Chapter 3: Understanding Parallelism

Introduction

The advantages of parallelism have been understood since Babbage’s attempts to build a
mechanical computer. Almost from the beginning of electronic computation paralle
hardware has been used in the implementation of sequential computers. Efforts to build
true parallel computers began in the 1970’s and have continued at an accelerating pace
driven by advances in silicon technology. Industrial and academic resaanekier

studied every imaginable aspect of parallel computation. There is much to fehin, a

cannot all be presented in complete detail in a single chapter. So, we begin with an
informal tour of almost the entire parallel landscape, knowing that many sidjhts w

demand further attention in later chapters. For now, it suffices to gain amciappreof

the opportunities and challenges of parallel computation.

We look at parallelism from different perspectives. The first is perforejaiace
improving performance is the point of parallel computation. The second perspective
concerns the structural features of an algorithm that contribute to or hinftenzarce.
Finally, we discuss general parallel problem solving approaches.

Opportunities For Performance Improvement

As the add-a-vector-of-numbers example of Chapter 1 indicates, progranmhazaye
different amounts of parallelism despite requiring the same amount of wohla(icaise

the same number of additions). The naive summation loop produced a sequential
specification, which if executed as specified, requdéy time because no provision

was made for other processes to contribute to the solution. The tree summation was
described in a way that allows sub-computations to be performed simultaneously, whic
with sufficient processing capacity, would lead taC{log, n) time execution. Is this the
best solution available? What limitations might prevent the best performaredtere
opportunities that are not being exploited? We discuss such issues in this section.

Inherently Sequential. There are computations that are inherently sequential, meaning that
all algorithms to solve them have limited parallelism. One such computation is the circuit
value problem, which takes a circuit specification over logical operators OR, AND and NOT
taking m inputs, and an m-length binary sequence, and evaluates the circuit on the input
sequence.

Parallelism vs. Performance

Ideally, a problem that takdstime to execute on a single processor can be solvE#in
time if we can formulate a solution to the problem that exhibitsld parallelism. Thus,
it is tempting to think that our goal is simply to maximize parallelism, buighist true.

Consider again the summation of Chapter 1 chaptern falues, we maximize
parallelism by using=n/2 processors, which allows us in each step to perform all pair-
wise additions simultaneously. The total algorithm taBgeg, n) time usingP

processors.

Now consider a variant of the algorithm, which we callStievartz algorithm. It makes
each processor responsible liag, n data items instead of 2 items. (In Figure 3.1, the
leaves, which represent data stored on the parent processor, are daogtat aéms.)
The idea is that because the height of the summation i@ is the tree height defines
the computation time; by beginning with each processor finding the slog,oflocal
elements, the execution time is only doubled over the naive solution. That is, in
essentially the same time a significantly larger problem can be solved.

Because we are looking at this idea somewhat “backwards,” let’s put it intoioaimer

terms. Adding a 1000 items using the original tree-based summation takes 1gteps (
1000) using 500 threads of concurrency. If each leaf, rather than being a singleton, were
a sequence of 10 items, then a 10,000 item summation could be performed by the same
number of threads in 28 steps (9 for each local sum, and 10 to combine them). Using the
original summation solution would have required 5,000 threads of concurrency and
completed the task in 14 steps. Often, the amount of available parallelism ssnadry
compared to the amount of data, making the idea very attractive.

Schwartz’s algorithm shows that trying to maximize parallelism isla@ys smart. In
our original algorithm to processog, n data, we would use= (nlog, n)/2 processors,
and we would get a running time ©flog. (nlog, n)) = O(log, n + loglog, n) time. In
essence, we use a larger tree having greater depth with the origimélhadg&chwartz’s
algorithm is not only a simple way to see that maximizing parallelism islwal/s
smart, but it is an excellent solution technique. We will apply it often in Chapter 4.

/\ /\

- - - -

+ + + + + + + +
0000 0000 0000 0000 0000 0000 0000 00000 0000 0000 0000 0000 O0O0O0O 0000 0000

Figure 3.1. Schwartz’'s approach to the summation computatiocmcdssing nodes are indicated by boxes;
the leaves each representdg n) items.

Our discussion of Schwartz's algorithm makes two points. First, parallebse ialnot

the goal. Instead, we need to consider the resources used to exploit thisgaralleli
Second, when performance is the goal, we need to understand what performance means
The next two sections describe these two topics in turn.

Threads and Processes

To help us reason about the resources needed to exploit parallelism, we will use two
common abstractions for encapsulating resources—threads and processes.

A thread refers to a thread of control, logically consisting of program code, a program
counter, a call stack, and some modest amount of thread-specific data inclseliraf a
general purpose registers. Threads share access to the memory, so émreads ¢
communicate with other threads by reading from or writing to memory thaildevio
them all. (Threads also share access to the file system.) Programnhinigresds is
known aghread-based parallel programming or shared memory parallel programming.

A processis a thread of control that has its own private address space. When multiple
processes execute concurrently, they require some mechanism for contimgimaa

each other, since they do not share memory. One cumbersome mechanism might be to
communicate through the file system, but a more direct approach is to sengesessa
from one process to another. Parallel programming with processes is oftesdredeas
message passing parallel programming or non-shared memory parallel programming. A

key issue in message passing parallel programming is problem decompositien, sinc
portions of the computation’s data structures must be allocated to the separate proces
memories, that is, they usually cannot be wholly replicated within each process.

In addition to the obvious difference between threads and processes—the distinction
between shared and separate memory spaces—there are also distinctionghtf ameli
“agility.” Threads are usually seen as “lighter weight,” beirepted and completing
dynamically throughout a computation. Processes, by contrast, are “heagt;ivei

taking more time to setup and tear down. Though created dynamically, usually in
response to input conditions, they often persist throughout most or all of a computation.
Processes can “come and go,” but with the (memory) setup time being much ¢hester
tend to be longer lived.

Latency and Bandwidth

Since performance is the goal, it is important to agree upon what performante mea
We often speak of speeding up a computation, but realize that there are two possible
goals: latency and bandwidth.

Latency. Latency refers to the amount of time it takes to complete a given piecelof

Bandwidth. Bandwidth instead refers to the amount of work that can be completed per
unit time.

Thus, latency is measured in terms of time or some derivative of time, suciclas cl
cycles. Bandwidth is measured in terms of work per unit time. The distinctiondretw
latency and bandwidth is important because they represent different isdudgfesient
solutions. For example, consider a web server that returns web pages. The wé&b serve
bandwidth can be increased by using multiple processors that allow multipletseques

be served simultaneously, but such parallelism does not reduce the latency of any

individual request. Alternatively, a web server could employ multiple pHiysica

distributed caches that can both decrease the latency of individual requestiserfsr ¢

that are close to one of the caches—and increase the server’s overall bandwidihy In m
cases, latency can be reduced at the cost of increased bandwidth. For exangse, to hi
long latencies to memory, modern microprocessors often perform data prefésching
speculatively bring data to caches, where its latency to processorsiis ldowever,

because prefetching invariably brings in some data that is not used, it @sciieas

demand for memory system bandwidth. This idea of trading bandwidth for latency is not
new: The Multics operating system used the idea in the 1960s when it introduced the
notion of context switching to hide the latency of expensive disk I/O.

The use of latency and bandwidth is common in some, but not all, parallel computation
subcommunities, so our use of it throughout this book somewhat broadens its application.
We will use latency to refer to the length of execution time or the duration of the
computation, and bandwidth to refer to the capacity of a processor, its instruction
execution rate. We have slightly expanded the scope of latency and bandwidth to unify
terminology. There should be little confusion when encountering alternate terms in the
literature.

Sources of Reduced Performance

While we ideally would hope th& processors could speed up a computation by a factor
of P, there are many reasons why this might not be the case. We explore tlwsearfact
this section.

Overhead. Any cost that is incurred in the parallel solution but not in the serial solution is
consideredverhead. There is overhead in setting up threads and processes to execute
concurrently and also some for tearing them down, as the following schematatesdic

Threac ki

N
N P
- §\ roces N

Tear Down

Because memory allocation and its initialization are expensive, processegrieater

setup overhead than threads. After the first process is set up, all subsequent thread and
process setups incur overhead not present in a sequential computation. These costs must
be charged against the benefits of parallelism; see the section, Measuiong &sce

below.

Communication. Communication among threads and processes is a major component of
overhead. Since a sequential computation doesn’t have to (cannot!) communicate, all
communication is a charge against the benefits of parallelism. Thesénavstbeen

described in detail in Chapter 2, and though they are different depending on the
communication mechanism chosen—shared memory, 1-sided or message passing—they
are all substantial compared to a local memory reference. To be clears thierays a

communication charge unless the data is local; the components of the chaigeraie g
Table 3.1.

Synchronization. Synchronization is a form of overhead that arises when one thread or

process must wait for another. Synchronization is implicit in many formeséage
passing, while synchronization is often explicit when programming with threads

Table 3.1: Sources of communication overhead by communicatieohanism.

M echanism Components of Communication Cost

Shared Memory Transmission delay, coherency operations, reference pnotecti
unavailability

1-sided Transmission delay, reference protection, unavailability

Message Passing Transmission delay, data marshalling, messagtdo,
demarshalling, unavailability

Contention. Contention is the degradation of system throughput caused by competition
for a shared resource. For example, we saw in Chapter 1 how lock contention can reduce
network throughput by creating excessive network traffic, and we saw hemstahring

can degrade performance by causing data values to bounce back and forth among
different caches.

Idle Time. When we conceptualize a parallel computation, we imagine that the
processors are all working all of the time, but they might not be. The main redisanas
process or thread cannot proceed because there is no work to do or because the needed
data is not yet available. As the next section on Dependences demonstratieseidle
manifests itself in many ways.

Load Imbalance. One common source of idle time is an uneven distribution of work to
processors, which is known as load imbalance. For example, the Schwartz algorithm has
an advantage over the standard prefix summation because the former keeps absroces
busy with useful work much of the time, thereby allowing larger (by a factoggh)

problems to be solved with the same number of processors.

Balancing load is straightforward for easy tasks like summation, but moputatons

are much more complex. We sometimes display the allocation of array commutati
especially for the process model, by showing the array and its decomposition among
processors; Figure 3.2 shows a schematic example for the LU Decomposition
computation, a widely used algorithm for solving systems of linear equations. As show
in Figure 3.2(a) the LU computation builds a lower (black) and upper (white)l&iang
beginning at left; the area of the computation is shown in gray, and after tevatipn

of the computation one row and one column are added to the completed portion of the
array. Figure 3.2(b) shows sixteen processors logically arranged as adrid) ashows

how the array might be allocated to processor memories in a process model of the
computation. Though the allocation of data is balanced, i.e. each processor is assigned
roughly the same number of array elements, the work is not balanced. For exaeple, aft

the first 25% of the rows and columns have been added to the result arrays, there is no
more work to do for the seven processors on the left and top sides of the array. That is,
nearly half of the processors will be idle after one quarter of the rowsinslhave been
processed. Though it is true that the amount of work per iteration diminishes asvihe act
(gray) portion of the array shrinks, this allocation of work is still quite unbadance

Indeed, the last 25% of the rows/columns are computed by pro&gs$€ar putting it

another way, the last 25% of the rows/columns are computed sequentially.

Redundant Computation. P processors will not speed up a sequential computation by a
factor of P if the parallel version of the computation requires more instructions. But extra
instructions are almost always required. For example, if the sequential ctomputa
requires the program to loop k times, and if the parallel computation also requlres ea
process to loop k times, then the loop overhead instructions—initialization, incregapentin
testing for termination—are not sped up by parallelism. As another examplethreca
example of generating a random number from Chapter 2; although it was smarato repe
the computation to avoid non-local communication, having each process generate its own
random number means there will be no parallel improvement of that portion of the
computation. Of course, the programmer’s goal is to make most of the computation non-
redundant.

Po | Py | P2 |Ps

Py |Ps |Ps | Py

Pg | Pg | Pa | Pg

Pc | Po | Pe | Pe

I
(@) (b) (€)
Figure 3.2: Schematic diagram of (a) the LU Decomposition dtar, (b) sixteen processors (indexed in
hexadecimal) arranged in a logical grid, and (e)ahocation of the array elements to the procasssog.
processoPy is assigned that part of the array in the uppethat has completed.

Parallel Structure

By the end of the chapter we will conclude that the ideal parallel computationtisabne
has large blocks of independent computation that can be executed concurrently. With
separate parts of the problem being performed on different processorsyithieedittle

idle time and the solution will be found fast. To prepare to embrace “blocks of
independent” computation, we must understand what “dependent” computation is. That
is, our ideal case will be formed from normal computation in which we avoid certain
performance limiting characteristics of programming. In this seatie discuss such
features in terms of the concept of dependences.

Dependences

A dependence is an ordering relationship between two computations. Dependences can
arise in different ways in different contexts. For example, a dependence oan occ

between two processes when one process waits for a message to arrive from another
process. Dependences can also be defined in terms of read and write operations.
Consider a program that requires that a particular memory location bdtezaaha

update (write) to the same memory location; as an example, recatiuimé variable in
Figure 1.7. In this case, there is a dependence between the write operation @ad the r
operation. If the order of the two operations is swapped, the value read would not reflec
the update, so the dependence would be violated by the swap and the semantics of the
program would be altered. Any execution ordering that obeys all dependences will
produce the same result as the originally specified program. Thus, the notion of
dependences allows us to distinguish those execution orderings that are pdoessar
preserving program correctness from those that are not.

Dependences provide a general way to describe limits to parallelism, ssreéhsyt only
useful for reasoning about correctness, but they also provide a way to reason about
potential sources of performance loss. For example, a data dependence skatacros
thread or process boundary creates a need to synchronize or communicate etween t
two threads or processes. By knowing the data dependence exists we can untierstand t
consequences for parallelism even if we don’t know what aspect of the computation
caused the ordering relationship in the first place. To make this point more eplatret

us consider a specific type of dependence, known as data dependences.

Data dependence. A data dependence is an ordering on a pair of memory operations that
must be preserved to maintain correctness. There are three kinds of data dependences
* Flow dependence: read after write
* Anti dependence: write after read
* Output dependence: write after write

Flow dependences are also calieg: dependences because they represent fundamental
orderings of memory operations. By contrast, anti and output dependences are
collectively referred to afalse dependences because they arise from the re-use of
memory rather than from a fundamental ordering of the operations.

To understand the difference between true and false dependences, consider thmgfollowi
program sequence:

sum = a + 1;
first _ term= sum* scal el;
sum= b + 1;
second _term = sum * scal e2;

PN PR

There are flow dependences (giam relating lines 1 and 2, and there are flow
dependences relating lines 3 and 4. Further, there is an anti dependsenoceb@tween
line 2 and line 3. This anti dependence prevents the first pair of statements from
executing concurrently with the second pair. But we see that by renaommig the
first pair of statements ds r st _sumand by renaming theumin the second pair of
statements asecond_sum

first_ sum= a + 1;

first_term= first_sum?* scal el;
second_sum = b + 1;

second_term = second_sum * scal e2;

PwONE

the pairs can execute concurrently. Thus, at the cost of increasing the nusameyby a
word, we have increased the program’s concurrency. By contrast, flow dependences
cannot be removed by renaming variables. It may appear that the flow dependences ca
be removed simply by substituting for sum in the second and fourth lines,

1. first_term= (a + 1) * scalel;
2. second_term= (b + 1) * scal e2;

but this doesn’t eliminate the dependence because no matter how it is expressed the
addition must precede the multiplication for both terms. The flow—the write of the sum
(possibly to an internal register) to the read as an operand (possibly frateraali
register)—remains.

Dependences Limit Parallelism

To understand how dependences limit parallelism, recall the following codeCinapter
1, which specifies the summation of a seth oumbers:

sum = 0

for (i=0; i<n; i++) {
sum += x[1i];

}

This program, which we described as sequential, is abstracted in FigujetBe(aore
parallel tree solution is shown in 3.3(b). In the figure, an edge not involving a leaf
represents a flow dependence, because the computation of the lower functiontevill wr
into memory, and the upper function will read that memory. The key difference betwee
the two algorithms is now evident. In Figure 3.3(a) the sequential solution d&fines
sequence of flow dependences; they are true dependences whose ordering must be
respected. By contrast Figure 3.3(b) specifies shorter chains of flow depesndenc
imposing fewer ordering constraints and permitting more concurrencifett, evhen

we gave the C specification for adding the numbers, we were specifyinghaargist
which numbers to add. (We needed the extra fact of associativity of addition to know that
the two solutions produce the same result.)

f) —f()
f) —
f0
f0
f
%)\
to 11 to t3 ts 15 ts t7
(a)
fO

Figure 3.3. Schematic diagram of sequential and tree-basedi@udigorithms.

The point is that care must be exercised, when programming, to avoid introducing
dependences that do not matter to the computation, because such dependences will
unnecessarily limit parallelism. (Knowing tHéx is addition allows powerful compiler
techniques to transform this code into a more parallel form, but such technology has a
limited scope of application.)

Granularity

A key concept for managing the constraints imposed by dependences is the notion of
granularity. We identify and explain two closely related ways in which tms ieused:

» Granularity of work

* Granularity of interactions
Notice that grain size is usually described using texwasse andfine, though large and
small are also used.

Granularity of Interaction. Interaction measures the frequency of dependences crossing
the boundaries of threads or processes, where frequency is measured in number of useful
instructions separating the interactions. Thus, coarse grain refers to dmego®cesses

that only infrequently depend on data or events in other threads or processes, and
conversely, fine grain interactions are those that occur often. As mentiohed ea
dependences that cross thread or process boundaries introduce communication with its

associated overhead. Further, frequent interactions imply that waitingaime
accumulate as threads and processes stall. For threads sharing throwagk the cost

for communicating is lower and the amount of work between interactions may b simi
suggesting that fine grain interactions may be worthwhile, especialbed in

abundance. Because the overhead of message passing is typically largeeprocdss
best with coarse grain interactions.

Granularity of Work. Work is usually measured by such things as number of instructions
executed, or number of data values assigned to a thread or process. Accordoglgea
grain computation has a large time and/or memory footprint. Conversely, a fine grai
computation has only few values processed locally and contributes mainly byubethg

in large quantity. Consistent with earlier points, threads often support fine grain
parallelism and processes support course grained parallelism. Otherisemantes

include the sense that fine grain computations are more flexible, being av&olabl

smaller opportunities for parallelism. By contrast, coarse grain congngatan provide
better opportunities for amortizing overhead and hiding latency, as we discuss below

Applying Granularity Concepts. The key point is that no fixed granularity is best for all
situations. Instead, it is important to match the granularity of the computatiobotit

the underlying hardware’s available resources and the solution’s partieelds. For
example, the original prefix summation described in Chapter 1 was a fine grain
computation involving a small amount of work and fine grain interactions with the
adjacent threads. The Schwartz variant of the computation increased thézgrairtise
start of the computation, performing much more work before communicating. Tdes lar
granularity led to better performance. Notice that the fine grain iti@maemains in the
“accumulation” part of the Schwartz computation. To “coarsen” this part of the
computation, the degree of the tree must be increased, where the degree, presently 2, i
the number of children of each parent. For other problems a coarse granuldanitjeauly
to poor load balance.

In the limit the coarsest computations involve huge amounts of computation and no
interaction. SETI@home is such an example. Subproblems are distributed to personal
computers and solved entirely locally; the only communication comes at the endrto repo
the results. In this setting the parallel computer can be an Internet-conr@leetibn of

PCs. Such super-coarse grain is essential because of the huge cost of cotimmunica

At the other end of the spectrum are threads running on Chip Multiprocessors (CMPSs)
that provide low latency communication among processors that reside on the same chip,
making fine grain threads practical.

Most parallel computation falls between these extremes.

Locality

A concept that is closely related to granularity is that of locality. Cortipasacan
exhibit both temporal locality—memory references that are clusteradér-tand spatial
locality—memory references that are clustered by address. Rec#&tichldtly is an

10

important phenomenon in computing, being the reason why caches work, so improving
locality in a program is always a good thing. Of course, the processors ltdlpara
machines also use caches, so all of the benefits of temporal and spatial dveality
available. Keeping references local to a thread or process ensures thaetnefis will

be realized. Indeed, algorithms like the Schwartz approach that operate on blocks of da
rather than single items, virtually always exploit spatial locality, @e preferred.

In the parallel context, locality has the added benefit of minimizing depegglantong

threads or processes, thereby reducing overhead and contention. As outlined above, non-
local references imply some form of data communication, which is pure ovehatad t

limits parallel performance. Furthermore, by making non-local refesettoe threads or
processes will often contend with each other somewhere in the execution, alitiergc

on the shared variable in the case of threads or colliding in the interconnectiorknatw

the case of processes. Thus, non-locality has the potential of introducing two kinds of
overhead.

A simple example makes both parts clear: Consider a set of threads Counting 3gen a la
set of numbers using the scalable algorithm (Try 4 in Chapter 1); by warkiag

contiguous block of memory, a thread exploits spatial locality; by making the

intermediate additions to a local accumulation variable, it benefits from telnhpatity.
Moreover, by combining with the global variable at the end rather than with each

addition, it reduces the number of dependences among threads until the communication is
absolutely necessary to achieve the final result. With the reduced number of
dependences, locality is improved while overhead and contention are reduced. Note that
this use of a local accumulation variable is another example of using a small amount of
extra memory to break false dependences.

Forms of Parallelism

Though we have distinguished between thread-based parallelism and procdss-base
parallelism, we have done so to focus on implementation differences, such asrigyanula
and communication overhead. Now we are concerned with understanding where the
parallelism can be found at the algorithmic level. We recognize threeayjgnpess:

» data parallelism

» task parallelism

* pipelining
We now consider each, realizing that there is overlap among the categories.

Data Parallelism

Data parallelism refers to a broad category of parallelism in whicltathe somputation

is applied to multiple data items, so the amount of available parallelism is poopbtt

the input size, leading to tremendous amounts of potential parallelism. For exéaple
first chapter’s “counting the 3s” computation is a data parallel computaiah: @ement
must be tested equal to 3, which is a fully parallel operation. Once the individual
outcomes are known, the number of “trues” can be accumulated using the tree sammati
technique. Notice that the tree add applies to all result elements onlyifatialsstep

11

and has logarithmically diminishing parallelism thereafter. Still pdnallelism is
generally proportional to the input size, so global sum is considered to be a dé¢h paral
operation.

As we observed in our discussion of locality and granularity above, the avajilabfiidl
concurrency does not imply that the best algorithms will use it all. The Sehwart
algorithm showed that foregoing concurrency to increase locality andereduc
dependences with other threads produces a better result. Indeed, one of teurest f
of data parallelism is that it gives programmers flexibility in wgtscalable parallel
programs: The potential parallelism scales with the size of the input, andusna#y,n
>> P, programs must be designed to process more data per processor than one item. That
is, the program should be able to accommodate whatever parallelism is avdtlabke. (
been claimed that writing programs as =P leads to effective programs because
processors can be virtualized, i.e. the physical processors can simulaterdogy of
logical processors, leading to code—it’s claimed—that adapts well to anyenwai
processors. This is not our experience. Virtualizing processors leads toaytfime
grain specifications that miss both the benefits of locality and the “econonsealef of
processing a batch of data. We prefer solutions like Schwartz’s that éxplaritle
batches of data.)

Task Parallelism

The broad classification of task parallelism applies to solutions wheréefianalis

organized around the functions to be performed rather than around the data. The term
“task” in this case is not to be contrasted necessarily to “thread” as wellyatma

because the emphasis is on the functional decomposition, which could be implemented
with either tasks or threads.

For example, a client-server system employs task parallelism igniagssome tasks the

job of making requests and others the job of servicing requests. As another example, the
sub-expressions of a functional program can be evaluated in any order, so functional
programs naturally exhibit large amounts of task parallelism. Thoughaitision for

task parallel computations to apply an operation to similar data, as datelparal
computations do, the task parallel approach becomes desirable when the context in whic
the data is evaluate matters significantly.

The challenges to task parallelism are to balance the work and to insure thatadrk
contributes to the result. In many cases, task parallelism does not seeleassdata
parallelism.

Pipelining

Pipelined parallelism is a special form of task parallelism where a probleivided into
sub-problems, which can each be operated on independently, and where there are
multiple problem instances to be solved. At any point in time, multiple processes can be
busy, each working on a sub-problem of a different problem instance. As is fawtitiar
bucket brigades, assembly lines, and pipelined processors, the solution is to run the
operations concurrently, but on different problem instances. As the pipeline fills and

12

drains, there is less than full parallelism, as the opportunities for concumenegse

(fill) and then diminish (drain). A more crucial issue is the balancing of woelacH
operation. For pipelining to be maximally effective, the operations (stagest)

complete in the same amount of time. Pipeline performance is determined—even for
pipelines that are not clocked—by the longest running stage. Balancinggée stmals
out the work, allowing all stages to process at the maximum prevailing rate.

Though pipelining is frequently thought of as a parallelism approach for cdseidey
only a fixed length sequence of operations, it arises more generally. The number of
(potential) stages is often determined by the input size. In such casdgetaences
entail receiving input value(s) from one or more neighbors, computing, and thengyield
the result(s) to opposite neighbor(s). The schematic in Figure 3.4 illushatelea.
Clearly, in addition to maximizing the use of the processors, such computations are
challenging in terms of avoiding stalls caused by fine grain interactions.

APGPGPOAR
PGP
PP LG

Figure 3.4. Schematic of a 2-dimensional pipelined computatihmowing computation (boxes) and data
flow (arrows). External data is presumed to beadhit present; on the first step only the uppet-lef
computation is enabled.

Summary

In this chapter we have introduced many concepts briefly. The goal has been to become
aware of opportunities and challenges to parallel programming. Because tptsonc
interact in complex ways, it is not possible to understand them completely wéieal tre

in isolation. Rather, we have introduced them all in a quick, albeit limited, overview of
the issues, and have prepared ourselves for the next chapter where we vaf devel
algorithms and see first hand the consequences of these complexities.

Exercises

1. In transactional memory systems, a thread optimistically assumaesitizdtes no
references to shared data. The transaction atinamits successfully if there
was no shared access detected, or the transaotisback if there was. Identify
the sources of performance loss in a transactional memory systentfyic@ss
each as overhead, contention, or idle time.

2. Should contention be considered a special case of overhead? Can there be
contention in a single-threaded program? Explain.

3. Should idle time be considered a special case of overhead? Can there besidle tim
in a single-threaded program? Explain.

13

4. Does a chess program provide data parallelism or task parallelism?
5. Does quicksort provide data parallelism or task parallelism?

6. Describe a program whose speedup does not increase with increasing problem
size.

Bibliographic Notes
Schwartz’s algorithm has been discovered later by theoreticians who havet given i

different name. [Need to look up this namkT. Schwartz, "Ultracomputers”, ACM
Transactions on Programming Languages and Systems, 2(4):484-521, 1980

14

Chapter 4: General Algorithmic Techniques

To become effective programmers, we need to learn a programming language aod how t
use it to express basic problem solving techniques like building data structuresistVe m
learn how to analyze programs to determine their running time and memgey likase

will be topics for future chapters. For now, perhaps the most important understiending
acquire is the ability to “think about the computation ‘right’.” That is, we want ki thi

about solving problems in a way that matches well the languages and computabteavai

to us. In this chapter we learn the ‘right’ way to think about parallel computation.

What Is The Opposite of Sequential?

Many researchers have claimed that the best way to think about paralbeltaton is to
think about the most parallel solution imaginable assuming an unlimited number of
processors. They acknowledge that unlimited capacity is not realistic, but—their
argument goes—it is possible to “scale back” parts of the computation to be séquentia
and arrive at an ideal solution.

So, for example, return to the problem from Chapter 1 in which we want to count the
number of 3s in an array. Using the maximum parallelism approach, we expect a
solution in which one processor initializes the count value

count = O; Performed by po
and then processarassigned to thd' data element, performs the operations
if (Ali] == 3) count = count + 1; Performed by p;

Such a specification makes sense from an individual data element’s point of view,
perhaps, but not when viewed more globally, because processors can collide when
referencingcount . Though advocates of the unlimited parallelism approach have
addressed the issue of collisions with everything from “It's an error” t8 OK, thanks
to special (Fetch & Add) hardware,” we know from our discussion in Chapters 1 and 2
that there are difficulties that can arise with existing parallelpcdens:
e races can occur caused by the action of other processors chaogimy
between the time procesgmraccesses it to get its value and the fopngpdates it
» the possibility of races implies thabunt must be protected by a lock
» the need for a lock implies the potential for lock contention wheaontains
many 3s and many processors attempt to update it simultaneously
* lock contention results in lock access being serialized
» serializing locks implies that for an array of mostly 3's the executme $O(n)
regardless of the number of processors available.
There may be different “unlimited parallelism” solutions, but this is an obvioustone;
does not lead to a very parallel result.

15

The great body of literature on unlimited parallelism comes from a studyaifgba
models of computation collectively known as PRAMSs, acronymic for Paralleldta
Access Machines, though many other unlimited parallelism approaches have been
invented as well. The problem with these approaches is that finding paralkelisonmailly
not the difficult aspect of parallel programming. Rather—and this is our motive for
introducing the topic here—parallel programming is generally concerrtbdhei
consequences of parallel threads interacting, as the bulleted items just illustrated. These
are the dependences discussed in Chapter 3. They arise when processorsesaist acc
shared resources and when processors contend for, and therefore must wait on, shared
resources. Thread interaction influences performance as much as the amount of
concurrent work embodied in a problem, often more so. To be effective parallel
programmers, we need to focus on the right part of the problem, and that is on the
interactions between parallel threads.

Blocks of Independent Computation

If dependences between interacting threads are a significant problem, thaathe i

parallel computation must be one composed of large blocks of independent computation
with no interactions at all. Such computations exist: SETI@home, the Searchréor Ext
Terrestrial Intelligence, is typical; independent computational taskdaavnloaded to
participants’ idle PCs, computed, and the results returned to the server, which sompile
the results. Other tasks from Monte Carlo simulations to integer fa¢ionizeave these

same features. They may be ideal, but they are not typical; nearly all lparalle
computations require that threads interact, and the amount of interaction isedrrela

with the amount of parallelism.

General parallel computations, though more complicated, still benefit wheheyaran
exploit the blocks-of-independent-computation strategy. Our Count 3s solution from
Chapter 1 used this approach. The final solution (Try 4) partitioned the array among
several threads, allocated a local variglyle vat e _count to each thread to record
intermediate progress, and at the end combined the local results to compute the globa
result. The application of the principle of blocks-of-independent-computation is evident.
Further, our initial tries at solving the problem were largely aimed at fieungathe
consequences of thread-to-thread dependences: races were avoided with lock&rcontent
was removed with the private variables, false sharing was avoided with paddi#gcbt

as the experimental data showed, the program performed. This is one examplg of man
that we will see of an important principle:

Guidedine#1. Parallel programs are better designed when they emphasize (lage) bl
of independent computation that minimize the interthread dependences (interactions)

Though our final Count 3s result was quite satisfactory, it was not acsoaliiyle; that
is, capable of executing well for any amount of parallelism. True, the numbeeatls
was a parameter, so if the number of parallel proceBssrgreater than one, then the
solution partitions the array into blocks, @of these can execute concurrently. It is
fully parallel during the scan of the data array. But there is potential foctodention

16

during the final step of combining tipe i vat e_count variables. IfP is not likely to

be a large number, then any serialization due to lock contention is not likely to be a
serious problem; iP could be large, however, lock contention could harm performance.
So, to make the solution more scalable, we combinprth@at e_count variables
pairwise in a tree, using the tree addition algorithm. This solution gets gdothparce
using any number of processors, though wihem/log n, the final combining tree may

be deeper than necessary, implying that using so many processors is mot timaki
computation faster. (We discuss such tuning issues later in Chapter 5.)

Guideline #2. Just as algorithms are written to be independent of the number of input
valuesn, parallel algorithms should also be written to be independent of the number of
parallel thread<s?, and be capable of improved performance using additional processors.

Finally, reviewing this last version of Count 3s computation, notice that it Iy pestl a
simple variation of the Schwartz computation. Recall that the Schwartz algovidbm
designed to add array elements, but testing and tallying those elementgigi& is a

trivial variation. The Schwartz algorithm processes a block of elemently)@saour

Count 3s program does. And to produce the final result the Schwartz algorithm uses a
tree to combine the intermediate results, as our revised Count 3s solution doeg. Finall
the range of values over whiéhcan vary is the same, as are the considerations of using
more or fewer processors.

In summary, as we create parallel algorithms, we will attempt to fatenthiem as

blocks of maximally independent computation, where “maximally independent” means
that we try to reduce the interactions (dependences) among the threadsaThis is
challenging task, and we will often find that our best attempts do not attain our
performance goals. Fortunately, there are many techniques like $&bwapproach that
give us direction and ideas for solving problems in parallel.

Assigning Work To Processors Statically

The basic way to assign work is to statically assign data to processorsjainel each
processor to compute on the data it “owns.” This technique works for a wide variety of
situations, and is the subject of this section. This is the data parallel approaakebeca
we use the data as the basis for organizing the computation.

Basic Block Allocations

Since our goal is to exploit locality, it follows that contiguous portions of a tattge

should be allocated together on the same processor. (The exceptions to this thenking ar
treated below.) Thus, 1-dimensional arrays are assigned to processor&smibloc
consecutive indices. For 2-dimensional arrays, allocating by 2-dimensionks pthat

is, consecutive indices in both dimensions, generally leads to efficient solutions. The
reason 2-dimensional blocks tend to make more sense than allocating, say, whoke rows, i
that blocks can often reduce communication. For example, for computations ttuat rely
neighboring values, the so callgidncil computations such as

Bli,j] = (Ali-1,j] + Ali,j+1] + Ali+1,j] + Ali, j-1])/ 4.0;

17

there is a surface-to-volume advantage, as can be seen in Figure 4.1. That is,la squaris
block of array values has the property that the elements that must be refereatiest b
processors for the stencil computation are on the edge (surface), andizs thelsme)

of the block increases, the number of edge elements grows much more slowingeduc
communication costs. This small example isn’'t very dramatic, but the difeefena

32x32 block is 128 versus 2048 values referenced by (communicated to) other
processors. For highdrdimensional arrays, allocating dslimensional blocks is
frequently used for the surface to volume advantage, too, but almost as common is to
allocate only two of the dimensions and keep the other dimension(s) allocated locally
The latter choice is often the result insufficiently many processoext@me aspect
ratios.

A
CITTITTTTITTITTITITT]
/ 7 ___ oD
:' ;/ VA A A A A A R
]
7 7 CITTITTTTITTITITITITIT]
A A AR AR AR A KA

LITTTITT I IITITT]
(a) (b)
Figure 4.1: Two allocations of a 16x16 array to 16 process@s2-dimensional blocks and (b) rows. For
the processor with shaded values to compute a rester@eighbor computation requires communication
with other processors to transmit the hatchaldies. The row allocation requires twice as maalyeas to
be transmitted, and because of the surface to whowantage, the blocked allocation improves as the
number of local items increases.

The Specifics of Block Layouts

Our goal, when allocating the array’s blocks, is to balance the dataexssogsach
processor, because the work tends to be proportional to the number of data items.
Occasionally, everything “divides perfectly,” and each processor gnaskthe identical
amount of work; and sometimes partitioning can be simplified by making the arra

18

dimensions multiples of the number of processors. But more often the problem size and
therefore the size of the arrayss ¢, is dictated by other considerations. In such cases
there are various ways to allocate the arrays in blocks.

AssumeP = uv, thatu does not divide, and thav does not divide; that is, the divisions

r=a;u+e ande >0
c=ayv+eande, >0

have nonzero remainders. To discuss allocations, let

r=a;'(u-1) +e'ande;' >0
c=a’(v1) +&'ande, > 0

The two most obvious schemes can be called “Direct Division” and “Ceiling;F ke
Figure 4.2:

Direct Division: Allocate blocks of;' x a;' elements tou-1)(v-1) processors,
allocate blocks o&;' x a,' to (v-1) processors, allocate blocksafx &' to (u-1)
processors, and allocate a bloclep# e,' to one processor.

Celling - Floor: Allocate blocks of;' x a,' elements t@;'e,' processors, allocate
blocks ofa;" x (a2’ - 1) elements tov(- &') processors, allocate blocks af'(- 1)

X ay' to (U - e') processors, and allocate blocksg { 1) x (a2’ - 1) elements to the
remaining @ - e/')(V - &) processors.

The allocations are the same in their most important respect, the size ofjdse hdock,

a;' X a;'. This means that if a computation is strictly proportional to the number of local
data items, both schemes have the same worst case. However, the Direch ¥visi

likely to haveu+v-1 processors that have significantly less work to do than the others,
and so are more likely to be idle, waiting on others to complete. Such imbalance often
wastes parallel resources. The Ceiling - Floor allocation has the advdratatiest

number of elements in each dimension differs by only one, making the quantity of data
assigned more balanced compared to the Direct Division approach. The work is
distributed somewhat better. Without additional information about the chartcsenis

the problem, the Ceiling - Floor is slightly better.

Sensitivity to Processor po: Independent of which allocation is chosen, it is sensible to
assign the minimum allocation of data to procegpsor his is becausg, is often given
additional tasks, such as managing I/O, serving as the root of a combiningctree, et
(These can generally be thought of as controller functions, relative to thenGd&l of
Chapter 2.) By allocating it the least wopg,is available to perform the additional duties.

19

(I O I o
(a) (b)

Figure 4.2: Two array-to-processor allocations for axL33 array on 16 processors; (a) Direct Division,
(b) Ceiling - Floor.

Fluff or Halo Buffers: Computations like the 4-point nearest neighbor stencil
Bli,j] = (Ali-1,j] + Ali,j+1] + Ali+1,j] + Ali, j-1])/ 4.0;

require values stored on other processors. For the block allocations of the hygpe bei
discussed Figure 4.1(a) shows thatifandj in the top row of the allocation, references
toA[i-1,]] are off processor to the north, and similarly for the other edge elements of
the block. Such nearest neighbor references, which are quite common in scientific
computations, are best solved with the following approach:

» get the necessary values of the adjacent array blocks from the othergn®cess
» store the values in in-position buffers arranged around the local data block
» perform the computation on the (now) entirely local data values

The buffers are known dkuff or halo buffers, and are allocated in their proper position
relative to the other elements in the array block; see Figure 4.3.

Several advantages recommend this approach. First, once the fluff is fillede@nces

in the computation are local. This means that the many processor-dependgtiees im

by a loop performing the stencil computation over an array block have been meoged int
b dependences, if the computation refereicesighboring processors. The result is a

large block of dependence-free code to execute. Further, the statement use®the s

index calculations for all referencesApthat is, they can be performed in a single loop
having no special edge cases. Finally, moving non-local data to the local thread at on
time offers the opportunity (generally available) to batch the data movetnainis, the

whole row or column of an adjacent processor, perhaps stored in one or few cache lines,
might be moved at once. This is a significant advantage, as noted in Chapter 2, because
typically data transmission takgst dt, seconds to transmitbytes, where, is overhead

andty, is the time per byte. Batching communication saves the multiple overheadscharge
from multiple transmissions, and any additional waiting times caused by them.

20

/maeen
2 7
f'/ \l_(/

{?

VAAA

"

Figure 4.3: The fluff (shaded) for an array block showing tlms-local values on adjacent processors that
must be moved to fill the fluff; once the flufffiled, the stencil computation is entirely locéThe
“missing corners” are not used, but they are atkt#o simplify array index calculations.)

Cyclic and Block Cyclic

As effective as block allocations are, they are not optimal for all algasitbecause of

load balancing considerations. For example, as mentioned in Chapter 3, the well-known
LU decomposition algorithm begins with all rows and columns participating iimitied

step. As the computation proceeds, however, a row and column are completed with each
iteration, leading to the schematic shown in Figure 4.4. When all of the rows and columns
allocated to a processor are completed, it becomes idle. In the figure, 3 of the 4
processors are idle for half the computation. What should be done?

One solution is to reallocate the data periodically during the computation, but this
requires moving nearly all of the active values to other processors, which is cediside
extremely expensive. The more practical solution is to use a cyclic or blolak cy
distribution. The “cyclic” idea is to assign consecutive items to processorsuma-
robin order, or as it's often described, as if dealing out cards. Thus a cladatian of
array elements proceeds through the array in, say, row-major ordeatiatjoelements

to processors. Because keeping track of individual array elements is burderisem
more common to “deal out” consecutive subarrays, a strategy bbdtgdcyclic
allocation.

Figure 4.4: Schematic diagram of the LU Decomposition alganitilock-assigned to four processors; the
final result is a lower (black) and an upper (whiteangular matrices; active computation is gragolumn
and row are completed and added to each resulbgnaspectively, in each iteration.

21

Figure 4.5 shows a block-cyclic allocation in which consecutive array blockssigned

to separate processors cyclically. The figure shows several featunesk-cyclic

allocations: A block’s dimension (called tbleunk size) does not have to divide the

array’s dimension; the block is simply truncated. Each processor receseks from
throughout the array, implying that as the computation proceeds, completed portions wil
be resident on each processor, as will not-yet-completed portions. Figure 6 shows the
schematic allocation of Figure 5 as it would appear part way through an LU-type
computation. Notice how well the remaining work is balanced across the processors.

Figure 4.5: Block-cyclic allocation of % 2 blocks to a 14 14 array distributed to four processors
(colors).

The block-cyclic approach has the great advantage of balancing the work across the
processors (see Figure 4.6), but this does not come without costs. The most obvious cost
is the potential of block-cyclic allocation to complicate the algorithrthdfcomputation

uses the spatial properties of an array—for example, rows—then because blmck-cyc
breaks some of these relationships, special cases may have to be added)twitie al

This effect can sometimes be neutralized by picking chunk sizes to create-eask-

with patterns in the allocation. Another common recommendation is to allocateetglati
large blocks, say 64 64, as a means of amortizing the overhead of the special checking.
Of course, allowing the blocks to become too large probably means that the work will be
less evenly allocated, and that the unbalanced case at the “end” of the compuliation wi
occur sooner and last longer. It is a delicate matter to balance the congpelmgf a
block-cyclic allocation.

Finally, notice that the block allocations discussed above and the block-cyclatiathsc
discussed here do not exploit locality equally well, even when block-cyclicarges |
blocks. In general, for a given number of processors and array size, block-claisew
many smaller blocks whereas the block approach will use a single larger block pe
processor. This means for computations requiring nearest neighbor commaneat
stencils, the surface to volume advantage of blocks will result in much less
communication. (The extremely small blocks of Figure 4.5 emphasize this point since
every element is on the surface!) Of course, for computations compatibla siiigle
allocation strategy, it is an easy matter to choose the right one. But, fevdase
different phases of the computation would benefit from different allocatiores) e
difficult to find the right compromise.

22

g
EEEEr =
Hl BEl =

Figure 4.6: The block-cyclic allocation of Figure 4.5 midwdyaugh the computation; the blocks to the
right summarize the active values for each progesso

Assigning Work to Processors Dynamically

In many cases it is not possible to adopt a fixed work assignment and stay with it.
Examples include algorithms that create tasks as they proceed, algaviioges tasks
have highly variable execution times, adaptive algorithms that apply theoutio
power where the solution needs the greatest work, etc. In these and saasekathe work
gueue strategy may lead to the best assignment of computation.

Work Queue

A work queue is a first-in first-out list of task descriptors. If as a compuatatoceeds

new work is generated, it is packaged into a task descriptor and is appended tdthe wor
gueue; if as computation proceeds work is completed and a processor becomgle availa
it removes a task descriptor from the queue and begins work on it. The commonly used
names for these two roles gmducer andconsumer.

As an example of a trivial task that can be expressed in work queue form, consider the

3n+1 conjecture (or Collatz Conjecture), which proposes an affirmative answer to the
question “For any positive integas, does the process defined by

3a.1 +1 a1 odd

o
I

a1l 2 a.1 even

converge to 1?” (Sdettp://mathworld.wolfram.com/CollatzProblem.html.) Though
this conjecture is known to be true for all integers less tB&R 8ve will program a
search of the integers as an example, because it illustrates sepecét a$ work queue
technique.

Our solution postulates a work queue containing the next integers to test. Wieenitial
the queue to the firf positive integers:

void init(work g: q) { /lsetup gl obally-allocated queue array
int i;

23

for (i=0; i<P;, i++) {
qli] = i+1;
}
)

The integers are our task descriptors. As a general principle, it is wis&édmeaask
descriptors as small as possible, while making them self-contained.

A worker thread, of which we assume thereRyrevill consume the first item from the
work queue, ad® to it, and append the result to the work queue. The rationale for
addingP is thatP threads will be checking integers at once, so advancifghag the
effect of skipping those that are (logically) being processed by othadthr@ he other
threads may not all be computing yet, but they will be.) The worker thread has the
following logic:

int tester(int: limt) { //test the conjecture
int a; /1test nunber
int n; [/ count nunber of rounds of testing
while (n <limt) {
n = 0; [linitialize
a = consune(); /lremove the first element of work g
produce(a+P); //place new itemon work g

while (a!=1 & n <limt) {
if (even(a))

a=al 2
el se
a = 3*a + 1;
n++;
} /1 exiting w a==1 confirns converge
} /1 exiting neans limt was exceeded
return a; /1 tell what nunmber is the culprit

)

The tester takesla m t as a parameter. The processing loop is controlled by 1

and byn < |i m t.Because we think the conjecture is true, we expect the processing
loop to exit witha == 1, but if there were an integer for which the conjecture is false,

the loop will exceed thei mi t . If thel i m t is reached the worker will stop and return;
otherwise it continues checking until it is eventually preempted by the paranerddt

course, the parent, receiving a number back from a worker, cannot know if it is a counter-
example to the conjecture, but it can test further to see if the number is actually
convergent, but that tHa m t was set too low. This simply requires increasing the size
of [i m t and rechecking.

Consider the behavior of the work queue. First, notice that in €ffsgbsequences are
being checked simultaneously, but they will not remain in lock step because the amount
of work required of each check is different. For example, with four processors the queue
might transition through the states at the beginning

Work Queue Active Processors [task]

24

Po[1]
Po[2]
Po[2], Pa[3]
Pol[2], Pa[3], p2[4]
Po[5], pa[3], p[4]
0 Po[5], pa[3], p2[4], ps[6]

NOoOURNWNP
ONODUAWN
©O~NO U AW
P ©ow~Oo U N

illustrating that because processing 1 is tripglmnight return to the queue to get the next
value, 2, before any of the other processors start; processing 2 is als@ éasyhack

again quickly. Further, notice that workers do not necessarily process the same
subsequence. Indeed, if the timing works out all of the processors could be working on
the same subsequence at once. Summarizing, although our work queue is regimented, the
way its tasks are processed can accommodate any timing charasterist

One important detail has been ignored in the worker code. It is the mattee®f rac
resulting from multiple threads referencing the work queue simultaneousliyavée
assumed that the two proceduresnsune() andpr oduce() contain the appropriate
synchronization apparatus. Exact details of how to construct the appropriatéigomotec
are presented in the next chapter.

The Reduce & Scan Abstractions

The success of Schwartz’s algorithm for addition and Count 3s computations is not
accidental. Operations of adding and counting array elements are instaaggnefal

form of computation known agduce andscan. They are well understood, and so,
efficient solutions are known. By recognizing such computations, we can avoid working
out their details each time and simply apply standard solutions, such as Schwartz’s
algorithm. We can save our serious thinking for those parts of a computation that need
brain power.

Reduce, which can be thought of as short for “reduce the operand data structure to a
single value by combining with the given operator,” has been a part of programming
languages since the creation of the array language APL. The operaioite@tanited

to the associative and commutative operatamts multiply, and, or, max andmin, but

many operations work. Though some languages have built-in reduce operations, many do
not, and so we will create our own general routine based on the Schwartz approach. To
simplify our discussion of reduce, we adopt the notatmnator // operand, as in+ //

A, to describé\'s elements being reduced using addition. We might write the Count 3s
computation+ // (A == 3), and expect to implement it by instantiating a general
Schwartz solution with implementations of these operations.

Scan is a synonym for “parallel prefix,” mentioned in Chapter 1. Scan is relateduoee
in that scan is the reduce computation in which the intermediate values are saved,
assuming a specific order of evaluation. Thus, for atrayth values

4 2 5 6 1

25

the plus-scan dAis

4 6 11 17 18

Reduce is simply the final value produced in a scan. (We adopt the nofaaiator \\
operand, as in+ \\ A) As with reduce the associative and commutative operations
add, multiply, and, or, max andmin are common, but many other also computations
work.

To illustrate using the reduce and scan abstractions to compute the bounding-box
enclosing points in the plane. L&be an array of points of the form,
type planePt = record
X . int;
y @ int;
end;

then the sequential computation

maxX = A[0]. x;

for (i =1, i < n, i++)
{
if (maxX < Ali].x)
maxX = A[i].x;
}
maxY = A[0].vy;
for (i =1, i < n, i++)
if (maxY < A[i].y)

maxY = A[i].vy;

}
mnX = A[0]. x;
for (i =1, i
{

N

n, i++)

\%

if (mnX > Ali].x)
mnX = A[i].Xx;

}
mnY = A[0].y;
for (i =1, i

N

n, i++)

if (mnY > Ai].y)
mnY = A[i].y;

\%

}

for computing the four defining values for the bounding box is equivalent to four
applications of reduce,

maxX = max// A. X
maxY = max/ /Ay
mnX = mn//A X
mnY = mn//Ay

26

which as we saw in Chapter 1 can be efficiently implemented in parallebu@fe; these
four can be merged into one implementing procedure, so that there is only one pass over
the data and only one combining tree.

Generalized Reduce, Scan and Vector Operations

Because reduce and scan are such effective abstractions for thinking alit para
computation, we advocate using them, and developing tools for their convenient
application. Because there are so many programming systems in use, \\ee desgrto
construct an implementation, rather than giving a specific one. We begin tbe seth
reduce, and move on to scan. Finally, we observe that the concepts can be applied to
general vector operations.

Structure for Generalized Reduce

To build a general reduce or scan implementation, visualize the Schwartthalgas
abstracted in Figure 4.7. Overall, the figure shows local computation perforthed at
leaves of a combining tree, which emits the reduction result at its root. Lookneg m
closely at the diagram, we see that a data structure called the tadlgd together with
four functions, two applied on each processor:

i nit() initializes the process on each processor, setting upltiielata
structure recording the local result as the reduce performs the actamula
operation

accum(tal, val) performs the actual accumulation by combining the
running tally with the operand value

Once the local results are found, they must be combined to form the global result, using
two more functions:

conmbi ne(l eft, right) combines two tally values to create a new tally
value

reduceGen(root) takes the global tally value and outputs the correct result
for reduce.

For example, to compute / A, thei ni t () routine would initialize a tally variable to

0; theaccun{) routine would add its tally to an operand value;abebi ne() would
add two local tallies andeduceGen() is a noop that simply returns the result.

27

reduceGen (roc

combine (left, right

combine (left, right combine (left, right
comtine (left, right combine (left, right combine (left, right combine (left, right
local local local local local local local local

tally:
init()"'accué\(taL VM)I,Ji:Sm(tal, val) acdum(tal, val

operand: A 18 A A

Figure 4.7: Schematic diagram of the Schwartz algorithm usdthplement user-defined reduce. The
local operations are abstracted in the box; fundtioi t () sets up the tallygaccum() combines the tally
and the operand data structure; outside the bdkgicombining treesonbi ne() forms a new tally from
two others, and educeGen() produces the final answer from the global tally.

For the simple operation ef / A, the four-function formulation is excessively general,
but this structure is essential in more complex (and more powerful) casésstestdd in
a moment. The key to understanding the roles of the four reduce functions is first to
recognize that the tally data structure need not have the same type asahd dpta,

and second that the four routines take different argument types. So, for exampleg imagi
a user-definedecondM n // Athat finds the second smallest element in an array,
useful perhaps for an array of non-negative numbers with many 0s. In thibe gyt
data structure would have to be a two-element record or array storing thessauadl
second smallest values. Tihei t () function would set-up the tally, initialized to the +
infinity for the operand data typagcun{) would compare an operand value with the
tally elements recording the two smalle=sbyrbi ne() would find the two smallest of its
two tally arguments, and tieeduceGen() would return the second smallest value as
the result. When called at the right points in a parallel procedure implementing
Schwartz’s algorithm, they produce a paradlecondM n() solution. Figure 4.8 makes
this logic precise.

28

type tally = record

sml : float; //smal | est el enent
sn?2 : float; // second snal | est
end;
void init(tally: tal) { /lsetup gl obally-allocated tally

tal.sml = MAX FLOAT,;
tal sm2 = MAX FLOAT,;

void accum(float: elem tally: tal) { /11 ocal accumnul ation
if (tal.sml > elem {
tal.snm2 = tal.smi;
tal.sml = elem

}
elseif (tal.snm2 > elem {
tal.sm2 = elem

}

}

void conmbine(tally: left, tally: right) { //conbine into "left"
accun(right.sml, left); /1'by accunul ating ri ght
accun(right.snm2, left); //values one at a tinme

}

float reduceCGen(tally: tal) {
return tal.sng;
}

Figure 4.8: The four user-defined reduce functions implemensiacondM n reduce. The tally, globally
defined on each processor, is a two-element record.

Structure for Generalized Scan

Generalized scan applies the same concepts as generalized reducemaitye pr
difference is that after the combining is complete the “parallel gredikies must be
passed back down the combining tree. That is, in order to complete the prefix
computation on the local values, an intermediate value from the combining tree will
needed by each processor. (Refer to the parallel prefix discussion in Chapter
review Figure 1.2.)

The generalized scan begins like the generalized reduce, and there is no conceptual
difference in the three functionsi t () ,accum() andconbi ne() for the two

algorithms. However, the scan is not finished when the global tally value has been
computed. Rather, tally values must be propagated down the tree subject to thentonstrai
that

for any node, the value it receives fromits parent is the tally for the values that
areleft of its leftmost | eaf

which because we are computing on blocks, means the first item in the leftrfisst lea
block. This causes us to calhi t () to create the value as the input from the logical
parent of the root, because there is no tally for the items to the left of thosedcbyehe
root. Each node, receiving a value from the parent, relays it to its left chilts faght

29

child, it combines the value received from the left child on the upsweep with the value
received from the parent, and sends the result to the right.

When the tally value is received at a leaf, it must be combined with the valuesistore

the operand array to compute the prefix totals, which are stored in the operand position.
In Figure 4.9 these operands are shown schematically in the box at the bottom. Thus, the
scanGen() procedure produces the final result.

init()

A 4
combine (left, right

combine (left, right

combine (left, right

combine (left, right

combine (left, right

combine (left, right

combine (left, right

local local local local local local local local
parent tally: J:& J:K‘G
. . N
scanGen(tal, val) scanGen(tal; val) scanGen(tal, val) |.
‘. ‘« ‘«
operand: A ;a e ie

Figure 4.9: Schematic of the scan operation. The first pathefalgortihm is simply the generalized
reduce, schematized in Figure 4.7. Once the glalistlis found, prefixes are propagated down tee.tr
When a prefix arrives at a leaf, the local operatipplies thescanGen() function, and stores the result
in the operand item.

To illustrate the operation of user-defined scan, imagine an Amw&integers from the
sequence 0, ..k-1. The scasanmeAs \\ Arecords in positiod[i | the number of
elements in the firdtmatchingA[i] . We use as a tally an arraykoélements, which is
initialized to Os; the accumulate function increments the array item couhefoperand
value; combine function adds the two arrays; and the scan generator performs a
accumulate (initialized this time by the prefix received from therpparand stores the
count for the item found. Figure 4.10 shows the functions that realize this resulte(Not
that the tally array at the end is a histogram for the array.)

30

void init(tally: tal) { /1 setup gl obally-allocated array
for (i=0; i<k; i++) {
tal[i]= 0O;
}
)

void accunm(int: elem tally: tal) { /11 ocal accumnul ation
tal [el enf ++;

void conmbine(tally: left, tally: right) { //conmbine into "left"
for (i=0; i<k; i++) {
left[i] += right[i];

}

int scanGen(int: elem tally: tal) { //finalizing scan
accun(elem tal); /laccum w/ parent tally
return tal[elen; /lstore running count

}

Figure 4.10: User-defined scan functions to return the runmiognt ofk items; the tally is a globally
allocated array df elements.

Structure for Gneralized Vector Operations

The foregoing discussion shows that instantiating the basic structure of esdlsean

with custom functions can create efficient parallel solutions. But the idganseore
general. There is no need that the operations “accumulate from left tb right
computations that can be performed on blocks of data that can be merge to produce a
larger solution are good candidates for applying this same structure. Wlatdluke idea

by computing the longest run of positive values stored an array. So, for the sequence

-1.2 0.0 0.5-0.1-0.20.2 1.2 1.5 2.1 1.0 0.0 -0.1

the computation would return 5.

To formulate a local block computation to find the longest run of positive values, observe
that the run could straddle the boundary (or boundaries) between local blocks. For that
reason, we select a tally that has three values

type runLen = record

atstart : int; /1 count of positives fromleft
| ongest : int; /1 longest (interior) run found so far
current : int; /1 length of current run

end;

that will count the number of positive values beginning at the start of a blbskar t ,

if any, the longest run properly contained in the blddqggest , and the length of the
current runcur r ent . This last variable will have the effect of recording the length of
the positive run extending to the right end of the block, if any. Because the block will be
processed left to right, it will be convenient to treat a sequence that compfeak/a

block as having an undefinéengest andcur r ent values. So for example, dividing

the foregoing example among four processors

31

-1.2 0.0 -0.5f(-0.1-0.20.12 1.1 1.5 2.1 1.0 0.0 -0.1
results in the tallies

atstart: O atstart: O atstart: 3 atstart: 1

| ongest: 1 | ongest: O | ongest: - [ongest: O

current: 0 current: 1 current: - current: O

Notice, the third thread has the undefined values in its tally.

To build the four reduce functions, initialize the tally items to undefined (repiezbas
-1), but to simplify the combining logic later, sair r ent to 0.

atstart: -1
| ongest: -1
current: O

Accumulating begins by counting positive itemsinst ar t until the sequence is
broken; thereafter, it counts positive itemgur r ent , and records the length of the

runs inl ongest . Thus,accun() must separate the initial sequence from the others,

and for that it requires a cascade of logic as shown in Figure 4.11.

Given two tallies, their combined tally must handle four cases. These are

* both blocks span only positive elements: the result spans positive elements, so add

the right block’'sat f i r st to the left block'sat f i r st , the blocks1 ongest
andcur r ent are the same

» the left block spans only positive elements: the right bloak®si r st adds to
leftsat first,and the right block's ongest andcurrent apply

» the right block spans only positive elements: add the right bletk's r st to
the left block’scur r ent , and the left block'sit f i r st andl ongest apply

* both blocks have non-positives; the left bloakis r ent plus the right block’s
atfirst could be longer than eithebngest , the left block'sat fi r st and
the right block’'scur r ent apply

1 as our test for a positive only block. This logic is

implemented as a cascada 6fstatements.

We usd ongest == -

32

atstart ++ end 1stru atstart ++ Y

current ++ end rut

| ongest =curr ent

Figure 4.11: The accumulate logic. The “first time?” test ise¢nwhenat fi rst == - 1; the “still 1st?”
test is true whehongest == -

Finally, the global result must pick the largest ofit$ i r st ,| ongest andcurrent
values. If the longest sequence starts at the beginning, then the precediregsoges
thatat fi r st will record its length; if the longest sequence extends to the end, the
cur r ent will record the length. Otherwise the longest sequence is somewhere in the
middle, and ongest will record the value.

See Figure 4.12 for the exact logic.

These are powerful techniques that have efficient parallel implementations

void init(runLen: zero) { //setup gl obally-allocated record
zero.atstart = -1;
zero.l ongest = -1;
zero.current = 0;
)
void accum(int: elem runLen: z) { /11 ocal accumul ation
if (z.atstart == -1) { [lfirst tinme?
if (elem> 0)
z.atstart = 1,
el se {
z.atstart = O,
z.l ongest = 0;
}
el se {
if (z.longest == -1) { [lstill first tinme?

if (elem> 0)
z.atstart ++;

33

el se

z.l ongest = O;
}
el se {
if (elem> 0)
z.current ++;
el se {
if (z.longest > z.current)
z.longest = z.current;
z.current = O;
}
}
}
voi d conbi ne(runLen: left, runLen: right) { //conbine into "left"
if ((left.longest == -1) && (right.longest == -1)) //spans
left.atstart = |eft.atstart + right.atstart;
el se {
if (left.longest == -1) {
left.atstart = |eft.atstart + right.atstart;
| eft.longest = right.longest;
left.current = right.current;
el se {
if (right.longest == -1)
left.current = left.current + right.atfirst;
el se {
left.longest = MAX(left. | ongest,
left.current + right.atstart,
right.longest);
left.current = right.current;
}
}
}

}

i nt reduceGen(runLen: z) {
if (z.longest < z.atfirst)
z.longest = z.atfirst;
if (z.longest < z.current)
z. |l ongest z.current;
return z.longest;

}

Figure 4.12: The four reduce/scan functions for the “longediidee run” computation.

Trees

After arrays, trees must be the most import way to represent a computatenprésent
challenges in parallel computation for several reasons. First, treesiallg uenstructed

using pointers, and in many parallel computation situations, pointers are local only to one
processor. Second, we typically use trees for their dynamic flexjHilitydynamic

34

behavior often implies performance-bashing communication. Third, trees cammplica
allocation-for-locality. But, challenging or not, trees are too useful to ignore

Representation of Trees

Begin by noticing that we have already used trees in several computation®itm pe
accumulation and parallel prefix operations. They were implicit in that theyedeom

the communication patterns used. So, in the reduce and scan primitives above, the
conbi ne() operations were performed pairwise, with the intermediate results also
being combined pairwise, etc. inducing a tree, as shown in Figure 4.13. There are no
pointers; processors simply perform the appropriate tree roles, and thesrasbleved.

By this technique we use trees to perform global operations even when they are not the
base data structure of the computation.

—

] [

22| TlE (27| 2

Figure 4.13: Induced tree. Each processor computes on a segjoénalues (heavy lines), and then
combines the results pairwise, inducing a tregragirocessor O participates at each level inrée t

Our Guideline #1 rule, to maximize the number of large blocks of independent
computation, motivates us to use the implicit tree idea even in cases wherestbatbas
structure is a tree. This means that we separate the local and the glatighpsira

Locally, we may choose to use pointers in our implementation, but at the higheofevels
the tree where the edges are non-local, we use the implicit solution —ceecsimply
performs its proper tree role. Though it can be inconvenient to shift processing
paradigms, the advantage may be that it allows us to write a single-thsshataoh to

the subproblem (it might already exist), and then incorporate those subproblethe int
global solution.

Breadth First. Consider first trees that can naturally be enumerated breadth firss, that i
all nodes of a level can be generated given their parent nodes. In this case we
conceptually generate the complete tree down to the level, or pair of levetgy Ravi

nodes, one corresponding to each processor. So, in the binary tree Ras, denerate

to levell. For example, foP = 8, we generate a binary tree down to level 3, as shown in
Figure 4.14(a). WheR does not equal the number of nodes on a level, pick the greatest
level less thaf® and then expand enough of the nodes to the next level torRcasl

shown in Figure 4.14(b). Then, assuming the tree extends much more deeply below each
of these nodes, allocate to each processor corresponding to a node the entire subtree
enumerated from the node. The computation is conceptually local for the whole.subtree

35

(a) (b)

Figure 4.14: Logical tree representations: (a) a binary treere® = 2; (b) a binary tree where = 6.

Example. This technique works well for problems that can be recursively partitioned
into subproblems. For example, suppose we are searching a game tree forTae Tac
(Naughts and Crosses) gamed?on 4 processors. When symmetries are considered,
there are only three initial positions, and we expand one of these to fill out the 4 search
tasks, see Figure 4.15. That is, each processor will search the game tredaitedoam

the indicated board position.

0% |

Figure 4.15: Enumerating the Tic-Tac-Toe game tree; a procassmssigned to search the games
beginning with each of the four initial move seqeen

Depth First. Trees that should be enumerated by depth can be implemented in parallel
using a work queue approach. The queue is initialized with the root; a processor removes
a node and if that action leaves the queue empty, the processor expands the node, taking
one descendant as its task and appending the others to the queue. Such an approach
corresponds to standard iterative depth first traversal, and has a struchoemasns

Figure 4.16.

Figure 4.16: Basic depth allocation of a treeRe4 processors, which are each responsible forubtee
rooted at the node; the right-most node remairisérqueue.

Having assigned a subtree to each processor, consider the main aspect ofstiepth fi
enumerations, the feedback from the early parts of the enumeration to the latérpsrts

36

takes various forms including a list of nodes visited, alpha-beta limits on productive
subtrees to consider, and other measures of “progress”. A parallel afgaiitthave to

adapt such feedback to the processing of independent subtrees. For example, consider a
packing algorithm trying to minimize the area occupied by the arragrenh several

objects. A global variable recording the area of the best arrangementsimfsrdcan be
referenced by all processors and so be used in each subtree to prune the enumeration.

Full Enumeration. Certain trees must be expanded in their entirety. A common
example is the family of K-D Trees used in gravitational simulations anddbkely
related Barnes-Hut trees. Such trees are used for rapid lookup of relatedtslen the
case of gravitation simulation, 3D space is partitioned into octants, which are in tur
partitioned, etc. until each region contains only one point. This allows the points
physically near a given point to be quickly located by tree traversal. (&dda
algorithms allow groups of points acting at a distance to be approximatethgkea s
meta-point.) Areas of high concentration can lead to locally deep trees.

Perhaps the best allocation for such a tree is the so-called “cap allocasish@wn in

Figure 4.17. In the allocation tienodes nearest the root, the cap, are redundantly
allocated to each processor. Additionally, a processor is also allocated onsudjttiees
rooted at the bottom of the cap. As the computation proceeds, the cap portion of the tree
must be maintained coherently. That is, all processors must “see” the seanarsta

locking protocol must be respected. Interaction among the subtrees can useglgessa
protocol.

A ANA AA AA A

Figure 4.17. Cap allocation for a binary tree &x8 processors; the cap (shaded) and one of the “lea
subtrees” are allocated to each processor.

The cap allocation is effective primarily because most of the actikiég tplace in the
subtrees, and therefore is entirely local to a processor. Further, activitydahe root is

rare, so there is little likelihood for lock contention. Finally, the availallitthe root

means that interactions “crossing the root” can be navigated by percolatm¢ghedacal

tree and crossing the cap locally, so as to identify the correct destinditozesu

Navigating in the destination subtree is typically assigned as a task toriee éw an
additional bonus in the advanced algorithms for gravitational simulations in whyeh lar
regions of the problem are aggregated into meta-points, the points around the root are all
meta-points, and therefore are read-only, eliminating races and lockinges. is

37

Summary

Exercises

Exercise 0. Write a sequential program to perform the operations illustrdteglire 3.

That is, using an imagined library operation Getlt(<direction>, <buffer>atsinit the

data from the neighboring threads, compute a 4-point stencil computation on the interior
data array A. Assume that Getlt blocks if the data on the other processagasly’t also,
assume that buffer is a separate block of memory not related to A, i.e. you riugs inc

the fluff buffers in your portion of the data array and fill them manually.

Exercise 1. Generalize the longest positive run program to return a Boolean ithask w

1 in the element positions for every positive value in the longest run, and 0s everywhere
else. This computation uses the existing functions slightly modified, but reptaces
reduceGen() withscanGen() to produce the final values. There is also a revision
required for the tally data structure. [Hint: Assume in the accumulate dartbie

availability of a variable, calledndex, giving the index of the element being

processed.]

Exercise 2. Revise the timing assumptions of the work queue example so that all
processors are working on the subsequence: 4, 8, 12, 16. (There are multiple solutions.)

Ex. Revise the tester program so that it exploits the fact that if tredthhave
established that all number less tlkaonverge, then no thread need check further when
a <k.

Historical Context

Need in the historical section a bunch of things about the PRAM, Fetch and Add, and
other one-point-per processor schemes, such as SIMD. Need to cite Andersoritsnyder
emphasize that there are more fundamental reasons to not like PRAMs than lock
contention. Cite Blelloch. Ladner and Fischer, Deitz; who thought up block-cyclic—
Lennert?

38

