

Foundations of Parallel Programming

Calvin Lin
Department of Computer Science
University of Texas, Austin
lin@cs.utexas.edu

Lawrence Snyder

Department of Computer Science and Engineering
University of Washington, Seattle
snyder@cs.washington.edu

This is a work in progress. It is incomplete, it may be inaccurate, though obviously we
don’t intend for it to be, and in all likelihood, it has grammar, typing and programming

errors. We are circulating it for the purpose of receiving feedback from thoughtful
readers. Please send any comments to either of us. Thank you for your patience.

ILLIAC-IV Early Parallel Computer

Draft : 18 September 2006

© 2006, Lin and Snyder, All rights reserved.

Table of contents

Chapter 1: Approaching Parallelism

In March of 2005, as techies eagerly awaited the arrival of the first dual core processor
chips, Herb Sutter wrote an article in Dr. Dobbs' Journal titled, "The Free Lunch is Over:
Fundamental Turn Towards Concurrency in Software." His point was that for 35 years,
programmers have ridden the coattails of exponential growth in computing power.
During that time, the software community has had the luxury of dealing mainly with
incremental conceptual changes. The vast majority of programmers have been able to
maintain the same abstract von Neumann model of a computer and the same basic
notions of performance-- count instructions, sometimes worrying about memory usage.
The community occasionally welcomes a new language, such as Java, and it only rarely
changes the programming model, as with the movement towards the object-oriented
paradigm. For the most part, however, the community has been spoiled to believe that
business will continue as usual except that new generations of microprocessors will arrive
every 18 months, providing more computing power and more memory.

The advent of dual core chips, however, signifies a dramatic change for the software
community. The existence of parallel computers is not new. Parallel computers and
parallelism have been around for many years, but parallel programming has traditionally
been reserved for solving a small class of hard problems, such as computational fluid
dynamics and climate modeling, which require large computational resources. Thus,
parallel programming was limited to a small group of heroic programmers. What's
significant is that parallelism will now become a programming challenge for a much
larger segment of programmers, as transparent performance improvements from single-
core chips are now a relic of the past. In other words, the Free Lunch is over.

What has caused the move to multi-core chips? Over the past 20 years,
microprocessors have seen incredible performance gains fueled largely by
increased clock rates and deeper pipelines. Unfortunately, these tricks are now
showing diminishing returns. As silicon feature sizes have shrunk, wire delay—
the number of cycles it takes a signal to propagate across a wire—has increased,
discouraging the use of large centralized structures, such as those required for
super-pipelined processors. Moreover, as transistor density has increased
exponentially, so has power density. Power dissipation has thus become a large
issue, and the use of multiple simpler slower cores offers one method of limiting
power utilization. All of these trends point towards the use of multiple, simpler
cores, so multi-core chips have become a commercial reality. Intel and IBM's
latest high end products package 2 CPU's per chip; Sun's Niagara has 8 multi-
threaded CPU's; the STI Cell processor has 9 CPU's, and future chips will likely
have many more CPU's.

The Characteristics of Parallelism
Why does parallel programming represent such a dramatic change for programmers?
Here are a few reasons.

• Explicitly parallel algorithms are fundamentally different from sequential
algorithms, because they embody multiple points of execution.

• Programs with concurrent interactions are harder to reason about and harder to
debug.

• It’s harder to achieve good performance with a parallel program.
o Small inefficiencies can lead to large performance problems.
o It’s harder to ignore low-level details.

• The performance model is different and more complex.
o Counting instructions is insufficient.
o Focusing on communication is insufficient.
o The performance problem is instead an inseparable problem with multiple

dimensions.
• The joint goals of portability and performance are harder to achieve.
• Tools and languages are immature.

In this book, we will explore these topics and more. As a first glimpse, the next two
sections address the first two bullets, as we show that parallelism requires us to look at
problems differently, and as we show that parallel programming is considerably more
challenging than sequential programming.

A Paradigm Shift
Expressing a computation in parallel requires that it be thought about differently. In this
section we consider several tiny computations to illustrate some of the issues involved in
changing our thinking.

Summation
To begin the illustration, consider the task of adding a sequence of n data values:

x0, x1, x2, …, xn-1

Perhaps the most intuitive solution is to initialize a variable, call it sum, to 0 and then
iteratively add the elements of the sequence. Such a computation is typically
programmed using a loop with an index value to reference the elements of the sequence,
as in

sum = 0
for (i=0; i<n; i++) {
 sum += x[i];
}

This computation can be abstracted as a graph showing the order in which the numbers
are combined; see Figure 1.1. Such solutions are our natural way to think of algorithms.

Figure 1.1. Summing in sequence. The order of combining a sequence of numbers (6, 4, 16, 10, 12, 14, 2,
8) when adding them to an accumulation variable.

Of course, addition over the real numbers is an associative and commutative operation,
implying that its values need not be summed in the order specified, least index to greatest
index. We can add them in another order, perhaps one that admits more parallelism, and
get the same answer.

Another, more parallel, order of summation is to add even/odd pairs of data values
yielding intermediate sums,

x0 + x1, x2 + x3, x4 + x5, x6 + x7, …

which are added in pairs,

(x 0 + x1) + (x2 + x3), (x4 + x5) + (x6 + x7), …

yielding more intermediate sums, etc. This solution can be visualized as inducing a tree
on the computation, where the original data values are leaves, the intermediate nodes are
the sum of the leaves below them, and the root is the overall sum; see Figure 1.2.

Nonassociativity. Strictly speaking, addition is not associative on floating point
number’s fixed precision representation. For some sequences of values, adding the
numbers in different orders will produce different answers, because floating point
representations only approximate real numbers. We ignore such issues and reorder
computations to improve performance, reasoning that (a) under most circumstances the
sequence’s order was arbitrary in the first place, and, (b) in those cases where it is not
arbitrary and numerical precision is a potential issue, error management is required
throughout the computation anyway.

2 4 6 8 10 12 14 16

10
26

48
62

36

64 76

Figure 1.2. Summing in pairs. The order of combining a sequence of numbers (6, 4, 16, 10, 12, 14, 2, 8)
by (recursively) combining pairs of values, then pairs of results, etc.

Comparing Figures 1.1 and 1.2, we see that because the two solutions produce the same
number of computations and the same number of intermediate sums, there is no time
advantage to either solution when using one processor. However, with a parallel
computer that has P=n/2 processors, all of the additions at the same level of the tree can
be computed simultaneously, yielding a solution with time complexity that is
proportional to log n. Like the sequential solution this is a very intuitive way to think
about the computation.

The crux of the advantage of summing by pairs is that the approach uses separate and
independent subcomputations, which can be performed in parallel.

Prefix Summation
A closely related computation is the prefix sum, also known as scan in many
programming languages. It begins with the same sequence of n values,

x0, x1, x2, …, xn-1

but the desired computation is the sequence

y0, y1, y2, …, yn-1

such that each y i is the sum of the first i elements of the input, that is,

y i = Σj≤i x j

Solving the prefix sum in parallel is less obvious than summation, because all of the
intermediate values of the sequential solution are needed. It seems as though there is no
advantage of, nor much possibility of, finding better solutions. But the prefix sum can be
improved.

The observation is that the summing by pairs approach can be modified to compute the
prefix values. The idea is that each leaf processor storing xi could compute the value, yi, if

2 4 6 8 10 12 14 16

10 26 30 10

36 40

76

it only knew the sum of all elements to its left, i.e. its prefix; in the course of summing by
pairs, we know the sum of all substrees, and if we save that information, we can figure
out the prefixes, starting at the root, whose prefix—that is, the sum of all elements before
the first one in sequence—is 0. This is also the prefix of its left subtree, and the total for
its left subtree is the prefix for the right subtree. Applying this idea inductively, we get
the following set of rules:

• Compute the grand total by summing pairs, as before.
• On completion, imagine the root receiving a 0 from its (nonexistent) parent.
• All non-leaf nodes receiving a value from their parent, relay that value to their left

child, and send their right child the sum of the parent’s value and their left child’s
value; these are the prefixes of their child nodes.

• Leaves add the value—the prefix—received from above.

The values moving down the tree are the prefixes for the child nodes. (See Figure 1.3,
where downward moving prefix values are in red.)

Figure 1.3. Computing the prefix sum. The black values, computed going up the tree, are from the
summing by pairs algorithm; the red values, the prefixes, are computed going down the tree by a simple
rule: send the value from the parent to the left; add the node’s intermediate sum to the value from the parent
and send it to the right.

The computation is known as the parallel prefix computation. It requires an up sweep and
a down sweep in the tree, but all operations at each level can be performed concurrently.
At most two add operations are required at each node, one going up and one coming
down, plus the routing logic. Thus, the parallel prefix also has logarithmic time
complexity.

Many seemingly sequential operations yield to the parallel prefix approach.

Parallel Programming is Challenging
Though the algorithms are different, they remain intuitive. The programming, even
knowing the algorithm can be challenging.

To understand the difficulty of writing correct and efficient parallel programs, consider
the problem of counting the number of 3's in an array. This computation can be trivially

2 4 6 8 10 12 14 16

10 26 30 10

36 40

76
0

0

0 0+6

0+10

10 16+10

0+36

36

36 36+12

36+30

66 66+2

expressed in most sequential programming languages, so it is instructive to see what its
parallel counterpart looks like.

To simplify matters, let's assume that we will execute our parallel program on a multi-
core chip with two processors, see Figure 1.4. This chip has two independent
microprocessors that share access to an on-chip L2 cache. Each processor has its own L1
cache. The processors also share an on-chip memory controller so that all access to
memory is equidistant” from each processor.

Figure 1.4. Organization of a multi-core chip. Two processors, P0 and P1, have a private L1 cache and
share an L2 cache.

We will use a threads programming model in which each thread executes on a dedicated
processor, and the threads communicate with one another through shared memory (L2).
Thus, each thread has its own process state, but all threads share memory and file state.
The serial code to count the number of 3's is shown below:

 1 int *array;
 2 int length;
 3 int count;
 4
 5 int count3s ()
 6 {
 7 int i;
 8 count = 0;
 9 for (i=0; i<length; i++)
10 {
11 if (array[i] == 3)
12 {
13 count++;
14 }
15 }
16 return count;
17 }

To implement a parallel version of this code, we can partition the array so that each
thread is responsible for counting the number of 3's in 1/t of the array, where t is the
number of threads. Figure 1.5 shows graphically how we might divide the work for t=4
threads and length=16.

Memory

L2

L1 L1

P0 P1

Figure 1.5. Schematic diagram of data allocation to threads. Allocations are consecutive indices.

We can implement this logic with the function thread_create() , which takes two
arguments—the name of a function to execute and an integer that identifies the thread's
ID—and spawns a thread that executes the specified function with the thread ID as a
parameter. The resulting program is shown in Figure 1.6.

 1 int t; /* number of threads */
 2 int *array;
 3 int length;
 4 int count;
 5
 6 void count3s ()
 7 {
 8 int i;
 9 count = 0;
10 /* Create t threads */
11 for (i=0; i<t; i++)
12 {
13 thread_create (count3s_thread, i);
14 }
15
16 return count;
17 }
18
19 void count3s_thread (int id)
20 {
21 /* Compute portion of the array that this thre ad should work on */
22 int length_per_thread = length/t;
23 int start = id * length_per_thread;
24
25 for (i=start; i<start+length_per_thread; i+)
26 {
27 if (array[i] == 3)
28 {
29 count++;
30 }
31 }
32 }

Figure 1.6. The first try at a Count 3s solution using threads.

Unfortunately, this seemingly straightforward code will not produce the correct answer
because there is a race condition in the statement that increments the value of count on
line 29. A race condition occurs when multiple threads can access the same memory
location at the same time. In this case, the problem arises because the statement that

 2 3 0 2 3 3 1 0 0 1 3 2 2 3 1 0 array

length=16 t=4

 Thread 0 Thread 1 Thread 2 Thread 3

increments count is typically implemented on modern machines as a series of primitive
machine instructions:

• Load count into a register
• Increment count
• Store count back into memory

Thus, when two threads execute the Count3s_thread() code, these instructions
might be interleaved as shown in Figure 1.7. The result of the interleaved executions is
that count ⇔ 1 rather than 2. Of course, many other interleavings can also produce
incorrect results, but the fundamental problem is that the increment of count is not an
atomic operation, that is, uninterruptible.
Figure 1.7. One of several possible interleaving in time of references to the unprotected variable count

illustrating a race.

We can solve this problem by using a mutex to provide mutual exclusion. A mutex is an
object that has two states—locked and unlocked—and two methods—lock() and
unlock() . The implementation of these methods ensures that when a thread attempts
to lock a mutex, it checks to see if it is presently locked our unlocked. If locked, it waits
until the mutex is in an unlocked state, before locking it, that is, setting it to the locked
state. By using a mutex to protect code that we wish to execute atomically—often
referred to as a critical section—we guarantee that only one thread accesses the critical
section at any time. For the Count 3s problem, we simply lock a mutex before
incrementing count , and we unlock the mutex after incrementing count , resulting in
our second try at a solution, see Figure 1.8.

 1 mutex m;
 2
 3 void count3s_thread (int id)
 4 {
 5 /* Compute portion of the array that this thre ad should work on */
 6 int length_per_thread = length/t;
 7 int start = id * length_per_thread;
 8
 9 for (i=start; i<start+length_per_thread; i+)
10 {

Thread 1 Thread 2
 count ⇔ 0
load
 load
 increment time
increment
store
 count ⇔ 1 store
 count ⇔ 1

11 if (array[i] == 3)
12 {
13 mutex_lock(m);
14 count++;
15 mutex_unlock(m);
16 }
17 }
18 }

Figure 1.8. The second try at a Count 3s solution showing the count3s_thread() with mutex
protection for the count variable.

With this modification, our second try is a correct parallel program. Unfortunately, as we
can see from the graph in Figure 1.9, our parallel program is much slower than our
original serial code. With one thread, execution time is five times slower than the
original serial code, so the overhead of using the mutexs is harming performance
drastically. Worse, when we use two threads, each running on its own processor, our
performance is even worse than with just one thread; here lock contention further
degrades performance, as each thread spends additional time waiting for the critical
section to become unlocked.

Figure 1.9. Performance of the second Count 3s solution.

Recognizing the problem of lock overhead and lock contention, we can try implementing
a third version of our program that operates at a larger granularity of sharing. Instead of
accessing a critical section every time count must be incremented, we can instead
accumulate the local contribution to count in a private variable, private_count and
only access the critical section of updating count once per thread. Our new code for
this third solution is shown in Figure 1.10.

 1 private_count[MaxThreads];
 2 mutex m;
 3
 4 void count3s_thread (int id)
 5 {
 6 /* Compute portion of the array that this thre ad should work on */
 7 int length_per_thread = length/t;
 8 int start = id * length_per_thread;
 9

 Performance

 serial Try 2

 0.91

 5.02
 6.81

 t=1 t=2

10 for (i=start; i<start+length_per_thread; i++)
11 {
12 if (array[i] == 3)
13 {
14 private_count[t]++;
15 }
16 }
17 mutex_lock(m);
18 count += private_count[t];
19 mutex_unlock(m);
20 }

Figure 1.10. The count3s_thread() for the third Count 3s solution using a private_count array
elements.

In exchange for a tiny amount of extra memory, our resulting program now executes
considerably faster, as shown by the graph in Figure 1.11.

Figure 1.11. Performance results for the third Count 3s solution.

We see that with one thread our execution is the same the serial code, so our latest
changes have effectively removed locking overhead. However, with two threads there is
still performance degradation. This time, the performance problem is more difficult to
identify by simply inspecting the source code. We also need to understand some details
of the underlying hardware. In particular, our hardware uses a protocol to maintain the
coherence of its caches, that is, to assure that both processors “see” the same memory
image: If processor 0 modifies a value at a given memory location, the hardware will
invalidate any cached copy of that memory location that resides in processor 1's L1
cache, thereby preventing processor 1 from accessing a stale value of the data. This
cache coherence protocol becomes costly if two processors take turns repeatedly
modifying the same data, because the data will ping pong between the two caches.

In our code, there does not seem to be any shared modified data. However, the unit of
cache coherence is known as a cache line, and for our machine the cache line size is 128
bytes. Thus, although each thread has exclusive access to either private_count[0]
or private_count[1] , the underlying machine places them on the same 128 byte
cache line, and this cache line ping pongs between the caches as private_count[0]
and private_count[1] are repeatedly updated. (See Figure 1.12.) This
phenomenon in which logically distinct data shares a physical cache line is known as
false sharing. To eliminate false sharing, we can pad our array of private counters so that
each resides on a distinct cache line. See Figure 1.13.

 0.91

 Performance

 serial Try 3

 0.91 1.15

 t=1 t=2

Figure 1.12. False Sharing. A cache line ping-pongs between the L1 caches and the L2 cache, because
although the references to private_count don’t collide, they use the same cache line.

 1 struct padded_int
 2 {
 3 int value;
 4 char padding[32];
 5 } private_count[MaxThreads];
 6
 7 void count3s_thread (int id)
 8 {
 9 /*Compute portion of the array this thread shoul d work on */
10 int length_per_thread = length/t;
11 int start = id * length_per_thread;
12
13 for (i=start; i<start+length_per_thread; i++)
14 {
15 if (array[i] == 3)
16 {
17 private_count[t]++;
18 }
19 }
20 mutex_lock(m);
21 count += private_count[t].value;
22 mutex_unlock(m);
23 }

Figure 1.13. The count3s_thread() for the fourth solution to the Count 3s computations showing the
private count elements padded to force them to be allocated to different cache lines.

With this padding, the fourth solution removes both the overhead and contention of using
mutexes, and we have finally achieved success, as shown in Figure 1.14.

L2

L1 L1

P0 P1

private_count[0]

Th private_co
unt[1]

 Thread modifying
 private_count[0]

 private_co
unt[0]

 private_co
unt[1]

 Thread modifying
 private_count[1]

private_count[0]

h private_co
unt[1]

Figure 1.14. Performance for the fourth solution to the Count 3s problem shows that one processor has
performance equivalent to the standard sequential solution, and two processors improve the computation
time by a factor off 2.

From this example, we can see that obtaining correct and efficient parallel programs can
be considerably more difficult than writing correct and efficient serial programs. The use
of mutexes illustrates the need to control the interaction among processors carefully. The
use of private counters illustrates the need to reason about the granularity of
parallelism—that is, the frequency with which processes interact with one another. The
use of padding shows the importance of understanding machine details, as sometimes
small details can have large performance implications. It is this non-linear aspect of
parallel performance that often makes parallel performance tuning difficult. Finally, we
have seen two examples where we can trade off a small amount of memory for increased
parallelism and increased performance.

The larger lesson from this example is more subtle. Because small details can have large
performance implications, there is a tendency to exploit details of the specific underlying
hardware. However, because performance tuning can be difficult, it is wise to take a
longer term view of the problem. By creating programs that perform well across a wide
variety of platforms, we can avoid much of the expense of re-writing parallel programs.
For example, solutions that rely on the fact that multi-core chips have only a few cores
with low latency communication among cores will need to be re-thought when future
hardware provides systems with larger communication latencies.

Looking Ahead
We began this chapter by lamenting the demise of the Free Lunch, which was phrased as
a steady sequence of performance improvements provided transparently to programmers
by the hardware. In fact much of this performance improvement has come from
parallelism. The first ALU's were bit-serial, which quickly gave way to bit-parallel
ALUs. Additional parallelism in the form of further increases in data-path width
produced additional performance improvements. In the 1990's we saw the introduction
of pipelined processors, which used parallelism to increase instruction throughput,
followed by superscalar processors that could issue multiple instructions per cycle. Most
recently, processors have improved instruction throughput by executing instructions
simultaneously and out of order. A key point is that all of these forms of parallelism have
been hidden from the programmer. They were available implicitly for no programmer
effort.

 Performance

 serial Try 4

 0.91
 0.51

 t=1 t=2

 0.91

Since there are obvious benefits to hiding the complexity of parallelism, an obvious
question is whether we can implement parallelism at some level above the hardware,
thereby extending the Free Lunch to higher levels of software? For example, we could
imagine a parallelizing compiler that transforms existing sequential programs and map
them to new parallel hardware; we could imagine hiding parallelism inside of carefully
parallelized library routines; or we could imagine hiding parallelism by using a functional
language, which admits copious amounts of parallelism because of its language
semantics. All of these techniques have been tried, but none has solved the problem to
date.

The costs and benefits of hiding parallelism depend on the setting, the type of problem to
be solved, etc. In some settings, a parallelizing compiler is sufficient, in others libraries
may be sufficient, and in others, parallelism will simply have to be exposed to the
programmer at the highest level. One goal of this book is to help readers understand
parallelism so that they can answer such questions and others based on their specific
needs.

Summary
This book provides a foundation for those who wish to understand parallel computing.
Part 1 (Foundations) focuses on fundamental concepts. Part 2 (State of the Art) then
provides a few approaches to parallel programming that represent the current state of the
art. The goal is not to espouse these approaches or to describe these languages in
exhaustive detail, but to provide a grounding in two low-level approaches and one high
level approach so that practitioners can use them. Another goal of Part 2 is to allow
researchers to appreciate the limitations of these approaches so that they can help invent
the solutions that will replace them in the future. Part 3 (Hot Themes) discusses in more
detail various trends in parallel computing, and Part 4 (Capstone Project) puts everything
together to help instructors create a capstone project.

Exercises
1. Revise the original Summation computation along the lines of Count 3s to make it

parallel.
2. Using the binary encoding of the process ID, use the concepts illustrated in the

Count 3s program to Sum Pairs algorithm.

Chapter 2: Parallel Computers

If we're going to write good parallel programs, it's important to understand what parallel
computers are. Unfortunately, there is considerable diversity among parallel machines,
from multi-core chips with a few processors to cluster computers with many thousands of
processors. How much do we need to know about the hardware to write good parallel
programs? At one extreme, intimate knowledge of a machine's details can yield
significant performance improvements. For example, the Goto BLAS, basic linear
algebra subroutines (BLAS) are machine specific programs for core computations hand-
optimized by Kazushige Goto that demonstrate enormous performance improvements.
However, because hardware typically has a fairly short lifetime, it is important that our
programs not become too wedded to any particular machine, for then they will simply
have to be re-written when the next machine comes along. This goal of portability thus
tempts us to ignore certain machine details.

To resolve this dilemma of needing to know the properties of parallel machines without
embedding specifics into our programs, we will take an intermediate approach. We will
first discuss essential features that we expect all parallel computers to possess, with the
view that these features are precisely those that portable parallel algorithms should
exploit. We then take a look at various features that are characteristic of various classes
of parallel computers. We close this chapter by exploring in more detail five very
different parallel computers.

First There is the RAM Model
To design parallel algorithms, we need to understand our target parallel machine. If we
are to have any hope of writing portable parallel programs—specifically, performance
portable programs that run well across a wide variety of parallel machines—then we
need a single, accurate model of a parallel computer. To reason by analogy, notice that
sequential computing has long benefited from such a model: The random access machine
(RAM) model is an abstract machine that stores both program and data in its memory and
allows one instruction to be fetched and executed at every cycle. We will use an
analogous idea for the parallel case, but first, let’s review how we apply the RAM model
in sequential programming.

The simplicity of the RAM model is essential, because it allows programmers to estimate
overall performance based on instruction counts on the RAM model. For example, if we
want to find an item (searchee) that might be in an array A of sorted items, we could
use a sequential search or a binary search; see Figure 1.1. Knowing the RAM model, we
know that the sequential search will take an average of n/2 iterations of the for -loop to
find the desired item, and that each iteration will typically require executing fewer than a
dozen machine instructions. The binary search is a slightly more complex algorithm to
write, but its expected performance is approximately log2 n iterations of the while -loop,
which will take fewer than two dozen machine instructions. For n < 10 or so, sequential
search is likely to be fastest; binary search will be best for larger values of n.

1 location = -1; 1 location = -1;
2 for (j = 0; j < n; j++) 2 hi = n-1;
3 { 3 lo = 0;
4 if (A[j] == searchee) 4 while (lo != hi)
5 { 5 {
6 location = j; 6 mid=lo+floor((hi–lo+1) /2);
7 break; 7 if (A[mid] == searchee)
8 } 8 break;
9 } 9 if (A[mid] < searchee)
 10 hi = mid ;
 11 else
 12 lo = mid+ 1;
 13 }
Figure 2.1. Two searching computations; (a) linear search, (b) binary search.

The applicability of the RAM model to actual hardware is also essential, because if we
had to constantly invent new models, we would have to constantly re-evaluate our
algorithms. Instead, this single long-lasting model has allowed algorithm design to
proceed for many years without worrying about the myriad details of each particular
computer. This feat is impressive considering that hardware has enjoyed 35 years of
exponential performance improvement and 35 years of increased hardware complexity.

We note, of course, that the RAM model is unrealistic. For example, the single cycle cost
of fetching data is clearly a myth for current processors, as is the illusion of infinite
memory, yet the RAM model works because for most purposes, these abstract costs
capture those properties that are really important to sequential computers. We also note
that significant performance improvements can be obtained by customizing
implementations of algorithms to machine details.

And of course, the model does not apply to all hardware. In particular vector processors
which can fetch long vectors of data in a single cycle do not fit the RAM model, so
conventional programs written with the RAM do not fare well on vector machines. It
was not until programmers learned to develop a new vector model of programming that
vector processors realized their full potential.

A Parallel Computer Model
To translate the success of sequential algorithms to parallel computers, we need an
idealized parallel computer that corresponds to the RAM model. Like the RAM, this
model should be minimal and as universal as possible. The model that we will present is
known for historical reasons as the Candidate Type Architecture, or simply the CTA.

The CTA Model
A schematic of the CTA parallel computer model is shown in Figure 2.2. It is composed
of P standard sequential computers, called processors or processor elements, connected
together by an interconnection network, also called a communication network. The
processors, described by the RAM model, are composed of an execution engine and a
random access memory, which stores both programs and data. The P+1st processor

(denoted by dashed lines) is the controller. Its purpose is to assist with various
operations such as initialization, synchronization, eurekas, etc. Many parallel computers
do not have an explicit controller, and in such cases processor p0 serves that purpose.

 (a) (b)

Figure 2.2. The CTA parallel computer model. (a) The schematic shows the CTA as composed of P
sequential computers connected by a interconnection network; the distinguished (by dashed lines) computer
is the controller, and serves such clerical functions as initiating the processing. (b) Detail of a RAM
processor element. See the text for further details.

The processors are connected to each other by the interconnection network. These
networks are built from wires and routers in a regular topology. Figure 2.3 shows several
common topologies used for interconnection networks. The best topology for a parallel
computer is a design-decision made by architects based on a variety of technological
considerations. The topology is of no interest to programmers.

2D Torus <and others>
Figure 2.3. Common topologies used for interconnection networks; the interconnection network’s
topology is of little concern to programmers.

A network interface chip (NIC) mediates the processor/network connection. The Figure
2.2 schematic shows processors connected to the network by four wires, known as the
node degree, but the actual number of connections is a property of the topology and the
network interface design; it could be as few as one (bidirectional) connection, but
typically no more than a half dozen. Data going to or coming from the network is stored
in the memory and usually read or written by the direct memory access (DMA)
mechanism.

Though the processors are capable of synchronizing and collectively stopping for
barriers, they generally execute autonomously, running their own local programs. If the
programs are the same in every processor, the computation is often referred to as single
program, multiple data, or SPMD computation. The designation is of limited use,
because even though the code is the same in all processors, the fact that they can each

…
RAM RAM RAM RAM RAM

RAM

Interconnection Network R

Processor

Memory

N. I. C

execute different parts of it (they each have a copy of the code and their own program
counter) allows them complete autonomy.1

Data references can be made to a processor’s own local memory, which is supported by
caches and performs analogously to standard sequential computers. Additionally,
processors can reference non-local memory, that is, the memory of some other processor
element. (The model has no global memory.) There are three widely used mechanisms
to make non-local memory references: shared-memory, one-sided communication, which
we abbreviate 1-sided, and message passing. The three mechanisms, described in a
moment, place different burdens on programmers and hardware, but from the CTA
machine model perspective, they are interchangeable.

A key aspect of parallel computers is that referencing the local and the non-local memory
requires different amounts of time to complete. The delay required to make a memory
reference is called memory latency. Memory latency cannot be specified in seconds,
because the model generalizes over many different architectures built of different design
elements from different technologies. So, latency is specified relative to the processor’s
local memory latency, which is taken to be unit time. This implies local memory latency
roughly tracks processor rate, and we (optimistically) assume that local (data) memory
can be referenced at the rate of one word per instruction. Of course, local memory
reference is influenced by cache behavior and many aspects of processor and algorithm
design, making it quite variable. An exact value is not needed, however.

The non-local memory latency is designated in the CTA model by the Greek letter λ.
Non-local memory references are much more expensive, having λ values 2-5 orders of
magnitude larger than local memory reference times. As with local memory reference,
non-local references are influenced by many factors including technology,
communication protocols, topology, node degree, network congestion, distance between
communicating processors, caching, algorithms, etc. But the numbers are so huge that
knowing them exactly is unnecessary.

Properties of the CTA
To summarize the characteristics of our abstract machine, we have:

• There are P processors, which are standard sequential computers executing local
instructions

• Local memory access time is the usual memory access time for the sequential
processor

1 Two classifications commonly referred to in the literature, but not particularly relevant to the CTA model
or our study are SIMD and MIMD. In single instruction stream, multiple data stream (SIMD) computers,
there is a single program and all processors must execute the same instruction or no instruction at all. In
multiple instruction stream, multiple data stream (MIMD) computers, each processor potentially has a
different program to execute. Thus, MIMD and SPMD are logically equivalent: The separate MIMD
programs can be conceptually unioned together into one (MIMDà SPMD); conversely, optimize the
SPMD code so each processor’s copy eliminates any code it never executes (SPMDà MIMD).

• Non-local memory access time, λ >> 1, can be between 2-5 orders of magnitude
larger than local memory access time.

• The low node degree implies a processor cannot have more than a few (typically
one or two) transfers in flight at once.

• A global controller (often only logical) assists with basic operations like initiation,
synchronization, etc.

Further observations will result from a more complete look at the interconnection
network below.

The consequences of these properties for programming parallel computers can be
encapsulated into a simple rule:

Locality Rule. Fast programs tend to maximize the number of local memory
references and minimize the number of non-local memory references.

This guideline must remain foremost in every parallel programmer’s thinking while
designing algorithms.

Though interprocessor communication is extremely expensive, it is helpful if
programmers are aware of the effects of certain patterns of communication:

1. All processors can transmit at once; that is, communication is a parallel activity.
Referring to the topologies of Figure 2.3 notice that there can in principle be a
transmission along each edge simultaneously.

2. The processor graph is not complete, that is, not fully connected. Thus, some
communication operations will be indirect, progressing through a series of
routers.

3. Processors are only sparsely connected, which is a graph theoretic term implying
(among other things) that the topology doesn’t have the capacity to perform
certain communication operations without serious congestion—all-to-all
communication or transposes, for example.

Distilling the observations, (1) means a lot can be transmitted in one “communication
time,” (2) means that times will be sensitive to the pattern of communication, and (3)

Applying The Locality Rule. Exploiting locality is the basis of many examples
showing how parallel programming differs from sequential programming. Scalar
computation is one: Imagine a computation in which the processors need a new
random number r for each iteration of an algorithm. One approach is for one
processor to store the seed and generate r on each cycle; then, all other processors
reference it. A better approach is for each processor to store the seed locally, and to
generate r itself on each cycle, that is, redundantly. Though the second solution
requires many more instructions to be executed, they are executed in parallel and so
do not take any more elapsed time than one processor generating r alone. More
importantly, the second solution avoids non-local references, and since computing a
random number is much faster than a single non-local memory reference, the overall
computation is faster.

means some patterns are much worse than others. (Some parallel computers do not have
all of these properties, but we will adjust the model for them below.)

The CTA architecture mentions P processors, implying that the machine is intended to
scale. Programmers will write code that is independent of the exact number of
processors, and the actual value will be supplied at runtime. It is a fact that λ will
increase as P increases, though probably not as fast; doubling the number of processors
will usually not double λ in a well engineered computer.

In summary, the CTA is a general purpose parallel computer model that abstracts the key
features of all scalable (MIMD) parallel computers built in the last few decades. Though
there are variations on the theme (discussed below), the properties that the CTA exhibits
should be expected of any parallel computer.

Memory Reference Mechanisms
The CTA model does not specify whether the memory referencing mechanism is by
shared memory, 1-sided or message passing communication. All three are commonly
used and are described in the next sections.

Shared memory
The shared memory mechanism is a natural extension of the flat memory of sequential
computers. It is widely thought to be easier for programmers to use than the other
mechanisms, but it has also been frequently criticized as being harder to write a fast
program. Shared memory, which presents a single coherent memory image to the
multiple threads, generally requires some degree of hardware support to make it perform
well.

In shared memory all data items, except those variables explicitly designated as private to
a thread, can be referenced by all threads. This means that if a processor is executing a
thread with the statement

x = 2*y;

the compiler has generated code so that the processor and shared memory hardware can
automatically reference x and y . Generally, every variable will have its own home
location, the address where the compiler originally allocated it in some processor’s
memory. In certain implementations all references will fetch from and store to this
location. In other implementations a value can float around the processor’s caches until it
is changed. So, if the processor had previously referenced y , then the value might still be
cached locally, allowing a local reference to replace a non-local reference. When the
value is changed, all of the copies floating around the caches must be invalidated,
indicating that they are stale values, and the contents of the home location must be
updated. There are variations on these schemes, but they share the property of trying to
use cache hardware to avoid so many non-local references.

Notice that although it is easy for any thread to reference a memory location, the risk is
that two or more threads will attempt to change the same location at the same or nearly
the same time. Such “races” have a great potential for introducing difficult-to-find bugs
and motivate programmers to scrupulously protect all shared memory references with
some type of synchronization mechanism. See Chapter 6 for more information.

1-sided
One-sided communication, also known on Cray machines by the name shmem, is a
relaxation of the shared memory concept as follows: It supports a single shared address
space, that is, all threads can reference all memory locations, but it doesn’t attempt to
keep the memory coherent. This change places greater burdens on the programmer,
though it simplifies the hardware because if a processor caches a value and another
processor changes its home location, the cached value is not updated or invalidated.
Different threads can see different values for the same variable.

In 1-sided all addresses except those explicitly designated as private can be referenced by
all processes. References to local memory use the standard load/store mechanism, but
references to non-local memory use either a get() or put() . The get() operation
takes a memory location, and fetches the value from the non-local processor’s memory.
The put() operation takes both a memory location and a value, and deposits the value
in the non-local memory location. Both operations are performed without notifying the
processor whose memory is referenced. Accordingly, like shared memory, 1-sided
requires that programmers protect key program variables with some synchronization
protocol to assure that no processes mistakenly use stale data.

The term “one-sided” derives from the property that a communication can be initiated by
only one side of the transfer.

Message Passing
The message passing mechanism is the most primitive and requires the least hardware
support. Being a “two-sided” mechanism, both ends of a communication must
participate, which requires greater attention from the programmer. However, because
message passing does not involve shared addresses, there is no chance for races or
unannounced modifications to variables, and therefore less chance of accidentally
trashing the memory image. There are other problems, discussed momentarily.

Because there are no shared addresses, processes refer to other processes by number.
(For convenience, assume one process per processor.) Processes use the standard
load/store mechanism for all data references, since the only kind of reference they are
allowed are local. To reference non-local data, two basic operations are available,
send() and receive, usually abbreviated recv() . The send() operation takes as
arguments a process number and the address in local memory of a message, a sequence of
data values, and transmits the message to the (non-local) process. The recv()
operation takes as arguments a process number and an address in local memory, and
stores the message from that process into the memory. If the message from the process
has not arrived prior to executing the recv() , the receiver process stalls until the

message arrives. There are several variations on the details of the interaction. Both sides
of the communication must participate.

Notice that message passing is an operation initiated by the owner of the data values,
implying that a protocol is required for most processing paradigms. For example, when a
process pr completes an operation on a data structure and is available to perform another,
it cannot simply take one from the work queue if the queue is stored on another
processor. It must request one from the work queue manager, mgr. But that manager, to
receive the request, must anticipate the situation and have an (asynchronous) recv()
waiting for the request from pr. Though such protocols are cumbersome, they quickly
become second nature to message passing programmers.

Programming approaches that build literally upon message passing machines are often
difficult to use because they provide two distinct mechanisms for moving data: memory
references are used with a local memory, and message passing is used across processes.
Chapter 8 explains how higher level programming languages can be built on top of
message passing machines.

Brief Overview of Parallel Computers
Though we will not need to learn the specifics of parallel architectures, we can clarify our
abstract model by giving examples of real machines. In this section we consider very
briefly the following implemented computers:

• Sun Fire E25K —A symmetric memory processor
• Red Storm – Commodity processors with engineered interconnect
• Cell – High performance, but heterogeneous processors
• Clusters – Building with Myrinet or Infiniband
• Blue Gene – Snazzy name, weenie processors; top dog on the Top 500

Alternative Models. On encountering the CTA for the first time, it might seem
complicated; isn’t there a simpler idealization of a parallel computer? There is. It is
called the PRAM, parallel random access machine. It is simply a large number of
processor cores connected to a common, coherent memory; that is, all processors
operate on the global memory and all observe the (single) sequence of state changes.
Like the RAM, memory access is “unit time.” One complication of the PRAM model
is handling the case of two (or more) processors accessing the same memory location
at the same time. For reading, simultaneous access is often permitted. For writing,
there is a host of protocols, ranging from “only one processor accesses at a time” to
“any number can access and some processor wins.” There is a huge literature on all of
these variations. The problem with the PRAM for programmers intending to write
practical parallel programs is that by specifying unit time for all memory accesses, the
model leads programmers to develop the “wrong” algorithms. That is, programmers
exploit the unimplementable unit cost memory reference and produce inefficient
programs. For that reason the CTA explicitly separates the inexpensive (local) from
the expensive (non-local) memory references. Modeling parallel algorithms is a
complex topic, but the CTA will serve our needs well.

Though these machines only begin to show the variety of parallel computer architecture,
they suggest the origins of our abstract machine model. <To be completed>

A Closer Look at Communication
The large non-local memory latency, λ, specified by the CTA model represents an
extreme cost. To the extent that we can avoid it, our programs will run faster. Reducing
its impact will be at the heart of nearly all of our programming efforts. We might
wonder, “Can’t something be done about reducing communication latency?” It would
certainly simplify programming. In this section we consider that question.

For P processors to communicate directly with each other, that is, for processor pi to
make, say, a DMA reference to memory on processor element pj requires that there be
wires connecting pi and pj. A quick review of the topologies in Figure 2.3 indicates that
not all pairs of processors are directly connected. Technically, no processor is directly
connected to any other; every processor is at least one hop from any other because it must
“enter” the network. However, if in all cases pairs of processors could communicate in
one hop we could count this as a “direct” connection, that is, not requiring navigation
through the network. For the topologies of Figure 2.3 information must be switched
through the network and is subject to switching delays, collisions, congestion, etc. These
phenomena delay the movement of the information.

For sound mathematical reasons, there are essentially two ways to make direct
connections between all pairs of P processors: a bus and a crossbar; see Figure 2.4.

• In the bus design all processors connect to a common set of wires. When
processor pi communicates with processor pj, they transmit information on the
wires; no other pair of processors can be communicating at that time, because
their signals would trash the pi-pj communication. Ethernet is a familiar bus
design. Though there is a direct connection, a bus can only be used for one
communication operation at a time; we say the communication operations are
serialized.

• The crossbar overcomes the problem of one-at-a-time communication by

connecting each processor to every other processor, which allows any set of
distinct pairs of processors to communicate simultaneously. This is ideal from a
computational perspective, but it is too expensive. The number of wires
necessary to implement a crossbar grows as n2, making it unrealistic except for
very small computers, say P=16 or fewer.

With just these two basic designs available direct connection is possible only for a small
number of processors, either to reduce the likelihood that communication operations
contend (bus) or reduce the cost of the device (crossbar).

 (a) (b)

Figure 2.4. Schematics for directly connect parallel computers; (a) bus-based, (b) crossbar-based, where a
solid circle can be set to connect one pair of incident wires.

Because of the difficulties of direct connections, architects have invented many
communication networks with varying topologies and protocols in order to build
computers that can scale. There is a large literature on the subject, and Figure 2.3
indicates only a few representatives. All of these interconnection networks provide less
connectivity than the crossbar with fewer resources, and therefore more delays, but at a
lower cost. The greater delays force us to adopt the large λ value.

Three Special Cases
Though scalable parallel computers are well modeled by the CTA abstract machine, three
cases require us to adjust our thinking slightly:

• Symmetric Multiprocessors (SMPs) and other bus architectures
• Multicore-processor chips
• Cluster computers built with Ethernet

In all cases the issues concern how the processors are connected.

SMP Architectures
Symmetric multiprocessors are bus-based parallel computers that maintain a coherent
memory image. Being bus-based implies that they are necessarily small. SMPs achieve
high performance in two ways: first, by being small and necessarily clustered near to the
bus, they tend to be fast; second, by using sophisticated caching protocols, SMPs tend to
use the shared resource of the bus efficiently, reducing the likelihood that multiple
communication operations will contend for the bus and possibly be delayed.

The bus-design prevents the SMP from matching the characteristics of the CTA. For
example, the serialized use of the bus violates the “parallel communication” property; the
bus effectively causes high node degree, etc. However, SMPs are well designed, and
their non-local memory reference times2 are only a small factor more expensive than their

2 For those familiar with these architectures, non-local reference times here would refer to either a main-
memory reference, or a reference that is dirty in another processor’s cache.

RAM RAM RAM RAM

RAM

RAM

RAM

RAM

cache hit times, which is probably the relevant distinction. Accordingly, SMPs perform
better than the CTA model predicts, making it reasonable to treat them as CTA machines:
The observed performance is unlikely to be worse than that predicted by the CTA model,
and it will usually be much better; more importantly, algorithms that are CTA-friendly
exploit locality, a property that is very beneficial to SMPs.

Multicore Chips
Being relatively new, multicore processor chips presently show a broad range of designs
that make it difficult at the moment to generalize.

The Cell processor, mentioned above, has a single, general purpose core together with
eight specialized cores with more SIMD operation. This architecture, originally designed
for gaming, has high bandwidth communication among processors making it extremely
effective at processing image data. The Cell extends to general parallel computation, too,
but at the moment has not been well abstracted.

The AMD and Intel multi-core processors are more similar to each other than to the Cell,
though they have significant differences. Each has multiple general purpose processors
connected via the L2 cache, as illustrated in Figure 1.4. As a first approximation, both
chips can be modeled as SMPs because of their coherency protocols. Because the cores
can communicate faster than predicted by the CTA, their performance will tend to better
than predicated by the CTA. As before, using CTA-friendly algorithms emphasizes
locality, which is good for all parallel computers. Moreover, as the technology advances
with more cores and greater on-chip latencies, higher non-local communication times are
inevitable, making CTA-friendly algorithms even more desirable.

Cluster Computers
Cluster computers are a popular parallel computer design because they are inexpensively
and easily constructed out of commodity parts, and because they scale incrementally. If
the cluster is built using networking technologies, for example, Infiniband or Myrinet, to
create a true interconnection network, we call it a networked cluster and observe that it is
properly modeled by the CTA abstraction. If instead the cluster is built using an Ethernet
for communication, then it is not. As mentioned above, Ethernet is a bus technology, and
so it requires that distinct but contending communication operations be serialized. Unlike
SMPs, however, the departure from the model cannot be ignored.

Specifically, the CTA models computers that have parallel communication capabilities.
A practical way to think about parallel communication without knowing anything about
the interconnection network, is to imagine a listing of the P processors p0, p1, p2, …, pP-1,
and notice that the communication properties of the CTA would permit each processor to
communicate with the next processor in line simultaneously. This is possible for all of
the topologies in Figure 2.3, and for almost all interconnection networks ever proposed;
at worst, it is possible in as few as three λ times. A bus does not have this property, of
course. The P communication operations would have to be serialized.

In the SMP case, small P and engineering considerations ensured that the non-local
communication would only be a small factor slower than local communication time, well
within out 2-5 orders of magnitude guideline for λ. For clusters, λ is large. Networked
clusters are nevertheless well modeled. Ethernet clusters, however, must serialize their
contending communication operations, so they do not meet the specifications of the CTA.
Performance predictions for computations involving considerable communication will be
low.

We will accept predictions by the CTA in the case of SMPs, because when they are
wrong, the performance will be better than expected. Further, programs that accord well
with the CTA will emphasize locality, which the cache-centric SMP design can exploit.
But the CTA is not a good model for Ethernet clusters.

Applying the CTA Model
Recall that in Chapter 1 we solved the Count 3s problem. We began with a
straightforward solution (Try1), found that it had a race and corrected that (Try 2), found
that the terrible performance was due to a common count variable and corrected that
(Try 3), and found that performance wasn’t yet good enough due to false sharing. The
final program (Try 4) is achieved our performance goal, though in Chapter 4 we’ll find
one more improvement to make to it.

Would the CTA have been a good guide to programming Count 3s? Yes. The CTA, being
independent of the actual communication mechanism (shared memory) or caching, would
not have guided us with Try 2 or Try 4, but it would have directed us to avoiding the
mistake that was fixed with Try 3. The problem was the single global variable count ,
and the lock contention caused my making updates to it. The model would have told us
that using a single global variable means that nearly all references will be non-local, and
therefore incur λ overhead just to update the count; we would know that a better scheme
would be to form a local count to be combined later. Guided by the model, the error
would not have occurred and we would have written a better program in the first place.

Notice that the model predicted the problem (single global variable) and the fix (local
variables), but not the exact cause. The model worried about the high cost of referencing
the global variable, while the actual problem was lock contention. The different
explanations are not a problem as long as the model identifies the bad cases and directs us
to the correct remedy, which it did. The CTA is not a real machine. It generalizes a huge
family of machines, and so cannot possibly match the implementation of each one. But to
give enough information for writing quality programs, it provides general guidance as to

Ethernet Clusters. To get good performance from an Ethernet cluster, it is best to
run programs with the characteristic that each processor is assigned a large amount of
communication-free computation to perform, say λP instructions worth or more,
between each communication operation. Such compute-intensive problems are
common. They have the property that although there can be contending
communication, it will be sufficiently infrequent to give good utilization.

the operation of a parallel computer. Some implementations do have a memory latency
problem referencing the global variable; some don’t, but they have other problems, like
contention or even stranger problems. Different implementations will manifest the
fundamental behaviors of parallel computation in different ways. The CTA models
behavior; it doesn’t describe a physical machine.

Summary
Parallel computers are quite diverse, as the five computer profiles indicated It would be
impossible to know the hardware details of all parallel machines and to write portable
programs capable of running well on any platform. To solve the problem, we adopted
the CTA, an abstract parallel machine, as the basis for our programming activities.
Thinking of the abstract machine as executing our programs (in the same way we think of
the RAM (von Neumann machine) executing our sequential programs) lets us write
programs that can run on all machines modeled by the CTA, which represent virtually all
multiprocessor computers.

Exercises
1. Suppose four threads performed the computations illustrated in Figure 1.1 and

1.2. (Assume a lock protected global variable permanently allocated to one thread
for 1.1.) What is the communication cost, λ, predicted by the CTA for adding
1024 numbers for each computation?

Answer. For algorithm 1.1, 256, because three of the threads make non-local
references. For algorithm 1.2, 2, because all work is local until the final
combining, which has two levels.

2. Like Ex. 1, but revising the Figure 1.1 algorithm so each thread keeps a local copy
of the count.

Answer. For algorithm 1.1, 1, because each three threads must update the global
count.

