(tally: left, tally: right) { //combine into "left" 
 accum(right.sm1, left);   //by accumulating right 
 accum(right.sm2, left);   //values one at a time 
} 
float reduceGen(tally: tal) { 
 return tal.sm2; 
} 

 
Figure 4.8: The four user-defined reduce functions implementing secondMin reduce. The tally, globally 
defined on each processor, is a two-element record. 
 

Structure for Generalized Scan 
Generalized scan applies the same concepts as generalized reduce.  The primary 
difference is that after the combining is complete the “parallel prefix” values must be 
passed back down the combining tree. That is, in order to complete the prefix 
computation on the local values, an intermediate value from the combining tree will be 
needed by each processor.  (Refer to the parallel prefix discussion in Chapter 1 and 
review Figure 1.2.) 
 
The generalized scan begins like the generalized reduce, and there is no conceptual 
difference in the three functions init(), accum() and combine() for the two 
algorithms. However, the scan is not finished when the global tally value has been 
computed. Rather, tally values must be propagated down the tree subject to the constraint 
that  
 

for any node, the value it receives from its parent is the tally for the values that 
are left of its leftmost leaf 

 
which because we are computing on blocks, means the first item in the leftmost leaf’s 
block. This causes us to call init() to create the value as the input from the logical 
parent of the root, because there is no tally for the items to the left of those covered by the 
root. Each node, receiving a value from the parent, relays it to its left child; for its right 
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child, it combines the value received from the left child on the upsweep with the value 
received from the parent, and sends the result to the right. 
 
When the tally value is received at a leaf, it must be combined with the values stored in 
the operand array to compute the prefix totals, which are stored in the operand position. 
In Figure 4.9 these operands are shown schematically in the box at the bottom. Thus, the 
scanGen() procedure produces the final result. 

 
 
Figure 4.9: Schematic of the scan operation. The first part of the algortihm is simply the generalized 
reduce, schematized in Figure 4.7. Once the global tally is found, prefixes are propagated down the tree. 
When a prefix arrives at a leaf, the local operation applies the scanGen() function, and stores the result 
in the operand item. 
 
To illustrate the operation of user-defined scan, imagine an array A of integers from the 
sequence 0, …, k-1. The scan sameAs \\ A records in position A[i] the number of 
elements in the first i matching A[i]. We use as a tally an array of k elements, which is 
initialized to 0s; the accumulate function increments the array item count for the operand 
value; combine function adds the two arrays; and the scan generator performs an 
accumulate (initialized this time by the prefix received from the parent), and stores the 
count for the item found. Figure 4.10 shows the functions that realize this result. (Notice 
that the tally array at the end is a histogram for the array.) 
 
 
 
 
 

combine (left, right) combine (left, right) combine (left, right) combine (left, right) 

combine (left, right) combine (left, right) 

combine (left, right) 

init() 

local local local local local local local local 

  parent tally: 
 
              scanGen(tal, val)  scanGen(tal, val) scanGen(tal, val)  ... 
 
 
             operand: A      ai                      ai+1                      ai+2 



31 

void init(tally: tal) {    //setup globally-allocated array  
 for (i=0; i<k; i++) { 
    tal[i]= 0; 
      } 
) 
void accum(int: elem, tally: tal) {       //local accumulation 
 tal[elem]++; 
} 
void combine(tally: left, tally: right) { //combine into "left" 
 for (i=0; i<k; i++) { 
           left[i] += right[i]; 
      } 
} 
int scanGen(int: elem, tally: tal) { //finalizing scan 
 accum(elem, tal);    //accum w/parent tally 
      return tal[elem];    //store running count 
} 

 
Figure 4.10: User-defined scan functions to return the running count of k items; the tally is a globally 
allocated array of k elements. 
 

Structure for Gneralized Vector Operations 
The foregoing discussion shows that instantiating the basic structure of reduce and scan 
with custom functions can create efficient parallel solutions. But the idea is even more 
general. There is no need that the operations “accumulate from left to right;” 
computations that can be performed on blocks of data that can be merge to produce a 
larger solution are good candidates for applying this same structure. We illustrate the idea 
by computing the longest run of positive values stored an array. So, for the sequence  
 

-1.2  0.0  0.5 -0.1 -0.2 0.1  1.1  1.5  2.1  1.0  0.0 -0.1 

 
the computation would return 5. 
 
To formulate a local block computation to find the longest run of positive values, observe 
that the run could straddle the boundary (or boundaries) between local blocks. For that 
reason, we select a tally that has three values 
 

type runLen = record  
  atstart : int; // count of positives from left 
  longest : int; // longest (interior) run found so far 
  current : int; // length of current run 
     end; 

 
that will count the number of positive values beginning at the start of a block, atstart, 
if any, the longest run properly contained in the block, longest, and the length of the 
current run, current. This last variable will have the effect of recording the length of 
the positive run extending to the right end of the block, if any. Because the block will be 
processed left to right, it will be convenient to treat a sequence that completely spans a 
block as having an undefined longest and current values. So for example, dividing 
the foregoing example among four processors 
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results in the tallies 

 
Notice, the third thread has the undefined values in its tally. 
 
To build the four reduce functions, initialize the tally items to undefined (represented as   
-1), but to simplify the combining logic later, set current to 0. 

 
Accumulating begins by counting positive items in atstart until the sequence is 
broken; thereafter, it counts positive items in current, and records the length of the 
runs in longest.  Thus, accum() must separate the initial sequence from the others, 
and for that it requires a cascade of logic as shown in Figure 4.11. 
 
Given two tallies, their combined tally must handle four cases. These are 

• both blocks span only positive elements: the result spans positive elements, so add 
the right block’s atfirst to the left block’s atfirst, the blocks’ longest 
and current are the same 

• the left block spans only positive elements: the right block’s atfirst adds to 
left’s atfirst, and the right block’s longest and current apply 

• the right block spans only positive elements: add the right block’s atfirst to 
the left block’s current, and the left block’s atfirst and longest apply 

• both blocks have non-positives; the left block’s current plus the right block’s 
atfirst could be longer than either longest, the left block’s atfirst and 
the right block’s current apply 

We use longest == -1 as our test for a positive only block. This logic is 
implemented as a cascade of if-statements. 
 
 

-1.2  0.0  -0.5  -0.1 -0.2 0.1    1.1  1.5  2.1    1.0  0.0 -0.1 

atstart: 0 
longest: 1 
current: 0 
 

atstart: 0 
longest: 0 
current: 1 
 

atstart: 3 
longest: - 
current: - 
 

atstart: 1 
longest: 0 
current: 0 
 

atstart: -1 
longest: -1 
current:  0 
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Figure 4.11: The accumulate logic. The “first time?” test is true when atfirst == -1; the “still 1st?” 
test is true when longest == -1.  
 
Finally, the global result must pick the largest of its atfirst, longest and current 
values. If the longest sequence starts at the beginning, then the preceding logic ensures 
that atfirst will record its length; if the longest sequence extends to the end, the 
current will record the length. Otherwise the longest sequence is somewhere in the 
middle, and longest will record the value.  
 
See Figure 4.12 for the exact logic. 
 
These are powerful techniques that have efficient parallel implementations.  
 

 
void init(runLen: zero) {  //setup globally-allocated record  
 zero.atstart = -1; 
 zero.longest = -1; 
 zero.current = 0; 
) 
void accum(int: elem, runLen: z) {   //local accumulation 
 if (z.atstart == -1) {   //first time? 
    if (elem > 0)  
             z.atstart = 1; 
         else { 
             z.atstart = 0; 
             z.longest = 0; 
         } 
      }  
      else { 
         if (z.longest == -1) {  //still first time? 
             if (elem > 0)  
                  z.atstart++; 

N 

Y first time? 

A[i]> 0? still 1st? 

atstart++ end 1st run atstart++ A[i]>0? 

current++ end run 

longer? 

longest=current 

Y Y 

Y 

Y 

N 

N 
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             else   
                  z.longest = 0; 
         } 
         else { 
            if (elem > 0)  
               z.current++; 
            else { 
              if (z.longest > z.current)  
                  z.longest = z.current;  
              z.current = 0; 
            } 
         } 
      } 
} 
void combine(runLen: left, runLen: right) { //combine into "left" 

if ((left.longest == -1) && (right.longest == -1)) //spans 
    left.atstart = left.atstart + right.atstart; 
else { 
   if (left.longest == -1) { 
       left.atstart = left.atstart + right.atstart; 
       left.longest = right.longest; 
       left.current = right.current; 
   } 
   else { 
      if (right.longest == -1)  
          left.current = left.current + right.atfirst; 
      else { 
         left.longest = MAX(left.longest, 
                            left.current + right.atstart, 
                            right.longest); 
         left.current = right.current; 
      } 
   } 
} 

      } 
 

int reduceGen(runLen: z)   { 
 if (z.longest < z.atfirst) 
          z.longest = z.atfirst; 
      if (z.longest < z.current) 
          z.longest = z.current; 
      return z.longest; 
} 

 
Figure 4.12: The four reduce/scan functions for the “longest positive run” computation. 
 
 

Trees 
After arrays, trees must be the most import way to represent a computation.  They present 
challenges in parallel computation for several reasons. First, trees are usually constructed 
using pointers, and in many parallel computation situations, pointers are local only to one 
processor. Second, we typically use trees for their dynamic flexibility, but dynamic 
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behavior often implies performance-bashing communication. Third, trees complicate 
allocation-for-locality. But, challenging or not, trees are too useful to ignore. 

Representation of Trees 
Begin by noticing that we have already used trees in several computations to perform 
accumulation and parallel prefix operations. They were implicit in that they derive from 
the communication patterns used. So, in the reduce and scan primitives above, the 
combine() operations were performed pairwise, with the intermediate results also 
being combined pairwise, etc. inducing a tree, as shown in Figure 4.13. There are no 
pointers; processors simply perform the appropriate tree roles, and the result is achieved. 
By this technique we use trees to perform global operations even when they are not the 
base data structure of the computation.   
 

Figure 4.13: Induced tree. Each processor computes on a sequence of values (heavy lines), and then 
combines the results pairwise, inducing a tree; notice processor 0 participates at each level in the tree. 
 
Our Guideline #1 rule, to maximize the number of large blocks of independent 
computation, motivates us to use the implicit tree idea even in cases where the base data 
structure is a tree. This means that we separate the local and the global paradigms: 
Locally, we may choose to use pointers in our implementation, but at the higher levels of 
the tree where the edges are non-local, we use the implicit solution – each node simply 
performs its proper tree role. Though it can be inconvenient to shift processing 
paradigms, the advantage may be that it allows us to write a single-threaded solution to 
the subproblem (it might already exist), and then incorporate those subproblems into the 
global solution. 
 
Breadth First. Consider first trees that can naturally be enumerated breadth first, that is, 
all nodes of a level can be generated given their parent nodes. In this case we 
conceptually generate the complete tree down to the level, or pair of levels, having P 
nodes, one corresponding to each processor. So, in the binary tree case, if P = 2l, generate 
to level l. For example, for P = 8, we generate a binary tree down to level 3, as shown in 
Figure 4.14(a). When P does not equal the number of nodes on a level, pick the greatest 
level less than P and then expand enough of the nodes to the next level to equal P, as 
shown in Figure 4.14(b). Then, assuming the tree extends much more deeply below each 
of these nodes, allocate to each processor corresponding to a node the entire subtree 
enumerated from the node. The computation is conceptually local for the whole subtree. 
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   (a)             (b) 
Figure 4.14: Logical tree representations: (a) a binary tree where P = 2l; (b) a binary tree where P = 6. 
 
Example. This technique works well for problems that can be recursively partitioned 
into subproblems. For example, suppose we are searching a game tree for Tic-Tac-Toe 
(Naughts and Crosses) games on P = 4 processors. When symmetries are considered, 
there are only three initial positions, and we expand one of these to fill out the 4 search 
tasks, see Figure 4.15. That is, each processor will search the game tree descendant from 
the indicated board position. 
 

Figure 4.15: Enumerating the Tic-Tac-Toe game tree; a processor is assigned to search the games 
beginning with each of the four initial move sequences. 
 
 
Depth First. Trees that should be enumerated by depth can be implemented in parallel 
using a work queue approach. The queue is initialized with the root; a processor removes 
a node and if that action leaves the queue empty, the processor expands the node, taking 
one descendant as its task and appending the others to the queue. Such an approach 
corresponds to standard iterative depth first traversal, and has a structure as shown in 
Figure 4.16.  

 
Figure 4.16: Basic depth allocation of a tree to P=4 processors, which are each responsible for the subtree 
rooted at the node; the right-most node remains in the queue.  
 
Having assigned a subtree to each processor, consider the main aspect of depth first 
enumerations, the feedback from the early parts of the enumeration to the later parts. This 
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takes various forms including a list of nodes visited, alpha-beta limits on productive 
subtrees to consider, and other measures of “progress”. A parallel algorithm will have to 
adapt such feedback to the processing of independent subtrees. For example, consider a 
packing algorithm trying to minimize the area occupied by the arrangement of several 
objects. A global variable recording the area of the best arrangement found so far can be 
referenced by all processors and so be used in each subtree to prune the enumeration. 
 
Full Enumeration. Certain trees must be expanded in their entirety. A common 
example is the family of K-D Trees used in gravitational simulations and the closely 
related Barnes-Hut trees. Such trees are used for rapid lookup of related elements. In the 
case of gravitation simulation, 3D space is partitioned into octants, which are in turn 
partitioned, etc. until each region contains only one point. This allows the points 
physically near a given point to be quickly located by tree traversal. (Advanced 
algorithms allow groups of points acting at a distance to be approximated as a single 
meta-point.) Areas of high concentration can lead to locally deep trees.  
 
Perhaps the best allocation for such a tree is the so-called “cap allocation,” as shown in 
Figure 4.17. In the allocation the P nodes nearest the root, the cap, are redundantly 
allocated to each processor. Additionally, a processor is also allocated one of the subtrees 
rooted at the bottom of the cap. As the computation proceeds, the cap portion of the tree 
must be maintained coherently. That is, all processors must “see” the same state, and a 
locking protocol must be respected. Interaction among the subtrees can use a messaging 
protocol. 

Figure 4.17. Cap allocation for a binary tree on P=8 processors; the cap (shaded) and one of the “leaf 
subtrees” are allocated to each processor.   
 
The cap allocation is effective primarily because most of the activity takes place in the 
subtrees, and therefore is entirely local to a processor. Further, activity around the root is 
rare, so there is little likelihood for lock contention. Finally, the availability of the root 
means that interactions “crossing the root” can be navigated by percolating up in the local 
tree and crossing the cap locally, so as to identify the correct destination subtree. 
Navigating in the destination subtree is typically assigned as a task to the owner. As an 
additional bonus in the advanced algorithms for gravitational simulations in which large 
regions of the problem are aggregated into meta-points, the points around the root are all 
meta-points, and therefore are read-only, eliminating races and locking as issues. 
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Summary 

Exercises 
 
Exercise 0. Write a sequential program to perform the operations illustrated in Figure 3. 
That is, using an imagined library operation GetIt(<direction>, <buffer>) to transmit the 
data from the neighboring threads, compute a 4-point stencil computation on the interior 
data array A. Assume that GetIt blocks if the data on the other processor isn’t ready; also, 
assume that buffer is a separate block of memory not related to A, i.e. you must include 
the fluff buffers in your portion of the data array and fill them manually.  
 
Exercise 1. Generalize the longest positive run program to return a Boolean mask with a 
1 in the element positions for every positive value in the longest run, and 0s everywhere 
else. This computation uses the existing functions slightly modified, but replaces the 
reduceGen() with scanGen() to produce the final values. There is also a revision 
required for the tally data structure. [Hint: Assume in the accumulate function the 
availability of a variable, called index, giving the index of the element being 
processed.] 
 
Exercise 2. Revise the timing assumptions of the work queue example so that all 
processors are working on the subsequence: 4, 8, 12, 16. (There are multiple solutions.) 
 
 
Ex. Revise the tester program so that it exploits the fact that if the threads have 
established that all number less than k converge, then no thread need check further when 
ai < k.  
 

Historical Context 
Need in the historical section a bunch of things about the PRAM, Fetch and Add, and 
other one-point-per processor schemes, such as SIMD. Need to cite Anderson/Snyder to 
emphasize that there are more fundamental reasons to not like PRAMs than lock 
contention. Cite Blelloch. Ladner and Fischer, Deitz; who thought up block-cyclic—
Lennert? 
 
 
 


