Chapter 2

REGIONS AND THE ZPL LANGUAGE

This chapter describes the ZPL language, concentrating on the role of regions in its design. To make this discussion both readable and precise, some language concepts are introduced informally at first and are then reconsidered with increased formality as the chapter progresses. While this format would not be appropriate for a language reference manual, it is designed to provide an appropriate mixture of clarity and precision for this presentation.

Note that this chapter focuses on the sequential interpretation of ZPL, largely ignoring the parallel implications of regions and the language itself. Since parallelism is inherent in the definition and use of regions, this will leave some questions unanswered at the chapter’s conclusion. These questions will be addressed in the following chapter, which describes the parallel implications of regions.

This chapter’s description of ZPL is meant to provide a general overview of the language. For a more complete description, refer to the ZPL Programmer’s Guide and the ZPL web page [Sny99, ZPL01].

The structure of this chapter is as follows. Sections 2.1–2.14 describe the ZPL language, including such fundamental concepts as regions, arrays, and array operators. Section 2.15 illustrates ZPL’s use in a number of small sample applications that will be used in subsequent chapters. Section 2.16 describes other sequential approaches for array programming including vector indexing and slicing. Finally, Sections 2.17 and 2.18 provide an evaluation of ZPL’s features in the sequential context, listing both benefits and liabilities of the region as it currently exists. This chapter’s contents serve as an expanded discussion of work that was published previously [CLLS99, CLS99].
2.1 ZPL’s Guiding Principles

Languages are for Communicating

One of the primary principles that has guided ZPL’s development is the notion that programming languages are meant to be a means of communication between human and computer. Programmers have algorithms in their minds that they would like to execute on a computer. Computers have finite resources and an extremely limited capacity for understanding high-level languages. Programming languages should form a bridge between these two points, spanning the gap between programmer and computer using a direct, natural route that complements the abilities of both. When this principle is violated, communication is broken and a heroic effort is required by the user and/or compiler if the program is to have its intended effect.

Such broken languages can result in macho compiling, in which tremendous effort is put into helping a compiler recognize idioms that are not made apparent by the language and to implement them efficiently. These efforts tend to result in brittle optimizations that are easily broken if the programmer does not stick to the specific set of idioms that the compiler recognizes [Lew00]. When the optimization does not fire, programmers must expend great effort to achieve their desired results. Frustration abounds for both programmers and compiler implementors.

In contrast, creating a language that is natural to compile to a given architecture allows implementors more time to work on general improvements and optimizations, rather than worrying about particular syntactic patterns or corner cases. It should be noted that most programming languages which have enjoyed widespread use have not relied on sophisticated compiler optimizations to achieve acceptable baseline performance.

ZPL strives to implement this principle for parallel programming by providing a syntax that directly reflects parallelism. This allows users to express the parallelism that is inherent in their algorithms and to evaluate the parallel overheads of their programs. It also allows ZPL’s implementors to detect parallelism trivially and create a straightforward baseline
implementation. By avoiding the recognition problem, implementors can concentrate their efforts on optimizations that improve the baseline implementation.

The False Seduction of Legacy Code Reuse

Many parallel computing approaches have been designed in hopes of taking advantage of existing sequential codes with minimal programmer effort. For example, a perfect parallelizing compiler would transform sequential programs into parallel code automatically. Similarly, languages such as High Performance Fortran (HPF) [Hig94] and Co-Array Fortran (CAF) [NR98] were designed with the idea of leveraging existing code as a primary goal. Ideally, programmers can take their existing sequential programs, make minimal modifications to them, and end up with a good parallel implementation.

While this is a laudable goal, the assumption that incremental changes can turn a good sequential algorithm into a good parallel one is naive. The seductive pitch of these approaches is that the compiler will do all of the hard work for you once you add a line of code here or there to help it out. The reality of the situation is that the work required to transform sequential programs into an optimal parallelizable form is often nontrivial for both the programmer and the compiler [FJY98]. This effect is demonstrated by the conceptual leap between the sequential and SUMMA matrix multiplication implementations of Chapter 1. Often, a parallel code bears little resemblance to its sequential counterpart. In such cases, the effort required to convert a sequential program into an effective parallel one can be greater than that which would have been required to write a new program from scratch with parallelism in mind.

Starting from First Principles

ZPL approaches this problem from the opposite direction. Rather than starting with a sequential language and striving to detect the parallelism inherent in its (sequential) syntax, ZPL’s design starts with nothing and incrementally adds concepts and operations that are
Listing 2.1: Simple Type, Constant, and Variable Declarations in ZPL

type
 age = shortint;
 coord = record
 x : integer;
 y : integer;
 end;

constant
 pi : double = 3.14159265;
 tabsize : integer = 1000;
 maxage : age = 128;

var
 done : boolean;
 length : integer;
 name : string;
 origin : coord;
 table : array [1..tabsize] of complex;

implicitly parallel. By starting from first principles in this way, ZPL was able to avoid supporting language constructs that disable parallelism. As an example, ZPL does not permit traditional scalar indexing of its parallel arrays, due to the fact that it is an inherently sequential construct. This approach forces programmers to consider the opportunities for parallelism in a program from its inception, rather than doing the minimal amount of work to get the compiler to accept their sequential code, and then spending hours with feedback tools trying to determine why it is not achieving good parallel performance.

ZPL’s syntax is based on Modula-2 [Wir83] rather than a more popular language like C or Fortran. This decision reinforces the idea of “starting from scratch” by forcing C and Fortran users to confront the notion that certain features of those languages are not present in ZPL due to their interference with parallelism (e.g., pointers, scalar array indexing, and common blocks). It also reinforces the idea that programmers should consider their sequential algorithms afresh when implementing them in parallel by making it difficult for existing C and Fortran codes to be tweaked slightly and run through the compiler.
A second reason for choosing Modula-2 was to support a language whose syntax is both readable and intuitive. While it would be possible to create C and Fortran dialects of ZPL, no such effort has been made at this point. The primary challenge would be to ensure that the features of C and Fortran which have been deliberately omitted from ZPL would interact appropriately with its parallel concepts (or simply outlaw them altogether).

As Chapter 4 will discuss, ZPL is compiled by translating it to C. For this reason, C’s influence is occasionally seen in the language’s syntax. For example, the names of ZPL’s data types and its formatting of I/O both strongly reflect C.

2.2 Scalar ZPL Concepts

ZPL’s scalar concepts are largely un-original and uninteresting, but form an important foundation for the rest of the language, so are described here quite briefly.

2.2.1 Data types, Constants, and Variables

To start with the basics, ZPL supports standard data types, type declarations, and declarations for constants and variables, as in most languages. It supports integers of varying sizes as well as floating point and complex values of varying precision. ZPL supports homogeneous array types (referred to as indexed arrays) and heterogeneous record types. For some sample type, constant, and variable declarations, refer to Listing 2.1.
Table 2.1: A Summary of ZPL’s Scalar Operators

<table>
<thead>
<tr>
<th>Arithmetic Operators</th>
<th>Relational Operators</th>
<th>Assignment Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ addition</td>
<td>= equality</td>
<td>:= standard</td>
</tr>
<tr>
<td>– subtraction</td>
<td>!= inequality</td>
<td>+= accumulative</td>
</tr>
<tr>
<td>* multiplication</td>
<td>< less than</td>
<td>-= subtractive</td>
</tr>
<tr>
<td>/ division</td>
<td>> greater than</td>
<td>*= multiplicative</td>
</tr>
<tr>
<td>% modulus</td>
<td><= less than/equal</td>
<td>\ = divisive</td>
</tr>
<tr>
<td>^ exponentiation</td>
<td>>= greater than/equal</td>
<td>& = conjunctive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logical Operators</th>
<th>Bitwise Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>& and</td>
<td>band and</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td>! not</td>
<td>bnot complement</td>
</tr>
<tr>
<td></td>
<td>bxor xor</td>
</tr>
</tbody>
</table>

2.2.2 Configuration Variables

ZPL’s configuration variables are a somewhat more unique scalar concept. Each configuration variable represents a loadtime constant—a value that can be defined at the outset of a program’s execution but which cannot be changed thereafter. This allows users to define values that they may not want to constrain at compile time, such as problem sizes, verbosity levels, or tolerance values. The advantage of making such values configuration variables rather than traditional variables is that it allows the compiler to treat the variable as a constant of unknown value during analysis and optimization.

Configuration variables are defined similarly to normal constants, except that their initializing values are merely defaults that can be overridden on the program’s command-line. Configuration variable initializers may be defined using expressions composed of constants, scalar procedures, and other configuration variables. Currently, ZPL only supports configuration variables of scalar types (including records and indexed arrays). Listing 2.2 shows some sample configuration variable declarations.
Listing 2.3: Sample Uses of ZPL’s Control Structures

```pascal
if (age > maxage) then
  writeln("Age too large!");
end;
...
for i := 1 to tabsize do
  table[i] := 0;
end;
...
repeat
  length /= 2;
  done := (length < 100);
until (done);
...
while (origin.x > origin.y) do
  leftshift(origin);
end;
```

2.2.3 Scalar Operators

ZPL supports a standard set of scalar arithmetic, logical, relational, bitwise, and assignment operators. See Table 2.1 for an overview.

2.2.4 Control Structures

ZPL supports standard control structures such as conditionals, for loops, while loops, and repeat-until loops. See Listing 2.3 for some simple examples.

2.2.5 Blank Array References

To encourage array-based thinking, ZPL’s indexed arrays support a shorthand notation to operate over their entire index range without a loop. This is done by omitting the indexing expression for an array reference. For example, the assignment to `table` in Listing 2.3 could be written as follows using blank array references:

```pascal
table[] := 0;
```
This syntactic shortcut is designed to aid with the common case of performing purely elementwise operations on indexed arrays. In many codes, blank array references can eliminate a number of trivial and uninteresting loops over an array’s indices.

2.2.6 Procedures

ZPL’s primary functional unit is the procedure, which can accept value or reference parameters and return a single value of arbitrary type. Procedures strongly resemble their Modula-2 counterparts and may be recursive. ZPL also supports prototypes that allow a procedure’s signature to be declared for use before the procedure is defined. Listing 2.4 contains some sample prototype and procedure definitions.

2.2.7 Interfacing with External Code

Though ZPL’s choice of Modula-2 as a base syntax limits the amount of code re-use that can take place within the parallel portion of a ZPL program, existing scalar code can be
Listing 2.5: An Example of Using extern in ZPL

```zpl
extern constant M_PI: double;
extern var errno: integer;

extern type timezone = opaque;
timeval = record
tv_sec: longint;
tv_usec: longint;
end;

extern prototype gettimeofday(var tv: timeval; var tz: timezone);
```

integrated into a ZPL program if it can be called by and linked into a C program. This is achieved using the `extern` keyword which can be applied to types, constants, variables, and procedures. External types may be partially specified or omitted completely using the `opaque` keyword, which allows the programmer to store variables of external types and pass them around, but not to operate on them directly or modify them. See Listing 2.5 for some sample external declarations.

2.3 Regions and Parallel Arrays

As mentioned in the introduction, ZPL’s fundamental concept is that of the region. A region is simply an index set—a set of indices in a coordinate space of arbitrary dimensions. ZPL’s regions are regular and rectilinear in nature. In this sense they are much like traditional arrays with no associated data. This similarity is emphasized syntactically: simple regions are defined using syntax that resembles a traditional array’s bounds. For example, the following shows a simple two-dimensional region and the set of indices that it describes:

\[
[1..m, 1..n] = \{(1,1),(1,2),\ldots,(1,n),(2,1),\ldots,(m,n)\}
\]

Regions may contain singleton dimensions which describe only a single index value. These are defined by replacing the degenerate range with a single index (e.g., \(1, 1..n\)) rather than \([1..1, 1..n]\)).
Figure 2.1: Using Regions and Arrays. (a) An illustration of the three regions declared in Section 2.3: R, TopRow, and BigR. (b) Three parallel integer arrays of size BigR—A, B, and C. (c) An example of how a statement’s enclosing region scope restricts the range of its operators. Only indices within R (interior to the arrays) are referenced in this statement.

ZPL programmers can name regions. For example, the following declarations name the simple regions above “R” and “TopRow.” They also create a third region, “BigR”, which extends both dimensions of R by a single index in each direction.

```zpl
region R = [1..m, 1..n];
TopRow = [1, 1..n];
BigR = [0..m+1, 0..n+1];
```

See Figure 2.1a for an illustration of these regions.

The dimension bounds of named regions must be expressions composed of constants or configuration variables. The rank or dimensionality of a region refers to the number of dimensions that it contains. For example, all of the regions above have rank 2.

Regions have two primary purposes. The first is to declare parallel arrays. This is done by specifying a region and an element type as a variable’s type declaration. Such declarations result in the allocation of an array with an element of the specified type for each index described by the region. For example, the following declaration creates three \((m + 2) \times (n + 2)\) arrays of integers named A, B, and C (Figure 2.1b):

```zpl
var A, B, C: [BigR] integer;
```

The rank of a parallel array is defined to be the rank of its region. For example, all of
the parallel arrays above have a rank of 2. Parallel arrays may not be nested. That is, the
element type of a parallel array may not contain a parallel array itself.

Parallel arrays are the primary data structure in ZPL, and will generally be referred to
as “arrays” within this dissertation. The traditional scalar arrays described in Section 2.2
will always be referred to as “indexed arrays” to avoid confusion. Note that this chapter
does not explain why parallel arrays are so named, but merely uses the term as a label. The
following chapter provides the justification for the name (though discerning readers will
possibly figure it out on their own).

The second purpose of regions is to provide indices for array references within a ZPL
statement. Unlike indexed arrays, ZPL’s parallel array elements cannot be referenced using
traditional indexing mechanisms. Instead, regions are required to specify the indices for an
array reference. As an example, consider the following statement:

\[\text{[R]} \quad A := B + C; \]

This statement says to add arrays \(B \) and \(C \) elementwise, assigning their resulting sums to
the corresponding values in \(A \). The statement is prefixed by the region scope \(\text{[R]} \) which
specifies that the addition and assignment operations should be performed for all indices
described by \(R \)—namely, the interior \(m \times n \) elements. Thus, this statement describes the
matrix addition computation from Chapter 1. Region scopes serve as a form of universal
quantification. For example, the statement above is equivalent to:

\[A_{i,j} \leftarrow B_{i,j} + C_{i,j}, \forall (i, j) \in R \]

See Figure 2.1c for an illustration.

Using region scopes, any of ZPL’s standard scalar operators can be applied to arrays
in an elementwise manner. The chief constraint is that arrays cannot be read or written at
indices that were not in their defining region (since no data is allocated for those indices).

Region definitions may also be specified explicitly within a region scope. These are
called dynamic regions, since their bounds are typically based on expressions whose values
are not known until runtime. For example, the following code fragment adds row i of arrays B and C, where i may be computed during the program’s execution.

\[
[i, 1..n] A := B + C;
\]

Note that technically, this region scope should contain another set of square brackets to be consistent with the region specification syntax described previously. However, ZPL allows programmers to drop the redundant square brackets for readability.

Subsequent sections will describe regions in more depth, but for now this example-based overview of the ZPL language continues.

2.4 Array Operators

If ZPL could only express elementwise computations on its arrays, it would not be a very useful language. More general computations are supported by using array operators to modify a region scope’s indices for a given array variable or expression. This section provides a brief introduction to the most important array operators: the @ operator, floods, reductions, and remaps.

2.4.1 The @ Operator

The @ operator (\@) is ZPL’s simplest array operator, providing a means for translating array references using constant offset vectors known as directions. Directions are specified and named in ZPL as follows:

```zpl
direction north = [-1, 0];
south = [ 1, 0];
east  = [ 0, 1];
west  = [ 0,-1];
```

These declarations create four vectors, one for each of the cardinal directions (Figure 2.2a).

The @ operator is applied to an array reference in a postfix manner, taking a direction as its second operand. Applying the @ operator to an array causes the indices of the enclosing region scope to be translated by the direction vector as they are applied to the array
Figure 2.2: The @ Operator. (a) An illustration of the directions declared in Section 2.4.1. (b) A use of the @ operator to add shifted references of B and C, storing the result in region R of A. (c) A diagram illustrating the application of the wrap-@ operator to assign a cyclically-shifted version of B to A.

reference. For example, the expression A@[south] would increment all indices in the region by 1 in the first dimension. As a slightly more interesting example, consider the following statement:

[R] A := B@west + C@east;

This replaces each interior element of A with the element just to its left in B and just to its right in C. More formally:

\[A_{i,j} \leftarrow B_{i,j-1} + C_{i,j+1}, \forall (i, j) \in R \]

Refer to Figure 2.2b for an illustration.

Note that the legality of this code hinges on the fact that B and C are declared using region BigR, causing the @-references to access declared values. Had they been declared using region R, the @-references would refer to values outside of their declared boundaries, which would be illegal.

Expressions using the @ operator may be used on either side of an assignment, but may not be passed by reference to a procedure. This dissertation will primarily concentrate on reading @-references and not writing them.
Figure 2.3: The Flood and Reduction Operators. (a) An illustration of the flood operator, causing the top row of B within R to be replicated across all rows of A within R. (b) An application of the sum reduction operator, which totals the values of B within each column of R and assigns the sum to the corresponding value of A within $TopRow$. (c) A full reduction which finds the biggest value of B within R and assigns the result to the scalar biggest.

The Wrap-@ Operator

One variation on the @ operator is the wrap-@ operator ($@^$), which causes accesses to the array that fall outside of its declared boundaries to wrap around and access the opposite side. Thus a statement like:

$$[\text{BigR}] \ A := B^{east};$$

would cyclically shift B one position to the left, assigning it to A.

2.4.2 The Flood Operator

The flood operator (>>) provides a means for replicating a slice of an array's values, either explicitly or implicitly. Symbolically, it can be viewed as taking a small piece of the array expression to its right and expanding it to make it bigger when used to the left. The flood operator is a prefix operator which is followed by a region to indicate the slice of the array to be replicated. This region is referred to as the source region, while the enclosing region of matching rank is called the destination region. As an example, consider the following assignment:

$$[R] \ A := >>[\text{TopRow}] \ B;$$
This statement assigns the first row of B (restricted to columns 1 through n) to rows 1 through m of A. See Figure 2.3a for an illustration.

In this statement, the flood operator’s role is to replicate the values of B described by the source region (TopRow or [1, 1..n]) such that they conform to the destination region (R). This action can be interpreted in either an active or a passive way. Actively, the flood operator is taking the row of values described by TopRow and using it to create an array of size R for assignment to A. Passively, the operator can be thought of as causing the first dimension of indices in R to be ignored when accessing B, replacing them by the index 1. Formally, this statement can be interpreted as follows:

\[A_{i,j} \leftarrow B_{1,j}, \forall (i,j) \in R \]

The main legality issues for the flood operator concern the conformability of the source and destination regions. First, they must be the same rank. In addition, each dimension of the source region must either be a singleton (as in this example’s first dimension), or it must be identical to the destination region (as in the second dimension). The former case results in replication of the values described by the singleton index. The second results in a traditional array reference.

2.4.3 The Reduction Operator

The reduction operator (\(<<\)) is the dual of the flood operator. It compresses an array’s values down to form a smaller array. As with the flood operator, it uses prefix notation and expects a source region to describe the values that should be reduced. The resulting size of the expression is described by the enclosing region scope of matching rank.

Because multiple values are being collapsed into a single item, some sort of reduction operation must also be specified to indicate how this collapsing should take place. These operations are typically commutative and associative, and they precede the reduction operator syntactically. Built-in reduction operations include addition, multiplication, min, and
max, as well as logical and bitwise operators. Users may also create custom reduction operations using scalar ZPL procedures.

As a simple example, consider the following statement which uses a plus reduction:

\[
\text{[TopRow]} \ A := \oplus \ll[R] \ B;
\]

This statement computes the sum of each column of \(B \) (for the rows and columns specified by \(R \)), storing each result in the first row of the corresponding column of \(A \). See Figure 2.3b for an illustration. Again, this operator has both an active and a passive interpretation. Actively, it compresses \(B \) from rows 1 through \(m \) down to a single row (the first). Passively, it expands the reference to row 1 of \(B \) so that it refers to rows 1 through \(m \), as combined using addition. Formally:

\[
A_{i,j} \leftarrow \sum B_{k,j}, \forall (i,j) \in \text{TopRow}, \forall (k,l) \in R, \text{ such that } l = j
\]

The legality rules for reductions are similar to those for the flood operator. The source and destination regions must have the same rank. In addition, each dimension of the source and destination regions must either be the same (causing the dimension to be read normally), or the destination dimension must contain a singleton (causing the values in that dimension to be reduced).

Full Reductions

One special case for reductions collapses an entire array to a single scalar value. This is known as a **full** or **complete reduction**, in contrast with the **partial reductions** described previously. Full reductions require only a single covering region since the scalar reference requires no indices. A simple example is shown here:

```zpl
var biggest:integer;

[R] biggest := max<< B;
```

This statement finds the maximum value of \(B \) within the indices described by \(R \) and assigns it to the scalar value \texttt{biggest}. See Figure 2.3c for an illustration. Note that full reductions
Figure 2.4: The Remap Operator. The B and C arrays serve as the map arrays for the remap of A in this assignment, thus they must contain values from 0 to 5 within region R (displayed here using varying levels of grey). As a specific example, consider the assignment to row 2, column 3, outlined with a dotted line. The corresponding values in B and C are both 0, indicating that element $[0,0]$ of A should be assigned to this location.

compute the same value as a partial reduction over all dimensions, but they store the result in a scalar rather than an array element. For example, the full reduction above is similar to the following partial reduction:

$$[k1, k2] A := \text{max}_{[R]} B;$$

2.4.4 The Remap Operator

The *remap operator* ($#$) serves as a catch-all operator, supporting parallel random array accesses. Unlike traditional array indexing, the remap operator requires an entire array of indices per dimension rather than a single index. The following is a simple example:

$$[R] A := A[#B,C];$$

This use of the remap operator randomly accesses the *source array* A as specified by the *map arrays* B and C. In this statement, the result is assigned back into A. The B array provides the indices in the first dimension for each access to A, while C provides the indices for the second dimension. This is actually easiest to see in the formal version:

$$A_{i,j} \leftarrow A_{B_{i,j},C_{i,j}}, \forall (i,j) \in R$$

This statement is illustrated in Figure 2.4.
The main legality constraint for the remap operator is that the number of map arrays must be equal to the rank of the source array so that each of its dimensions has an index. In addition, the map arrays must not refer to indices that are outside of the source array’s defining region, since that would refer to values with no allocated storage. As Section 2.15.2 will demonstrate, remap operators can be used to operate on arrays of different ranks (and are in fact ZPL’s only mechanism for doing so). Remap operators may be applied to expressions on either side of an assignment, though this dissertation focuses on uses on the right-hand side.

2.4.5 Other Array Operators

ZPL has a few other array operators that will not be described in this thesis, most notably the scan operator for performing parallel prefix operations, and the wrap and reflect operators for supporting boundary conditions. These are omitted in this discussion for brevity and because they do not pose significant challenges or intrigues in ZPL’s design and implementation beyond the array operators described here. For more information on these operators, please refer to the literature [Sny99].

2.5 Formal Region Definition

Given the intuitive definitions of array operators, we now reconsider regions more formally. Each dimension of a region can be represented by a 4-tuple sequence descriptor, \(r = (l, h, s, a) \). The variables \(l \) and \(h \) represent the low and high bounds of the sequence. The \(s \) value represents the sequence’s stride, and \(a \) encodes its alignment. A sequence descriptor, \(r \), is interpreted as defining a set of integers, \(S(r) \), as follows:

\[
S(r) = \{ x | l \leq x \leq h \text{ and } x \equiv a \pmod{s} \} \quad (2.1)
\]

For example, the descriptor \((1, 6, 2, 0) \) describes the set of even integers between one and six, inclusive: \(\{2, 4, 6\} \).
A d-dimensional region, r, is defined as a list of d sequence descriptors, $r_1 \ldots r_d$, where r_i represents the indices of the region’s i^{th} dimension:

$$r = \langle r_1, r_2, \ldots, r_d \rangle$$

The index set, $I(r)$, defined by a region r is simply the cross-product of the sets specified by each of its sequence descriptors:

$$I(r) = S(r_1) \times S(r_2) \times \ldots \times S(r_d)$$

For example, the index set of the 2-dimensional region $\langle (1, 6, 2, 0), (1, 6, 2, 1) \rangle$ would be defined as follows:

$$I(\langle (1, 6, 2, 0), (1, 6, 2, 1) \rangle) = S(1, 6, 2, 0) \times S(1, 6, 2, 1)$$

$$= \{2, 4, 6\} \times \{1, 3, 5\}$$

$$= \{(2, 1), (2, 3), (2, 5), (4, 1), (4, 3), (4, 5), (6, 1), (6, 3), (6, 5)\}$$

Recall the simple region declarations described in Section 2.3 which take the following general form:

$$R = [l_1 \ldots h_1, \ l_2 \ldots h_2, \ldots, \ l_d \ldots h_d]$$

Such declarations correspond to the following formal region definition:

$$r = \langle (l_1, h_1, 1, 0), (l_2, h_2, 1, 0), \ldots, (l_d, h_d, 1, 0) \rangle$$

These sequence descriptors specify that each dimension i contains all indices from l_i to h_i, due to the trivial values used for the stride and alignment. Note that while ZPL could allow programmers to express regions in a sequence descriptor format, the syntax used here allows the common case to be described in a clearer, more intuitive manner.
2.6 Region Operators

In addition to the simple region declarations of Section 2.3, ZPL provides a set of region operators that allow new regions to be created relative to existing ones. These are provided to give the user a more descriptive way of creating regions than specifying them by hand. They also provide the only means of changing a region’s stride or alignment.

Region operators are defined using a set of prepositional operators—of, in, at, and by—that are defined for sequence descriptors. Each of these operators modifies a sequence descriptor using an integer value, δ. The operators are defined as follows:

\[
\delta \text{ of } (l, h, s, a) \Rightarrow \begin{cases}
(l + \delta, l - 1, s, a) & \text{if } \delta < 0 \\
(l, h, s, a) & \text{if } \delta = 0 \\
(h + 1, h + \delta, s, a) & \text{if } \delta > 0
\end{cases}
\]

\[
\delta \text{ in } (l, h, s, a) \Rightarrow \begin{cases}
(l, l - (\delta + 1), s, a) & \text{if } \delta < 0 \\
(l, h, s, a) & \text{if } \delta = 0 \\
(h - (\delta - 1), h, s, a) & \text{if } \delta > 0
\end{cases}
\]

\[(l, h, s, a) \text{ at } \delta \Rightarrow (l + \delta, h + \delta, s, a + \delta)\]

\[
(l, h, s, a) \text{ by } \delta \Rightarrow \begin{cases}
(l, h, |\delta| \cdot s, (h - ((h - a) \mod s)) + (|\delta| \cdot s)) & \text{if } \delta < 0 \\
(l, h, s, a) & \text{if } \delta = 0 \\
(l, h, |\delta| \cdot s, (l + ((a - l) \mod s)) + (|\delta| \cdot s)) & \text{if } \delta > 0
\end{cases}
\]

To summarize, the **of** and **in** operators modify the sequence bounds relative to the existing bounds, leaving the stride and alignment unchanged. The **of** operator describes a range adjacent to the original range, whereas **in** describes a range interior to the previous range. The **at** operator translates the sequence bounds and alignment of a sequence. The **by** operator is used to scale the stride of the sequence and possibly shift the alignment, leaving the bounds unchanged.
Listing 2.6: Applications of Region Operators

direction
north = [-1, 0];
east2 = [0, 2];
n2e3 = [-2, 3];
step2 = [2, 2];

region
R = [1..m, 1..n];
NorthernBoundary = north of R;
EasternInterior = east2 in R;
ShiftedN2E3 = R at n2e3;
OddCols = R by east2;

ZPL defines a region operator for each prepositional operator. Each region operator takes a base region and an offset vector in the form of a direction. The operator is evaluated by distributing each component of the direction to the region’s corresponding sequence descriptor and applying the prepositional operator. For example, the at operator would be distributed as follows:

\[\text{at} [\delta_1, \delta_2] = ((l_1, h_1, s_1, a_1), (l_2, h_2, s_2, a_2)) \text{ at } [\delta_1, \delta_2] \]
\[= ((l_1 + \delta_1, h_1 + \delta_1, s_1, a_1 + \delta_1), (l_2 + \delta_2, h_2 + \delta_2, s_2, a_2 + \delta_2)) \]

As a more concrete example, the code in Listing 2.6 shows some direction declarations followed by region declarations that use the region operators. These regions, as well as several others, are illustrated relative to the base region \(R \) in Figure 2.5. In each case, the role of the direction in defining the new region is indicated. Though the formulas defining the prepositional operators seem fairly complex at first glance, they define regions which intuitively match the English definition of the preposition, making the mathematical definitions simply a formality. Intuitively, the of operator defines regions that are adjacent to the base region while in defines regions that are just within the base region. The at operator shifts the base region, while by strides the base region. In each case, the offset vector provides the notion of the direction and magnitude of the operation.
Figure 2.5: The Region Operators. This diagram illustrates the region operators applied using the declarations of Listing 2.6. Each column of pictures represents a single region operator (of, in, at, and by), while each row illustrates a different base region/direction pair. The indices of the regions created by applying the region operator to the base region and direction are shown in grey. Arrows gives a sense of the directions’ roles in the definition. Those regions that were given names in Listing 2.6 are labeled.
Figure 2.6: Flood Dimensions and Flood Arrays. (a) An illustration of a region whose first dimension is flooded. It represents a single row of values that are conformable to any row. (b) An array F declared using region FloodRow. (c) An assignment from F to A within region R. (d) An assignment from a row of B to F using the flood operator.

Although there are certainly other region operators that could be useful to a programmer, those listed here were selected as a basis set since they support common array references and are closed over our region notation. This chapter’s discussion section considers this topic further.

2.7 Flood Dimensions

2.7.1 Introduction to Flood Dimensions

In addition to traditional dimensions (e.g., $1..h$) and singleton dimensions (e.g., i), regions can have a third type of dimension, the flood dimension. Flood dimensions are syntactically represented using an asterisk (\ast), and they represent a single index that conforms to any other index in the dimension. As an example, consider the following code fragment:

```plaintext
region FloodRow = [* , 0..n+1];

var F:[FloodRow] integer;

[R] A := F;
```

This code begins by declaring a region which is floodable in the first dimension and contains columns 1 through n in the second (Figure 2.6a). It then uses the region to declare
a row of integers named F (Figure 2.6b). The assignment to A reads from the appropriate column of F for all rows in R. That is, the single row of values from F is explicitly replicated in rows 1 through m of A. See Figure 2.6c for an illustration.

Note that FloodRow differs from a row declared using a singleton dimension like TopRow. In particular, if F was declared using TopRow in the example above, the assignment would attempt to read from F in rows other than the first. This constitutes an error since F did not allocate storage for those rows. The use of the flood dimension in FloodRow allows it to conform to all indices, making the assignment legal.

2.7.2 Relationship with the Flood Operator

The code above illustrates a similarity between flood dimensions and the flood operator—both are used to represent replicated values. In fact, the flood operator can be used to assign to the values of a flood array. Consider the following example:

```
[FloodRow] F := >>[1, 0..n+1] B;
```

In this code fragment, row 1 of B is replicated by the flood operator to conform to the flood dimension of FloodRow (Figure 2.6d). Similar assignments without the flood operator would be illegal:

```
[FloodRow] F := B;
[1, 0..n+1] F := B;
```

The first assignment is illegal because B is defined for rows 1 through m, making it ambiguous which row of B should be stored in F. Even if B was declared to be a single row (e.g., $[1, 0..n+1]$), this assignment would remain illegal since the right-hand side of the assignment needs to conform to “all” row indices, not simply a particular one. For a standard array like B, this can only be achieved using the flood operator. The second assignment is illegal because it attempts to assign to a single row of F rather than assigning all of its rows using a flood dimension.
2.7.3 Formal Definition

As described above, an array with a flood dimension can intuitively be thought of as having a single set of values in that dimension which conform to all indices. Equivalently, the flood dimension can be thought of as representing an infinite number of indices, all of which are constrained to contain the same values.

Flood dimensions are represented using a special sequence descriptor: \((-\infty, \infty, 0, 0)\). This states that the dimension covers all indices \((-\infty \ldots \infty)\). The stride and alignment of 0 reflects the fact that there is a single implementing set of values and therefore no way to step from one index to the next. The flood sequence descriptor cannot be interpreted like those of traditional dimensions due to the nonsensical nature of working in a modulo-0 system. Rather, it serves as a placeholder that readily distinguishes flood dimensions from traditional ones. By convention, \(S(-\infty, \infty, 0, 0)\) is defined to be \([-\infty, \ldots, \infty]\). The index defining the single set of values, will be referred to as \(\star\). For example, the element in the fourth column of \(F\) would be referred to as \(F_{\star,4}\).

Only the identity forms \(\delta = 0\) of the prepositional operators for sequence descriptors are defined for flood dimension sequence descriptors. This matches the intuitive sense that a dimension which represents an infinite number of indices cannot have adjacent or interior indices, cannot be shifted, and cannot be strided. Thus, only direction components of 0 may be applied to a flood dimension using ZPL’s region operators.

The legality of interactions between flood dimensions, traditional dimensions, and array operators will be summarized in Section 2.12, which contains a more formal treatment of these subjects.

2.8 Index Constants

ZPL provides a set of built-in array constants referred to collectively as the index constants. These are a group of built-in virtual parallel arrays named \texttt{Index1}, \texttt{Index2}, \texttt{Index3}, etc. When read, each element of \texttt{Index i} evaluates to its index in the \(i^{th}\) dimen-
Figure 2.7: The Index Constants. (a) Pictures depicting Index_1 and Index_2. BigR and R are indicated by the outlines. (b) A diagram showing the unique numbering of elements in R using Index_1 and Index_2.

sion. Thus, Index_1’s elements evaluate to their row indices, Index_2’s elements to their column indices, etc. More formally:

$$\text{Index}_{i_{j_1,j_2,\ldots,j_d}} = j_i$$

Figure 2.7a gives a pictorial depiction of Index_1 and Index_2 within regions R and BigR.

As a sample use, the following code fragment numbers the values of A within R from 1 to $m\cdot n$ in row-major order:

$$[R] \ A := (\text{Index}_1 - 1) \cdot n + \text{Index}_2;$$

Using the formal definition of index constants, this assignment is interpreted as follows:

$$A_{i,j} \leftarrow (\text{Index}_{1_{i,j}} - 1) \cdot n + \text{Index}_{2_{i,j}}$$

$$\quad \leftarrow (i - 1) \cdot n + j$$

See Figure 2.7b for an illustration.

As a second example, the following code uses the remap operator to assign the transpose of B to A within region R, assuming that $m = n$ (if it did not, the map arrays might refer to values outside of B’s declared size).

$$[R] \ A := B\#[\text{Index}_2, \text{Index}_1];$$
Figure 2.8: An Array Transpose. This diagram illustrates how the Index constants can be used to transpose arrays when used as the map arrays in a remap operation. By using column indices as the map array for B’s rows and row indices for its columns, the elements of B are transposed during their assignment to A. The dotted lines indicate how element $(3, 1)$ of A is assigned element $(1, 3)$ of B.

Using the formal definition of index constants, this assignment is interpreted as follows:

$$A_{i,j} \leftarrow B_{\text{Index2}_{i,j}, \text{Index1}_{i,j}} \leftarrow B_{j,i}$$

See Figure 2.8 for an illustration of this assignment.

Each index constant can be thought of as being floodable in every dimension other than the i^{th}, since its size is arbitrarily large and its values only differ in dimension i. However, note that Index_i conforms to arrays of rank i, $i+1$, $i+2$, etc., making it more flexible than a similar user-defined flood array.

2.9 Masks

As defined in Section 2.3, regions must be rectilinear. This results in index sets that are very rectangular and regular, though possibly strided. In many applications, programmers may want to refer to a more arbitrary set of indices than those permitted by regions. For this reason, regions may be modified by boolean masks to select a subset of indices from the region. The mask must have the same rank as the region that it is modifying and must be allocated for all indices described by the region.
Here is a simple example that uses masks:

```plaintext
var Mask: [R] boolean;

[R] Mask := ((Index1 + Index2) % 2 = 0);
[R with Mask] A := B;
```

The first assignment initializes the values of \texttt{Mask} to be true wherever the sum of the row and column indices is even (Figure 2.9a). The second assignment is prefixed by a region scope in which \texttt{R} is modified by \texttt{Mask}. This causes the assignment of \texttt{B} to \texttt{A} to take place only at those indices where the sum of the row and column indices is even. More formally:

\[A_{i,j} \leftarrow B_{i,j}, \forall (i, j) \in R \text{ such that } Mask_{i,j} = \text{true} \]

See Figure 2.9b for an illustration. Masks can also be applied using the \texttt{without} keyword, which reverses the sense of the mask, computing only at indices where the mask’s value is false.

Masks will not be covered with any more depth or formality in this chapter, as they are fairly intuitive and not a central concept in this dissertation. In general, any region scope can be masked, and the mask has the effect of filtering the region’s indices as they are applied to array expressions within the region’s scope.
Listing 2.7: A Demonstration of Region Scoping

```
[R] begin
2   A := B@west + C@east;
3   [BigR] A := B@east;
4   A := >>[TopRow] B;
5   [TopRow] A := <+[R] B;
6       biggest := max<< B;
7   [k1, k2] A := max<<[R] B;
8   A := A#B, C];
9 end;
```

2.10 Region Scoping

2.10.1 Region Scoping Overview

Up to this point, each statement that has referred to a parallel array has been prefixed by a region scope to provide the statement’s base indices. In general, region scopes can be applied to an entire block of statements using compound statements like control flow or a simple `begin...end` block. Moreover, new region scopes can be applied to individual statements within the compound statement, eclipsing the enclosing scope for that statement but no others.

As an example, all of the array statements in Section 2.4 could be written in a single block of statements (though an admittedly nonsensical one) as shown in Listing 2.7. The outermost region scope, `[R]`, serves as the enclosing region for lines 2, 4, 6, and 8. Lines 3, 5, and 7 are enclosed by an overriding region scope. Floods and partial reductions (as in lines 4, 5, and 7) open additional region scopes that enclose their array arguments (B, for each statement in this example).

Region scopes should be thought of as being passive rather than active objects. They do not cause things to occur, but merely supply indices, if needed, for the array references that they enclose. To this end, statements may be enclosed by multiple region scopes of different ranks, each of which can provide indices for array references of matching rank.
Listing 2.8: An Example of Multiple Enclosing Region Scopes

```
region R1D = [1..m];
    R2D = [1..n, 1..p];

var x: integer;
    Y: [R1D] integer;
    Z: [R2D] integer;

[R1D] [R2D] begin
    x := 1;
    Y := 2;
    Z := 3;
end;
```

As an example, consider Listing 2.8. In this fragment, the assignment to \(x \) is a scalar and therefore does not require the enclosing region scopes at all. The assignment to \(Y \) refers to a 1-dimensional array and therefore makes use of the enclosing 1-dimensional region scope \([R1D]\). Likewise, the assignment to \(Z \) is 2-dimensional and uses \([R2D]\) as its enclosing region scope. The enclosing region scope that controls an expression’s array references is referred to as its covering region.

2.10.2 Dynamic Region Scoping

Region scoping occurs not only within static blocks of code, but also across procedure calls. As an example, consider Listing 2.9. The \texttt{addmat()} procedure takes three array variables as arguments, adding two of them and assigning to the third. Note that since no region scope is specified within the procedure, each procedure call’s enclosing 2D region scope will be used during execution. Thus, the first call performs the computation for all indices within \(R \), the second performs it for the top row of \(R \), and the third performs it for the \(k \)th column of \(R \).
Listing 2.9: A Demonstration of Dynamic Region Scoping

```pascal
procedure addmat(var X, Y, Z: [BigR] integer);
begin
  X := Y + Z;
end;

[R] addmat (A,B,C);
[TopRow] addmat (A,B,C);
[1..m,k] addmat (A,B,C);
```

2.10.3 Region Inheritance

Due to the scoped nature of regions, it is often useful to inherit aspects of the enclosing region scope when opening a new region scope. ZPL provides two mechanisms for inheritance, the `blank dimension` and the `double-quote reference ("`)`. Each is described here.

Blank Dimensions

When opening a dynamic region, one or more dimensions may be inherited from the enclosing region scope by omitting their definitions. As an example, consider that line 4 of Listing 2.7 can be re-written using a dynamic region as follows:

```pascal
A := >>[1, 1..n] B;
```

However, since this statement is enclosed by region R, which also spans columns 1..n, the second dimension can be inherited using a blank dimension as follows:

```pascal
A := >>[1, ] B;
```

Since floods require that all non-replicated dimensions match, this syntax can save some redundant specification. It is especially useful when the source region’s indices are computed dynamically. The same technique can be used to rewrite the partial reduction of line 5 in Listing 2.7 as follows:

```pascal
[1, ] A := << [1..m, ] B;
```
Blank dimensions can inherit from a procedure’s dynamically enclosing scope. In addition, they can be used to leave the size of formal array parameters unspecified. For example, the addmat() procedure of Listing 2.9 could be written in a more general manner using blank dimensions as follows:

```pascal
procedure addmat(var X, Y, Z: [ , ] integer);
```

This specifies that addmat() takes three 2-dimensional parallel arrays as its parameters, but does not specify their size or indices.

Double-Quote References

Double-quote references are used within region scopes to refer to the enclosing region as a whole. This is especially useful with region operators. For example, the code fragment in Listing 2.10 zeroes out the four boundaries of variable A (Figure 2.10a). The rank of the inherited region is inferred from the direction supplied to the region operator. For example, in this listing, since north is 2-dimensional, the enclosing 2-dimensional region, R, is inherited. As with blank dimensions, the double-quote can be used to refer to a procedure’s dynamically enclosing region scope.
Figure 2.10: Region Inheritance Examples. In both diagrams, white is used to represent 0, black to represent 1, and grey to indicate values that are untouched. (a) The result of the assignments using double-quote references in Listing 2.10. (b) The result of the statements in Listing 2.11 using the same checkerboard mask as Figure 2.9.

The double-quote can also be used to inherit a mask from the enclosing region scope. For example, in Listing 2.11, the inner region scope restricts the enclosing scope R down to its k^{th} row. It then inherits the mask from the enclosing scope, determining its rank using that of the dynamic region. Thus, this code first zeroes out A for all indices in R for which Mask is true. It then assigns the value 1 to all elements for which it is false in the k^{th} row of R. See Figure 2.10b for an illustration.

2.11 Scalar Promotion

Scalar promotion is the idea of permitting a concept that is scalar in nature to interact naturally with a parallel array concept. Scalar promotion is an intrinsic concept in ZPL. For example, most of the sample codes in this chapter have made use of scalar promotion by using the scalar assignment operator, $\ :=\$, to assign one array expression to another. Similarly, the codes have applied scalar addition, subtraction, multiplication, and modulus operators to array expressions with the understanding that the operator would be applied to corresponding elements of the arrays. In these instances, scalar promotion causes the operator to be applied to the array expressions one scalar at a time for all indices in the enclosing region. The use is so intuitive that it is virtually transparent.
The rest of this section explores the concept of promotion and its uses in ZPL, beginning with a discussion of scalar conformability.

2.11.1 Conformability of Scalar Promotion

When a scalar operator is promoted and applied to two array arguments, ZPL requires that the expressions be of the same rank. This means, for example, that scalar addition cannot be used to add a one-dimensional array to a two-dimensional array (although a similar effect can be achieved by storing the one-dimensional values in a two-dimensional array with a flooded dimension). Furthermore, the result of any promoted scalar operator is an array expression with the same rank as its operands. These are the requirements for array conformability in ZPL.

Just as scalar operators can be promoted, so can scalar values. As an example, in Listing 2.8, the scalar constants 2 and 3 were assigned to parallel arrays Y and Z. In these assignments, the scalar is promoted much like a scalar operator. The scalar value is treated as an array of appropriate rank that stores the scalar value in every location. Scalar variables are much like arrays that are flooded in every dimension: they are conformable with arbitrary indices in any dimension, and they hold the same value at all locations. However, scalars are strictly more powerful than flood arrays in that they are conformable with arrays of arbitrary rank. That is, scalar values may interact with arrays of rank 1, 2, etc., whereas any user-defined flood array will have a fixed rank.
Listing 2.13: Using Shattered Control Flow to Compute an Array’s Absolute Value

```plaintext
[R] if (A < 0) then
    B := -A;
else
    B := A;
end;
```

2.11.2 Procedure Promotion

Just as scalar operators can be promoted using array operands, so can scalar procedures be promoted using array actual parameters. As an example, the scalar procedure `mycomp()` in Listing 2.4 can be applied to array arguments as shown in Listing 2.12. In the first call, arrays `W` and `V` are passed to `mycomp()` an element at a time for all indices in `R`, with the return value being assigned to the corresponding value of `Res`. In the second call, only the first argument is promoted, forcing the second argument, a scalar, to be promoted to act as a 2D array, making the parameters conformable.

A promoted scalar procedure’s actual parameters must have the same rank. For example, it would be illegal to call `mycomp()` with array arguments that were 2D and 3D, respectively. As expected, the return value of a promoted scalar procedure will be promoted to the rank of its array parameters.

Note that procedure promotion only applies to scalar procedures. That is, procedures which refer to regions, parallel arrays, or ZPL’s array operators may not be promoted. In addition, regions that use I/O, modify global variables, or call other parallel procedures are considered to be parallel to ensure deterministic execution.

2.11.3 Shattered Control Flow

Just as scalar operators and functions can be promoted, so can control structures (conditionals, loops) that are traditionally scalar in nature. For example, consider the conditional in Listing 2.13 which branches based on an array expression rather than a scalar value.
Listing 2.14: Using Promoted Procedures Instead of Shards

```plaintext
procedure abs(x: integer): integer;
begin
  if (x < 0) then
    return -x;
  else
    return x;
  end;
end;

[R] B := abs(A);
```

This conditional is evaluated for each element of A described by region R. Array references within the body of the conditional refer to elements with the same indices at which the conditional was evaluated. Thus, the conditional in this example will assign each element of B the absolute value of its corresponding element in A for all indices in R.

This promotion of control structures is referred to as *shattered control flow* because the single thread of control which is implicit in traditional ZPL statements may now take different actions on an element-by-element basis. In effect, it is “shattered,” giving each index its own logical thread of control. At the end of the shattered control flow statement (or *shard* for short), the conceptual threads are joined and a single thread of execution resumes.

It should be noted that shards are similar to inlining a promoted scalar function. For example, the code in Listing 2.13 could be rewritten as shown in Listing 2.14. For this reason, the bodies of shattered control flow statements have many restrictions similar to those for promoted scalar procedures. In particular, they may not contain regions or parallel array references whose rank differs from that of the controlling expression. Most array operators are also disallowed in shattered control flow expressions, though limited uses of the @ operator are allowed (corresponding to passing @-references to a procedure by value).
Table 2.2: Formal Definition of Writing an Array Within a Region Scope

\[\{ r \} \ A \ := \ \ldots \ (\text{where } A \text{ is defined over } a) \]

<table>
<thead>
<tr>
<th>(r) is normal or singleton</th>
<th>(a) is normal or singleton</th>
<th>(a) is flooded</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r) is flooded</td>
<td>Illegal, since (I(r) \supset I(a)).</td>
<td>Legal. Writes (A_r).</td>
</tr>
<tr>
<td>(a) is flooded</td>
<td>Illegal since (I(r) \subset I(a)) and (A)’s values must be identical.</td>
<td></td>
</tr>
</tbody>
</table>

2.12 Array Operators, More Formally

Now that regions have been formally defined, and their uses have been described more completely, the array operators can be defined more formally. This section gives a more precise definition of the array operators, and also for the legality of reading and writing arrays within an enclosing region. For simplicity, these definitions are given for the single-dimensional case. Multidimensional cases simply extend these rules by applying them to each dimension independently in the natural manner. We begin by defining simple array writes and reads.

2.12.1 Array Writes

Arrays can be modified by being on the left-hand side of an assignment operator or by being passed by reference to a promoted scalar procedure. To test the legality of a write to an array, each dimension of its defining region, \(a \), must be compared to that of the enclosing region scope of matching rank, \(r \). Table 2.2 summarizes the different cases that are possible, classifying them based on whether the dimensions of the enclosing region and the array’s defining region are singleton, flooded, or a normal range of indices.

In the case that neither dimension is flooded, the write is legal so long as the array is declared over the indices referenced by the region. When both dimensions are flooded, the
write is legal, and the single replicated value will be modified. As described in Section 2.7, the cases in which one dimension is flooded but the other is not are illegal due to the fact that one index set represents an infinite index range while the other is finite.

2.12.2 Array Reads

The legality of an array read is defined in Table 2.3. In most cases, array reads are identical in legality to array writes. The one exception is that it is legal to read an array’s flood dimension within a non-flooded region dimension. In this case, the programmer is specifying that a finite subset of the infinite index space be read, which makes sense. All of the other cases match their array write counterparts.

2.12.3 The @ Operator

To be legal, the array and direction supplied to an @ operator must match in dimensionality. This rank is also used to determine the enclosing region \(r \). As with array reads and writes, the dimensions of \(r \), and the array’s defining region, \(a \), must be considered. Table 2.4 defines the legality of each case. For each legal reference, the transformation from the array’s data space to the region’s index space is also given, indicating which array values are read for each index in the enclosing region.
Table 2.4: Formal definition of the @ Operator

\[
[r] \ldots A @ [\delta] \ldots \quad (\text{where } A \text{ is defined over } a)
\]

<table>
<thead>
<tr>
<th>(r) is normal or singleton</th>
<th>(a) is normal or singleton</th>
<th>(a) is flooded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legal if (I(r_{at} \delta) \subseteq I(a)). Returns (A_{i+i} \delta) at (i), (\forall i \in I(r)).</td>
<td>Legal. Returns (A_s) at (i), (\forall i \in I(r)).</td>
<td>Legal. Returns (A_s) at (*).</td>
</tr>
<tr>
<td>(r) is flooded</td>
<td>Illegal, since (I(r) \supset I(a)).</td>
<td></td>
</tr>
</tbody>
</table>

The cases in which one or both of the regions have a flood dimension are identical to a traditional array read. This implies that applying the @ operator to a flood dimension has no effect, as one would expect. When neither dimension is flooded, the legality condition is similar to that of an array read: if the array is declared for the region’s indices shifted by the offset, the reference is legal. The array reference evaluates to the values located at those shifted indices.

2.12.4 The Flood Operator

Evaluating a flood operator differs from previous sections in that two regions are involved—the source (s) and destination (d) regions of the flood. The first legality constraint is that the array expression being flooded must match the source region in dimensionality. This rank is also used to determine the enclosing region, so these will match as well. In addition, it must be legal to read the array expression using the source region as its covering region.

If these conditions are met, corresponding dimensions of the source and destination region are compared, with the possible outcomes summarized in Table 2.5. Floods are typically used to replicate a single value across a range of indices, making the cases where s is a singleton and d is normal or flooded the interesting ones. These uses of the flood operator cause the value at the index indicated by the source region to be referenced for
Table 2.5: Formal Definition of the Flood Operator

\[
[d] \ldots \gg [s] \ A\ldots
\]

<table>
<thead>
<tr>
<th></th>
<th>s is normal</th>
<th>s is singleton</th>
<th>s is flooded</th>
</tr>
</thead>
<tbody>
<tr>
<td>d is normal</td>
<td>Legal if (I(s) = I(d)). Returns (A_i) at (i), (\forall i \in I(d)).</td>
<td>Legal. Returns (A_k) at (i), where (I(s) = {k}), (\forall i \in I(d)).</td>
<td>Legal. Returns (A_s) at (i), (\forall i \in I(d)).</td>
</tr>
<tr>
<td>d is singleton</td>
<td>Illegal, since (</td>
<td>I(d)</td>
<td><</td>
</tr>
<tr>
<td>d is flooded</td>
<td>Illegal, since (</td>
<td>I(d)</td>
<td>></td>
</tr>
</tbody>
</table>

all indices in the destination region. The case where \(d\) is also a singleton is considered a degenerate case—the value is replicated over that single index. When \(s\) is flooded or \(s\) and \(d\) are both normal and equal, the reference is treated as a traditional array read. When \(s\) is normal but \(d\) is not, replication is nonsensical, so these cases are illegal.

2.12.5 The Reduce Operator

The reduce operator also utilizes a source and destination region. Once again, the argument expression and the source region must match in rank, and it must be legal to read the argument in the context of the source region.

Table 2.6 summarizes the different cases for reduction operators. The cases are essentially the dual of the flood operator, as one would expect. For simplicity, the table describes a sum reduction, though other operators may be substituted by replacing the summations in the definitions. The interesting cases reduce a range of values to a single value, and these occur when \(s\) is normal and \(d\) is either a singleton or flood dimension. The degenerate case
Table 2.6: Formal Definition of the (plus) Reduce Operator

\[
\begin{array}{|c|c|c|}
\hline
\text{[d]} & \ldots & \text{+<<} & \text{[s]} & \ldots \\
\hline
\text{s is normal} & \text{Legal if } I(s) = I(d). & \text{Illegal, since } |I(s)| = 1 \\
& \text{Returns } A_i \text{ at } i, & \text{and } |I(d)| > 1. \\
& \forall i \in I(d). & \text{Legal.} \\
& & \text{Returns } A_s \text{ at } i, \\
& & \forall i \in I(d). \\
\hline
\text{d is singleton} & \text{Legal. Returns } \sum_{j \in I(s)} A_j \text{ at } i, & \text{Legal. Returns } A_j \text{ at } i, \\
& \text{where } I(d) = \{i\}. & \text{where } I(s) = \{j\} \text{ and } \\
& & I(d) = \{i\}. \\
& & \text{Legal.} \\
& & \text{Returns } A_s \text{ at } i, \\
& & \text{where } I(d) = \{i\}. \\
\hline
\text{d is flooded} & \text{Legal. Returns } \sum_{j \in I(s)} A_j \text{ at } *. & \text{Legal. Returns } A_j \text{ at } *, \\
& \text{where } I(s) = \{j\}. & \text{where } I(s) = \{j\}. \\
& & \text{Legal.} \\
& & \text{Returns } A_s \text{ at } *. \\
\hline
\end{array}
\]

occurs when \(s\) is a singleton, causing the reduction to be trivial. If \(s\) is flooded or \(s\) and \(d\) are normal and equal, the dimension is treated as a traditional array read. The only case that is illegal is trying to reduce a single value down to a range of values, which is nonsensical.

Full reductions are less complicated than partial reductions. Legality is determined by whether the array can be legally read within the covering region of matching rank. If it can, all values described by that region are combined by the given operation and returned as a scalar.

2.12.6 The Remap Operator

The covering region for a remap expression is determined not by the rank of the source array, but by that of the map arrays being applied to it (all of which must have the same rank). The number of map arrays must equal the rank of the source array, so that they provide an index for each of its dimensions. In addition, it must be legal to read each map array within the context of the covering region.
Table 2.7: Formal Definition of the Remap Operator

\[
[r] \ldots A[# [M] \ldots \text{(where } A \text{ is defined over } a)\]

<table>
<thead>
<tr>
<th></th>
<th>a is normal or singleton</th>
<th>a is flooded</th>
</tr>
</thead>
</table>
| r is normal or singleton | Legal if \(M_i \in I(a), \forall i \in I(r) \).
Returns \(A_{M_i} \) at \(i \), \(\forall i \in I(r) \). | Legal. Returns \(A_a \) at \(i \), \(\forall i \in I(r) \). |
| r is flooded | Legal if \(M_a \in I(a) \).
Returns \(A_{M_a} \) at \(*\). | Legal. Returns \(A_a \) at \(*\). |

The single-dimensional case is defined by Table 2.7. If neither the covering region, \(r \), nor the source array’s defining region, \(a \), are flooded, the reference is legal as long as the array is declared for the indices described by the map array. The values corresponding to the map indices will be returned by the reference.

If \(r \) is flooded, the map array must be flooded as well in order to be read. The reference will therefore be legal if the source array is defined for the index stored in the map array’s unique location, and the value corresponding to that index will be returned. If \(a \) is flooded, the value of the map array is inconsequential. Regardless of its value, the single defining value of the source array will be returned. This case corresponds to a traditional array read.

The multidimensional case is handled using the obvious extension: the legality of each dimension is tested independently, and the indices for each dimension are determined by reading each map array in turn. For each index in the covering region, the single value in the source array defined by the map arrays’ indices is referenced.

2.13 Files and Input/Output

Console and file I/O have not been a primary focus of research in ZPL, nor will they serve a large role in this dissertation, but they deserve the very briefest mention. ZPL supports the
ability to open files for reading and writing, and also supports the standard console input, output, and error streams (zin, zout, and zerr, respectively). ZPL supports read(), write(), and writeln() statements that can be used to read or write expressions to one of these streams or to a file. Expressions can be formatted using control strings like those accepted by C’s printf() and scanf() routines. Binary I/O is supported using the bread() and bwrite() statements. Array expressions are read or written for all indices in the enclosing region scope of the same rank, in row-major order (with some minimal formatting in the case of text output).

2.14 ZPL Summary

This chapter’s description of ZPL concludes with a brief recap of its contents. To summarize, ZPL contains traditional scalar language constructs using a Modula-based syntax. In addition, ZPL supports configuration variables that serve as runtime constants and can be set on the resulting executable’s command line.

ZPL supports array-based programming using the concept of the region to represent a regular, rectilinear set of indices. Regions may be named or specified in-line. A region’s dimensions can represent a range of indices (potentially strided), a single index, or a replicated index using a flood dimension. Region operators may also be used to create new regions from existing ones. Regions are used to declare parallel arrays, which are the primary unit of computation in ZPL. The language also supplies built-in Indexi array constants which evaluate to their own indices in a particular dimension.

Regions are also used to define region scopes, which passively provide indices for parallel array references and expressions of matching rank. Array operators are used to transform a region’s indices as applied to a particular array expression. Array operators support translation, replication, reduction, or general remapping of an array’s values. Region scopes are dynamically scoped and may inherit from their enclosing scopes of matching rank. Masks can be applied to region scopes to filter out a subset of their indices.
ZPL allows the promotion of scalar operators, values, functions, and control flow to interact with arrays in a natural manner. It also contains support for binary and text I/O of scalar and array expressions to files or the console.

Nagging Questions

At this point, it is likely that there are several aspects of ZPL which seem arbitrary or strange. For example: Why does ZPL prevent interactions between regions and arrays of different rank if they are the same shape? Since the remap operator can be used to express translations, floods, and reductions, why does ZPL bother supporting other array operators? Why can ZPL regions only be applied to statements and certain array operators rather than arbitrary expressions? Why are flood dimensions non-conformable with singleton dimensions, given that they each represent a single set of defining values? Why are @-references not allowed to be passed by reference to parallel procedures?

The answers to these questions are based on the parallel interpretation of regions and arrays, and therefore will have to wait until the following chapter. For now, let us turn our attention to some sample applications written in ZPL.

2.15 Sample Codes

This section contains several sample applications written in ZPL. The problems considered are the Jacobi iteration, matrix-vector multiplication, matrix multiplication, and tridiagonal matrix multiplication. These applications were chosen because they are simple, well-known, and useful for demonstrating the language features described in this chapter. Most of the problems have a few different implementations to illustrate different approaches in ZPL. For a larger variety of application domains in ZPL, please consult the literature [WGS00, DLMW95, RBS96, LLST95, Sny99].
2.15.1 Jacobi Iteration

The Jacobi iteration is a simple relaxation method for solving Laplace’s equation on a regular grid [BBC+94]. Given an initial approximate solution, it refines the values using a five-point stencil until the solution converges within some tolerance \(\epsilon \). The five-point stencil simply replaces each value by the average of its neighbors in the four cardinal directions. See Figure 2.11 for an illustration. The Jacobi iteration can be used, for example, to approximate the electric potential in a flat metal sheet whose edges have a fixed electric potential.

Listing 2.15 shows an implementation of the Jacobi iteration in ZPL. This code makes use of many of the concepts that this chapter introduced: configuration variables, regions, directions, and parallel arrays; region inheritance using blank dimensions and double-quote references; the @ operator and full reductions; promotion of scalars, operators, and procedures; and I/O.

The code begins with the program statement, which names the program and identifies the code’s entry procedure. Lines 3–5 declare three configuration variables: \(n \), which serves as the size of the grid; \(\text{epsilon} \) which specifies the termination condition; and \(\text{verbose} \) which indicates whether or not to print verbose output during the program’s run.

Lines 7–8 declare two regions for the program. The first, \(R \), is the region which specifies the size of the regular grid. The second region, \(\text{BigR} \), is used to declare the main data array, which requires an extra row and column in each direction to store boundary values.
Listing 2.15: The Jacobi Iteration

```plaintext
program jacobi;

config var n: integer = 100; -- the problem size
epsilon: double = 0.00001; -- the convergence condition
verbose: boolean = false; -- verbose output?

region R = [1..n, 1..n]; -- the computation indices
BigR = [0..n+1, 0..n+1]; -- the declaration indices

var A: [BigR] double; -- the main data values
New: [R] double; -- the new iteration’s values
delta: double; -- change between iterations
direction north = [-1, 0]; -- the four cardinal directions
south = [ 1, 0];
east = [ 0, 1];
west = [ 0,-1];

procedure init(var X: [ , ] double); -- array initialization routine
begin
X := 0;
[north of ] X := 0.0;
south of ] X := 1.0;
[east of ] X := 0.0;
[west of ] X := 0.0;
end;

procedure jacobi(); -- the main entry point
[R] begin
init(A);
repeat
New := (A@north + A@south + A@east + A@west)/4.0; -- five-point stencil on A
delta := max<< fabs(A - New); -- find maximum change
A := New; -- copy back
until (delta < epsilon); -- continue while change is big
if (verbose) then
writeln("A:
", A); -- write data if desired
end;
writeln("delta: %le": delta); -- always write delta
end;
```
Lines 10–12 declare the variables for the problem. Array A serves as the primary data array, which is declared over region BigR to store the boundary values. Array New stores the new values computed during each iteration and requires no boundary values, so it is declared using region R. The variable delta is a scalar value that is used to store the maximum change that an array value undergoes in a single iteration.

Lines 14–17 declare the four cardinal directions, used to express the five-point stencil.

Lines 19–26 declare a procedure $\text{init}()$ that is used to initialize the data array A. Note that this procedure is written in a generic manner for two-dimensional arrays, taking a 2D array of any size as its input parameter and containing statements that rely on dynamic region inheritance. The procedure zeroes out the array for all indices specified by the dynamically enclosing region scope, as well as its north, east, and west boundaries. The southern boundary is initialized to 1.0.

The main procedure spans lines 28–46. It opens a region scope using R that supplies indices to all parallel expressions within the procedure. It also serves as the enclosing region for the call to $\text{init}()$ on line 30.

The main computation takes place in lines 32–39. Lines 33–34 compute the 5-point stencil on A using the @ operator and the four cardinal directions. The result is stored in the array New. Next, in line 36, the scalar $\text{fabs}()$ routine is promoted across the array expression $A - \text{New}$. The $\text{fabs}()$ routine is part of the standard C library and is included in ZPL’s standard context. This computes the absolute value of the difference between corresponding elements of A and New. The resulting array of values is then collapsed to a scalar using the max reduction operator, and assigned to delta. The new values are assigned back into A in preparation for the next iteration in line 38. This loop is repeated until delta falls below the convergence value, ϵ.

Lines 41–45 output the results. If the verbose flag is true, line 42 prints the values of A described by R to the console in row-major order. The final value of delta is printed using exponential notation in line 45 and the program exits.
Matrix-Vector Multiplication

Matrix-vector multiplication is a fundamental operation that is used in a wide variety of numerical computations. This section considers two possible implementations using 2D and 1D vector representations.

2D Vector Implementation

Listing 2.16 shows an implementation of matrix-vector multiplication in ZPL. Though a fairly simple program, it demonstrates the use of flood dimensions, file I/O, partial reductions, and the remap operator.

Typically, matrices are thought of as being 2-dimensional while vectors are considered 1-dimensional. However, since ZPL makes interactions between 1D and 2D arrays non-trivial, this program represents all vectors using 2D arrays with either a flood or singleton dimension. In particular, it uses a flooded row array to store the vector argument so that its values will conform to all rows of the matrix.

Lines 3–5 declare the configuration variables. The values \(m \) and \(n \) are used to represent the number of rows and columns of the matrix, respectively. The third configuration variable is of the string type and stores the filename for reading the matrix and vector.

Lines 7–10 declare the regions for this program. Region \(R \) is the base region which describes the matrix indices. Lines 8–9 declare two row regions: TopRow, a singleton row, and RowVect, a flooded row. Line 10 declares a singleton column region, ColVect, that describes the result of the multiplication. Arrays are declared for each region in lines 12–15.

The matvectmult() procedure itself spans lines 17–34. Lines 20–23 open the file specified by the filename configuration variable and read values for matrix \(M \) and input vector \(I \) from it. Line 25 uses the flood operator to assign a replicated copy of the input vector to \(V \), the flooded vector. Note that the source region for the flood is a dynamic region that inherits its second dimension from RowVect. Equivalently, the region TopRow could have served as the source region. The dynamic region is used here for illustrative purposes.
Listing 2.16: Matrix-Vector Multiplication Using 2D Vectors

program matvectmult;

config var
 m: integer = 100; -- number of matrix rows
 n: integer = 100; -- number of matrix columns
 filename: string = "MV.dat"; -- input filename

region R = [1..m, 1..n]; -- matrix index set
 TopRow = [1, 1..n]; -- top row of the matrix
 RowVect = [*1..n]; -- row vector index set
 ColVect = [1..m, n]; -- col vector index set

var
 M: [R] double; -- the matrix
 I: [TopRow] double; -- the input vector
 V: [RowVect] double; -- the vector flooded
 S: [ColVect] double; -- the solution vector

procedure matvectmult();
var infile: file;

begin
 infile := open(filename, file_read); -- open file
 [R] read(infile, M); -- read matrix values
 [TopRow] read(infile, I); -- read vector values
 close(infile); -- close file
 [RowVect] V := >>[1,] I; -- flood the input vector
 [ColVect] begin
 S := +< [R] (M * V); -- matrix-vector mult.
 writeln(S);
 end;
 -- [RowVect] V := S# [Index2, n]; -- transpose solution?
end;
The actual matrix-vector multiplication takes place on line 28. Since \(V \) is flooded in its dimension, all of the vector values are aligned with the appropriate matrix values in \(M \). Thus, they can simply be multiplied elementwise using scalar multiplication over region \(R \). Since the solution vector is formed by summing the products in each row, a partial sum reduction is used to reduce the data from \(R \) down to the singleton column, \(\text{ColVect} \). This represents the solution, which is written to the console in line 30.

In many matrix-vector multiplications, the matrix is square, and the solution vector must be used in subsequent multiplications. With this in mind, line 33 indicates how the solution vector could be re-assigned to a row vector using the remap operator. In particular, the column index (\(\text{Index2} \)) of the row is used to access the first dimension of \(S \) while the configuration variable \(n \) is promoted to access the second dimension.

It should be noted that region \(\text{RowVect} \) and array \(V \) could be completely omitted from this program by inlining the flood expression into the matrix-vector multiplication statement as follows:

\[
S := +<<[R] (M * \gg[1,] I));
\]

For this discussion, this version was not used due to the fact that it is somewhat less clear, and does not demonstrate the use of flood dimensions.

Alternatively, region \(\text{TopRow} \) and array \(I \) could be removed from the program by reading directly into array \(V \). While this would make the program even clearer, it was not used for this discussion in order to demonstrate the flood operator.

1D Vector Implementation

What if users really want to store their vectors as 1-dimensional arrays—is it possible in ZPL? Certainly, although the next chapter demonstrates that there may be compelling reasons to avoid such an implementation. This section illustrates matrix-vector multiplication using a 1D vector representation. For this program and all that follow, I/O will be omitted for brevity.
Listing 2.17: Matrix-Vector Multiplication Using 1D Vectors

```
program matvectmult;

config var m: integer = 100; -- number of matrix rows
    n: integer = 100; -- number of matrix columns

region R = [1..m, 1..n]; -- matrix index set
    InVect = [1..n]; -- 1D input vector indices
    OutVect = [1..m]; -- 1D output vector indices

var M: [R] double; -- the matrix
    V: [InVect] double; -- the input vector
    P: [R] double; -- an array of products
    S: [OutVect] double; -- the solution vector

procedure matvectmult();
[R] begin
    P := M * V[Index2]; -- compute the multis
    -- then sum the rows:
    [OutVect] [ , n] S := (+<-[R] P)#[Index1, n];
end;
```

Listing 2.17 shows one way of writing such a code. To make a rather complex operation somewhat more readable, it has been broken into two lines (17 and 19). Line 17 computes the $m \times n$ products, storing them in array P. These products are computed using the remap operator to read the 1D input vector V as though it was a 2D array. Recall that the number of map arrays in a remap must match the rank of the source array (1 in this case), and that the rank of the result is inferred by the rank of the map arrays. This program uses Index2 as its map array which has ambiguous rank since it is conformable to arrays of rank 2 or greater. However, in this case it must be 2D to allow the remap expression to conform to the multiplication with 2D array M.

Line 19 adds up the rows of P, assigning the result to S. This is done using a partial reduction as in the previous version using source region R and destination region $[, n]$, which inherits rows $1 \ldots m$ from R. Since storing the result in a 2D column vector seems contrary to the spirit of this approach, it is immediately remapped for assignment to S using Index1 and n as its map arrays. As in the previous statement, Index1 and the scalar n
have ambiguous rank, but they can be inferred to be 1D by context due to the assignment to \(S \). The assignment itself is controlled by the enclosing 1D region scope \(\text{OutVect} \).

That was fairly painful. The next chapter will show that this is not without good reason.

2.15.3 Matrix Multiplication

Matrix multiplication is yet another fundamental operation, and one that was used as motivation throughout Chapter 1. This section presents three different algorithms for matrix multiplication.

The SUMMA Algorithm

As described in the introduction, the SUMMA algorithm for matrix multiplication is considered one of the most scalable parallel approaches [vdGW95]. It has a fairly straight-
forward implementation in ZPL due to the support for replication provided by the flood operator. See Listing 2.18 for an implementation.

The program is fairly simple. The size of the matrices is specified by three configuration variables m, n, and o. A region is declared for each of the matrix sizes, and an array declared for each matrix. The execution is controlled by region RC, since all computations are done with respect to the result matrix, C. First C is zeroed out in line 18. Then, a loop is opened which specifies the n iterations of the algorithm. On iteration i, column i of A and row i of B are flooded across RC and multiplied elementwise, accumulating into C. At the end of the loop, C holds the result.

Cannon’s Algorithm

Cannon’s algorithm takes a systolic approach to matrix multiplication, illustrated in Figure 2.12. The algorithm begins by skewing the rows of A and the columns of B. In particular, each row i of A is cyclically shifted i – 1 columns to the left. Similarly, column i of B is shifted i – 1 rows upward. This has the effect of shifting A’s main diagonal into its first column and B’s main diagonal into its first row. Matrix C is initialized to contain all zeroes.

The main algorithm consists of n iterations. On each iteration, the initial m × o elements of each matrix are multiplied elementwise and accumulated into C. The A matrix is then cyclically shifted one row to the left and B is cyclically shifted one column upward. When all n iterations have completed, C contains the resulting matrix.

Listing 2.19 shows an implementation of Cannon’s algorithm written in ZPL. The declarations are identical to those of the SUMMA algorithm, except that additional copies of A and B are declared to hold the skewed versions of the arrays. This was done in order to leave the original arrays unperturbed. Note that these copies could be eliminated by skewing the original matrices and then un-skewing them at the end of the computation. Here, the extra copies are used for simplicity. In addition to the extra arrays, two directions are declared for use in the shifting.
Figure 2.12: Cannon’s Algorithm For Matrix Multiplication
Listing 2.19: Cannon's Algorithm in ZPL

```zpl
program cannon;

config var m: integer = 100; -- first dimension
    n: integer = 100; -- inner dimension
    o: integer = 100; -- last dimension

region RA = [1..m, 1..n]; -- indices for A
    RB = [1..n, 1..o]; -- indices for B
    RC = [1..m, 1..o]; -- indices for C

var A: [RA] double; -- matrix A
    ASkew: [RA] double; -- skewed matrix A
    B: [RB] double; -- matrix B
    BSkew: [RB] double; -- skewed matrix B
    C: [RC] double; -- result matrix C

direction nextcol = [0, 1]; -- directions for shifting
    nextrow = [1, 0];

procedure cannon();

var i: integer cannon;
[RC] begin
    /* Skew A’s rows and B’s columns */
    [RA] ASkew := A#[(Index1, ((Index2 + Index1 - 2)%n) + 1];
    [RB] BSkew := B#[(Index1 + Index2 - 2)%n + 1, Index2];

    C := 0; -- zero C

    for i := 1 to n do
        C += ASkew * BSkew; -- accumulate into C

    [RA] ASkew := ASkew@^nextcol; -- shift ASkew
    [RB] BSkew := BSkew@^nextrow; -- shift BSkew
end;
end;
```
The initial skewing of the arrays is implemented in lines 24–25 using the remap operator and map expressions involving the \texttt{Index1} and \texttt{Index2} constant arrays. Matrix C is zeroed out in preparation for the main computation.

Within the main loop, line 30 performs a single elementwise multiplication of the skewed matrices, accumulating the products into C. Lines 32–33 use the wrap-@ operator to shift \texttt{ASkew} and \texttt{BSkew} for the next iteration. At the end of the program, C will contain the result matrix as expected.

\textit{PSP Algorithm}

A third algorithm to consider is an instance of \textit{problem space promotion} (PSP) [CLS99]. Problem space promotion is the idea of turning instances of iterations in an algorithm into explicit data dimensions. In particular, the PSP matrix multiplication algorithm converts the loop from 1 to \(n \) in the SUMMA and Cannon algorithms into a third data dimension. By doing so, the \(m \cdot n \cdot o \) multiplications required for the matrix product are represented by a 3D index space (Figure 2.13a). Conceptually, matrix A represents one face of the box while matrix B represents a second perpendicular face. The algorithm proceeds by
Listing 2.20: PSP Matrix Multiplication in ZPL

program matmultpsp;

config var m: integer = 100; -- first dimension
 n: integer = 100; -- inner dimension
 o: integer = 100; -- last dimension

region RA = [1..m, 1..n]; -- 2D indices for A
 RB = [1..n, 1..o]; -- 2D indices for B
 RC = [1..m, 1..o]; -- 2D indices for C
 R3D = [1..m, 1..n, 1..o]; -- 3D index space
 RA3D = [1..m, 1..n, *]; -- 3D indices for A
 RB3D = [* , 1..n, 1..o]; -- 3D indices for B
 RC3D = [1..m, 1 , 1..o]; -- 3D indices for C

var A: [RA] double; -- matrix A
 B: [RB] double; -- matrix B
 C: [RC] double; -- result matrix C
 A3D: [RA3D] double; -- matrix A in 3D
 B3D: [RB3D] double; -- matrix B in 3D
 C3D: [RC3D] double; -- matrix C in 3D

procedure matmultpsp();
begin
 [RA3D] A3D := A#([Index1, Index2]); -- promote A to 3D
 [RB3D] B3D := B#([Index2, Index3]); -- promote B to 3D
 [RC3D] C3D := +<<[R3D] (A3D * B3D); -- compute C in 3D
 [RC] C := C3D#([Index1, 1, Index2]; -- demote C to 2D
end;

replicating these faces throughout the box, computing their elementwise products, and then
summing along the third dimension to form \(C \). This idea is illustrated in Figure 2.13.

In ZPL, the \(m \cdot n \cdot o \) elementwise products need not be represented explicitly, but can
be expressed using flood dimensions and a partial reduction. See Listing 2.20 for an imple-
mentation. The code declares the same 2D configuration variables, regions, and arrays as
in the previous codes. However, it also declares a 3D region to represent the 3-dimensional
computation space and three faces within that space—two flood regions for the argument
arrays and a third singleton region for the result.
The algorithm begins by using the remap operator to align the 2-dimensional A and B matrices in the 3D space (lines 24–25). The computation itself is expressed in line 27, which multiplies values of A and B within \mathbb{R}^{3D} and then reduces the products to the third plane of the space. Finally in line 29, the result array is mapped from 3D back to 2D.

2.15.4 Tridiagonal Matrix Multiplication

As a final application area, consider the multiplication of two tridiagonal matrices. Though any of the algorithms from the previous section can be used for this problem, the presence of so many zeroes allows more specialized techniques to be used. In particular, the resulting product will be a pentadiagonal matrix whose values are formed from the products of neighboring values in the tridiagonal argument matrices. See Figure 2.14 for an illustration. Since this code only needs to reference nearby neighbors, our implementations will use the @ operator rather than the floods and reductions of the previous matrix multiplication algorithms.

Mask-based Solution

One approach for implementing tridiagonal matrix multiplication in ZPL is to use a mask to restrict computation to one of the five resulting diagonals at a time. An implementation of this approach is given in Listing 2.21.

The implementation begins by declaring the problem size in line 3 and a region to describe the matrix indices in line 5. A larger region, BigR is also declared to store the argument matrices such that @-references can spill outside of the main problem area. The mask, arrays, and directions are declared in lines 8–16.

The implementation begins by zeroing out C so that all values not lying on the pentadiagonal will be correct. This could be done using a mask over all non-pentadiagonal indices, but the approach shown is asymptotically equivalent and used for simplicity. Next, each diagonal is computed one at a time by setting the mask using an expression that compares the
Figure 2.14: Tridiagonal Matrix Multiplication
Listing 2.21: Tridiagonal Matrix Multiplication in ZPL Using Masks

```
program trimask;
config var n: integer = 100;  -- assume n x n arguments
region R = [1..n, 1..n];    -- the base matrix size
          BigR = [0..n+1, 0..n+1];  -- matrix with boundaries
var A: [BigR] double;       -- matrix A
          B: [BigR] double;     -- matrix B
          C: [R] double;      -- the product matrix, C
          Mask: [R] boolean; -- mask for selecting diagonals

direction north = [-1, 0];   -- the four cardinal directions
          south = [ 1, 0];
          east = [ 0, 1];
          west = [ 0,-1];

procedure trimask();
[R] begin
   /* Assume we’ve zeroed A and B’s boundaries */
   C := 0;  -- zero out C

   /* Mask lowest diagonal (-2) and compute */
   Mask := (Index1 = Index2 + 2);
   ["with Mask"] C := A@east * B@north;

   /* compute diagonal -1 */
   Mask := (Index1 = Index2 + 1);
   ["with Mask"] C := (A * B@north) + (A@east * B);

   /* compute main diagonal */
   Mask := (Index1 = Index2);
   ["with Mask"] C := (A@west * B@north) + (A * B) +
                        (A@east * B@south);

   /* compute diagonal 1 */
   Mask := (Index1 = Index2 - 1);
   ["with Mask"] C := (A@west * B) + (A * B@south);

   /* compute diagonal 2 */
   Mask := (Index1 = Index2 - 2);
   ["with Mask"] C := A@west * B@south;
end;
```
Index1 and Index2 arrays. The computation of each diagonal’s values is expressed in a straightforward manner, using the mask to restrict it to the appropriate values. At the end of the program, C contains the matrix product.

Shattered Control Flow Solution

A second implementation is very similar to the first, but uses shattered control flow rather than a mask. The obvious advantage is that no time or space are required to compute and store the mask.

The declarations are identical to the mask-based version. The main computation consists of a shattered conditional that branches based on the relative values of Index1 and Index2. Since the comparison of these arrays implies that they can be of any rank greater than 1, the body of the conditional is examined to determine that this is a 2-dimensional conditional, due to its references to A, B, and C. Each branch of the conditional simply assigns C using that diagonal’s definition. The else clause at the end causes all non-pentadiagonal values to be zeroed out.

Compact Solution

The final implementation uses a more compact representation for the banded matrices. In particular, it uses an \(n \times 3 \) region, Tri, to represent the tridiagonal matrices and an \(n \times 5 \) region, Pent, to represent the resulting pentadiagonal. The regions’ second dimensions refer to the diagonal numbers rather than matrix columns, and are therefore numbered between \(-2\ldots2\), as appropriate. Note that directions north and south have been transformed to ne and sw to reflect this index space transformation. The tridiagonal region is also extended by an additional row in each direction to handle \(@ \)-references that spill outside of the array’s bounds.

The computation proceeds by opening a single dynamic region per diagonal which inherits its row dimension from the enclosing region, Pent. The expression to compute each
Listing 2.22: Tridiagonal Matrix Multiplication in ZPL Using Shattered Control Flow

```zpl
program trishard;
config var n: integer = 100; -- assume n x n arguments
region R = [1..n, 1..n]; -- the base matrix size
    BigR = [0..n+1, 0..n+1]; -- matrix with boundaries
var A: [BigR] double; -- matrix A
    B: [BigR] double; -- matrix B
    C: [R] double; -- the product matrix, C
direction north = [-1, 0]; -- the four cardinal directions
    south = [ 1, 0];
    east = [ 0, 1];
    west = [ 0,-1];
procedure trishard();
    [R] begin
        /* Assume A and B’s boundaries are zeroed out */
        /* shatter control flow based on the row and column indices */
        if (Index1 = Index2 + 2) then -- compute diagonal -2
            C := A@east * B@north;
        elsif (Index1 = Index2 + 1) then -- compute diagonal -1
            C := (A * B@north) + (A@east * B);
        elsif (Index1 = Index2) then -- compute main diagonal
            C := (A@west * B@north) + (A * B) + (A@east * B@south);
        elsif (Index1 = Index2 - 1) then -- compute diagonal 1
            C := (A@west * B) + (A * B@south);
        elsif (Index1 = Index2 - 2) then -- compute diagonal 2
            C := A@west * B@south;
        else -- zero all other indices
            C := 0;
        end;
    end;
```
Listing 2.23: Tridiagonal Matrix Multiplication in ZPL Using Compact Arrays

1. program tridense;
2. 3. config var n: integer = 100; -- assume n x n arguments
4. 5. region Tri = [0..n+1, -1..1]; -- dense tridiagonal storage
6. Pent = [1..n, -2..2]; -- dense pentadiagonal storage
7. 8. var A: [Tri] double; -- matrix A
9. B: [Tri] double; -- matrix B
10. C: [Pent] double; -- the product matrix, C
11. 12. direction ne = [-1, 1]; -- northeast (acts as north)
13. sw = [1,-1]; -- southwest (acts as south)
14. east = [0, 1]; -- east
15. west = [0,-1]; -- west
16. 17. procedure tridense();
18. [Pent] begin
19. /* Assume A and B’s boundaries are zeroed out */
20. 21. /* one statement per diagonal in the product */
22. [, -2] C := A@east * B@ne;
23. [, -1] C := (A * B@ne) + (A@east * B);
24. [, 0] C := (A@west * B@ne) + (A * B) + (A@east * B@sw);
25. [, 1] C := (A@west * B) + (A * B@sw);
26. [, 2] C := A@west * B@sw;
27. end;
2.16 Related Work

This section describes alternatives to region-based programming that are used to express array computations in other languages. Its focus is restricted to the indexing mechanisms of sequential languages. Parallel languages will be covered in the related work section of the following chapter.

2.16.1 Scalar Indexing

The oldest and most prevalent form of expressing array computation is *scalar indexing* or *array subscripting*, as found in languages such as FORTRAN, its later incarnation as FORTRAN 77 (F77) and more recent languages such as C [Mac87, Bac98, Sec78, KR88]. In each of these languages, basic operations such as assignment and addition are defined only for scalar values, and promotion is not supported. As a result, operations on arrays must be written to explicitly loop over the index space and reference the array’s values one at a time. Scalar indexing allows the programmer to specify a single value per dimension in order to specify a single array value. For example, adding two arrays might appear as follows in F77:

```fortran
do j = 1, n
  do i = 1, m
    c(i, j) = a(i, j) + b(i, j)
  endo
endo
```

The primary disadvantage of scalar indexing is that it burdens the programmer with the task of performing the explicit looping and subscripting required to express array computations. This can quickly become a tedious task that requires more keystrokes than it does intelligence. Moreover, the loops required by scalar indexing describe a sequential ordering on the operations that runs counter to parallelism. This is not a problem in a sequential context, but can complicate the parallelization of languages using scalar indexing in the parallel domain.
Scalar indexing does have the advantage of being a very simple and general mechanism for expressing array computations. For instance, there is no need for ZPL’s array operators, nor its restrictions governing what types of expressions can and cannot interact. Moreover, conformability rules in such a language are simple: since all arguments to an operator must be scalars, the only check required is that all array dimensions are being indexed.

2.16.2 Vector Indexing

In the late 1950’s Kenneth Iverson developed a mathematical notation that was designed to clarify some of the ambiguities that he felt standard mathematical notation contained. Shortly thereafter, this notation evolved into APL (A Programming Language), one of the earliest higher-level programming languages [Ive62, Mac87]. APL was the first pure array-based programming language, since all data items in the language are arrays (scalars are simply arrays of rank 0). APL’s arrays support vector indexing in which the programmer supplies a vector of indices per dimension. The outer product of these vectors specifies the indices of the array. In this way, array references no longer refer to a single value of the array, but a subarray of values, or possibly the entire array. For example, matrix addition would appear as follows in APL:

\[
C[1 + iM; 1 + iN] ← A[1 + iM; 1 + iN] + B[1 + iM; 1 + iN]
\]

In this notation, \(i\) represents a \(k\)-element vector containing values from 0 to \(k - 1\) (similar to ZPL’s Index arrays). Each element is incremented to use 1-based indexing to be consistent with the Fortran implementation. Thus, the outer product of these vectors causes each array reference to refer to elements \(\{(1,1),\ldots,(m,n)\}\). Addition (+) and assignment (←) are promoted across the elements as in ZPL, and the sum is computed.

Although APL contained many elegant and revolutionary ideas, it has not remained in widespread use over the years. Detractors find it too terse and unreadable, due primarily to its large set of unique operators, most of which require non-standard characters (like the “←” used for assignment above). Though enthusiasts are quick to rush to its defense, it
remains largely unused and unknown today. Even so, its use of arrays as operators and vector subscripting have had an influence on more modern languages including ZPL.

2.16.3 Array Slicing

Modern array-based languages have adopted syntax to support APL’s array operands without so much generality and built-in support for mathematical operators. Many of these languages have provided a syntax for accessing a regularly strided set of indices within an array. This is known as array slicing or array sectioning, and represents an excellent example of optimizing for the common case. Consider, for example, how few of the ZPL programs from the previous section would require an APL-style index vector that was not a simple \(i \)-expression.

One language with support for array slicing is Fortran 90 (F90) [ABM+92], a successor to F77. F90 allows the user to specify indices using a 3-tuple per dimension: \([l:h:s]\). These values are identical to the low, high, and stride values in ZPL’s sequence descriptors, and they can be used to express a wide variety of simple APL-style \(i \)-expressions. In F90, \(l \) serves as the alignment value, which was the fourth value in ZPL’s sequence descriptors.

Another language that supports slicing is Matlab, an interactive, interpreted matrix manipulation language [Mat93]. Matlab supports a slice notation similar to F90’s, but without the stride value. In both languages, the low and high bounds may be omitted, which cause the array’s declared bounds to be used. Omitting the stride in F90 results in a stride of 1. Omitting the slice notation altogether causes the entire array to be referenced. Matrix addition would appear as follows in F90 and Matlab:

\[
C(1:n, 1:n) = A(1:n, 1:n) + B(1:n, 1:n)
\]

As in APL, both F90 and Matlab allow the programmer to use vector indexing, though in practice this rarely seems to be used. For example, a five-element vector could be permuted in F90 using the following assignment:

\[
X(1:5) = Y(/ 2,5,1,4,3 /)
\]
Naturally, traditional scalar indexing may be used as well, should slicing or vector indexing fail to express a desired array reference.

The primary advantage of array slicing over traditional indexing is that it is a more concise means of specifying operations over arrays or subarrays, eliminating the need for explicit loops for many array operations. Like scalar indexing, slices allow for more general array interactions than ZPL’s regions, yet use a notation that is more concise and optimized for the common case than that of APL’s vector indexing.

The chief disadvantage of array slicing is the syntactic overhead of specifying a region-like set of indices for each array reference. Though small examples like matrix addition are not so bad, slice notation can become rather cumbersome and error-prone in larger array codes. In particular, the conformability requirements of array slices require the size and shape of each array operand to match, causing redundant information to be supplied with each array reference. Moreover, these conformability rules require more analysis than scalar indexing or region-based indexing, both of which can be satisfied by simple checks of the arguments (note that the related problem of bounds checking is common to all approaches, and is not made simpler by any scheme).

2.16.4 Forall loops

A final array access mechanism that is often supported by languages to simplify scalar indexing is the forall loop. This structure iterates over a multidimensional index range or an arbitrary index set, typically in an unspecified order. In this sense, forall loops represent universal quantification much like regions, in that they generate a set of indices with which to operate. Unlike regions, forall loops tend to use iterator variables like traditional for loops. These iterators are typically used to access an array’s values using scalar indexing. Thus, forall loops can be considered a compact representation of a nested loop whose iteration order is unconstrained.

FIDIL (FInite DIfference Language) [SH89, HC93] is an example of an array language that uses forall loops. FIDIL was designed for use in scientific computation and supports
general index sets called *domains*. Domains need neither be rectangular nor dense, and FIDIL supports computation over them using set-theoretic union, intersection, and difference operations. Domains are used both to specify the structure of arrays (*maps*), and to provide index sets for FIDIL’s forall loops.

Fortran 95 [Geh96] also supports a forall loop structure that takes an array slice as its bounds and iterates over the indices that it describes. In this context, the forall loop is much more of a syntactic sugar, as there is no language-level support for index sets as in FIDIL and ZPL.

2.17 Evaluation

To evaluate the impact of region-based programming on a program’s clarity, the sample codes of this chapter are compared to *sequential*, hand-written implementations in C. Appendix A contains the source code for these C implementations for reference.

Each line of code in the ZPL and C implementations of the benchmarks is classified as serving one of three purposes: (1) declaring a variable, procedure, or other identifier; (2) computing the benchmark’s result; or (3) performing other non-essential work such as I/O, initialization, timing, etc. This study only considers lines in the first two categories. The graphs in Figures 2.15 and 2.16 indicate the number of useful lines and characters of code used by each implementation. Characters were counted by removing all extraneous spaces and whitespace from the codes, other than that which is required to represent the algorithms in a simple, readable form.

The general trend shown in these graphs is that ZPL codes express computation with a conciseness similar to C, both in terms of line- and character counts. These benchmarks also indicate that the coding effort in the ZPL versions of these benchmarks tends to be weighted more heavily towards declarations than computation. This is a result of ZPL’s use of high-level named concepts like regions and directions to replace traditional loops and indexing. Presumably, the overhead of these declarations will be lessened in longer codes
Figure 2.15: Conciseness of Sample Codes. These graphs display the number of useful lines and characters required for the sample Jacobi and matrix-vector multiplication codes in ZPL and C.
Figure 2.16: Conciseness of Sample Codes (continued). These graphs display the number of useful lines and characters required for the sample normal and tridiagonal matrix multiplication codes in ZPL and C.
where the same declarations can be used again and again, amortizing the cost of declaring them over a larger code base. The experiments in Chapters 5 and 6 support this hypothesis.

The following paragraphs give a few notes for each benchmark.

The Jacobi Iteration

The Jacobi Iteration best demonstrates the benefits of region-based programming. While most of the other benchmarks consist of a small number of array statements surrounded by a single region, the Jacobi benchmark uses a number of diverse regions to establish its boundary conditions. In the C code, each of these regions requires its own loop, demonstrating the region’s concise support for array computation. Since most real-world codes will tend to require many regions/loop nests to express a computation, this benchmark best demonstrates the concise power that a few appropriate ZPL declarations can have.

Matrix-Vector Multiplication

C and ZPL represent matrix-vector multiplication using reasonably equivalent code sizes. Once again, the ZPL representations tend to be slightly more concise in terms of computation due to the use of regions rather than loops.

Matrix Multiplication

Matrix multiplication represents a worst-case for ZPL, simply due to the difference in complexity between sequential and parallel matrix multiplication algorithms. In particular, sequential C algorithms can simply iterate over the matrices and compute on them in-place. In contrast, all of the parallel algorithms described by this chapter require some amount of data movement and copying.

The SUMMA algorithm is ZPL’s most concise implementation and the only one that is more compact than C’s triply-nested loop. Cannon’s algorithm requires significantly more computation due to its skewing operation and cyclic shifts. It also requires additional decla-
rations to create the directions used to implement the shifting. The PSP algorithm requires the greatest amount of declarations due to its use of 2D and 3D regions to describe its two computational domains. The PSP computation itself is fairly concise in terms of lines, but these lines are long due to the Index_i expressions used to implement the alignment of arrays from 2D to 3D.

Tridiagonal Matrix Multiplication

The hand-coded C implementation of tridiagonal matrix multiplication uses a compact representation of the matrices similar to the third ZPL implementation. As a result, these two codes are the most comparable in size due to their similar approach. ZPL’s mask- and shard-based approaches tend to require more computation due to the overhead of restricting computation to the diagonals within the logical 2D index space. In contrast, the compact ZPL and C implementations can trivially isolate a single diagonal.

Summary

In summary, ZPL can represent these simple algorithms as concisely as C. ZPL tends to require slightly less syntax to specify computation due to its use of regions to replace looping and indexing. This effect is offset somewhat by ZPL’s more verbose syntax (e.g., Index_i constants, the use of `begin...end` rather than curly braces). For the benchmarks studied here, ZPL tends to require more declarations than C, though it is expected that these declarations will be amortized in larger benchmarks by the savings in computation.

It is crucial to keep in mind that the ZPL implementations of this section differ from the C codes in one crucial way: they represent fully-functional parallel implementations of the benchmarks, whereas the C codes can only be run on a single processor. For this reason, regions must be considered a benefit to clarity, since they support the expression of a more complex program using syntax that tends to be as concise as sequential C. As the next chapter will show, this cannot be said for most parallel languages.
2.18 Discussion

2.18.1 Benefits of Regions

Though Section 2.16 argued that regions are somewhat less flexible and adaptable than array indexing and slicing, they are not without their benefits. This section describes the advantages that regions give programmers, syntactically and semantically.

Cleaner Elementwise Operations

Performing strict elementwise operations on arrays remains an extremely common case in array-based programming. Though interesting programs will require more complex interactions between their arrays, most large programs will still require many elementwise operations in addition to the more complex ones. In these cases, regions represent a positive evolution in array reference syntax. Array slices can be seen as a factoring of F77 loop bounds into the array references in order to optimize the common case of iterating over an array in a regular manner. In the same spirit, regions can be thought of as factoring a set of indices that describe the size and shape of slice-based array references into a single prefixing slice—the region scope.

Table 2.8 shows a number of simple array statements written in F77, F90, and ZPL. In the first row, a simple array addition is demonstrated. The F77 version requires explicit loops and repetitive array indexing. The F90 version eliminates the loops, but requires identical slices to be applied to each individual array reference. The ZPL version factors this common slice into the region scope, leaving the array references unadorned and eliminating a lot of redundant typing. Since elementwise operations constitute a common case, the result is that many array references will be unadorned in ZPL.
Table 2.8: Language Syntax Comparison

<table>
<thead>
<tr>
<th>F77</th>
<th>F90</th>
<th>ZPL</th>
</tr>
</thead>
</table>
| **do** j = 1, n
 do i = 1, m
 C(i, j) = A(i, j) + B(i, j)
 enddo
 enddo | C(1:m, 1:n) = A(1:m, 1:n) + B(1:m, 1:n) | [1..m, 1..n] C := A + B;
 -- or --
 [R] C := A + B; |
| **do** j = 1, n
 do i = 1, m
 A(i, j) = B(i, j-1) + C(i, j+1)
 enddo
 enddo | A(1:m, 1:n) = B(1:m, 0:n-1) + C(1:m, 2:n+1) | [1..m, 1..n] A := B@[0, -1] + C@[0, 1];
 -- or --
 [R] A := B@west + C@east; |
| **do** j = 1, n
 do i = 1, m
 A(i, j) = B(1, j)
 enddo
 enddo | A(i:i, 1:m) = B(1:1, 1:n)
 enddo | [1..m, 1..n] A := >>[1,] B;
 -- or --
 [R] A := >>[TopRow] B; |
| **do** j = 1, n
 A(1, j) = 0
 do i = 1, m
 A(1, j) = A(1, j) + B(i, j)
 enddo
 enddo | A(1:1, 1:n) = 0
 do i = 1, m
 A(1:1, 1:n) = A(1:1, 1:n) + B(i:i, 1:n)
 enddo | [1, 1..n] A := +<<[1..m,] B;
 -- or --
 [TopRow] A := +<<[R] B; |
| **do** j = 1, n
 do i = 1, m
 A(i, j) = A(B(i, j), C(i, j))
 enddo
 enddo | **do** j = 1, n
 do i = 1, m
 A(i, j) = A(B(i, j), C(i, j))
 enddo
 enddo | [1..m, 1..n] A := A#B, C;
 -- or --
 [R] A := A#B, C; |
Clearer Array Reference Patterns

When array operations are not strictly elementwise, regions still serve a purpose by describing the size and shape of the subarray accesses. Array operators express any modifications to these base indices for a particular array expression. This has the effect of syntactically factoring the redundant part of each array reference out of the main computation, leaving only indications of how each reference differs.

As an example, consider the second row of Table 2.8, in which shifted references to B and C are summed. In F77 and F90, the array indices and slices encode redundant information. In particular, F77 specifies that each access is based on index (i, j), while F90 specifies three slices, each of which are $m \times n$ in size. In ZPL, the common aspects of these array references—the $m \times n$ base indices—are factored into the region, leaving only the differences in how the arrays are accessed, using the @ operator. By removing much of the redundant clutter, the meaning of the statement is clearer.

As further evidence, consider each column of the table one at a time to see how long it takes you to identify the operation that is being performed by each statement. Note that very different array operations end up looking rather similar in F77 and F90, whereas ZPL does a better job of distinguishing them.

Fewer Loops Required

In F77, programmers expect to use loops and indices. In F90, many array operations no longer require loops due to the availability of array slicing and vector indexing. However, as the last two entries in Table 2.8 show, these mechanisms are not strong enough to express floods, partial reductions, or remap operations without using loops. The floods and partial reductions fail due to the requirement that the two sides of an operation must have the same size and shape. This makes it illegal to add an arbitrary number of rows to a single row without a loop. The remap operator cannot be written succinctly due to the fact that F90 has no mechanism for taking the dot product of vector indices rather than the cross product.
It should be noted that F90 supports intrinsic functions such as `SUM`, `RESHAPE`, and `TRANSPOSE` that may be used to write such statements in a single line. However, these functions should be considered part of a standard library context rather than a syntax-based means for expressing array computation. Similarly, F95’s forall loops allow such statements to be written on a single line, but still rely on a loop-style concept (albeit one that syntactically begins to resemble the region).

Naming Improves Readability

The fact that regions can be named greatly improves the readability of ZPL code, since it allows index sets to be given identifiers that are meaningful to the programmer. Column 3 in Table 2.8 shows each ZPL statement written both with and without identifiers. These examples demonstrate that names can improve the clarity of each statement. Note that the ability to name array slices or index ranges could improve the readability of F90 codes somewhat, but would not produce a ZPL-equivalent syntax.

Regions Promote Code Reuse

The fact that regions are dynamically scoped allows procedures to be written in a more generic way. As a simple example, note that the ZPL implementation of the SUMMA algorithm (Figure 1.2) could be moved into a procedure that takes only the size of the inner dimension as an argument and inherits the matrix size from the callsite. In contrast, a generic F90 implementation would require the bounds for each dimension to be passed in as arguments. Furthermore, even when an algorithm does require more than a single inherited region (as in the Cannon and PSP algorithms), regions represent a concise means of bundling index information for passing to another procedure.
2.18.2 Region Deficiencies

Though regions have many benefits, there are also some deficiencies that should be addressed in future region-based languages including Advanced ZPL. This section briefly describes some of them.

Regions are Rectangular

One obvious limitation of regions is their regular and rectilinear nature. Though masks and shattered control flow can be used to restrict a region to an arbitrary subset of indices, these concepts tend to require time and space proportional to the region’s size in order to compute the irregularity. For example, the mask- and shattered control flow-based implementations of tridiagonal matrix multiplication require $\Theta(n^2)$ time and space rather than the $\Theta(n)$ time and space that the computation requires.

One partial solution would be to expand the region specification to allow Index_i expressions in a region’s index ranges. For example, a lower triangular matrix could be represented using the region $[1..n, \text{Index}_1..n]$. Similarly, a tridiagonal matrix could be represented using $[1..n, (\text{Index}_1 - 1) .. (\text{Index}_1 + 1)]$. The main challenge to such an approach is the fact that such regions cannot be specified using a cross product of sequence descriptors. Therefore, they would require a different formal specification and implementation. Legality issues would also be a concern in such a scheme.

Chapter 6 presents a different solution to this problem, in the form of sparse regions.

Inability to Capture Dynamic Regions

As currently defined, ZPL allows users to open dynamic region scopes, but not to “capture” them in a way that allows them to be reused again later. Rather, they must be explicitly redefined for each use. As a motivating example, imagine that a program dynamically calculates three subregions of an array in which it wants to perform further computation. It would be nice to have some way of snapshotting these three index sets using named
regions so that they could be reused later, rather than explicitly maintaining their bounds using scalar variables.

This lack also makes it difficult to declare persistent arrays using a dynamic region. Arrays that are local to a procedure may be declared using the dynamically covering region or an explicit dynamic region, but such arrays will not persist once the procedure returns. This restricts the user’s ability to declare an array over the three subregions of the previous paragraph, for example, such that they could be used throughout the program naturally.

Inability to Redefine Regions

A related problem is that named regions cannot be redefined. In a sense, ZPL’s regions can be viewed as constant sets of indices that cannot be altered during the program’s execution. For some applications in which a problem size cannot be known at configuration time, it would be nice to incrementally grow regions to meet a program’s specific requirements dynamically. For example, while a 1D region can be used to implement an array-based list in ZPL, the list cannot be grown using standard array resizing techniques because the bounds of its defining region cannot be modified.

Regions are Inflexible

In ZPL, regions are technically neither a type, nor a first-class object. This limits their use in a number of ways: programmers may not declare collections of regions using indexed arrays or records; they may not assign regions; they may not pass regions to a procedure; etc. This design choice was made in order to provide the compiler with as much information about the regions as possible. The idea was to start with a restricted region definition and then broaden it as much as the compiler could tolerate without sacrificing performance or the ability to effectively parallelize a ZPL program. During the past decade, virtually no relaxation of these restrictions has taken place, though it has seemed increasingly feasible to do so.
2.18.3 Proposed Support for Regions as Values

One solution to many of the previous section’s problems would be to promote the region concept to that of a first-class value. In doing so, traditional region declarations would be interpreted as declarations of constant or configuration regions. That is, the following two declarations would be considered equivalent to one another:

```plaintext
region R = [1..m, 1..n];
config var R: region = [1..m, 1..n];
```

Any regions for which ZPL’s current rules are overly strict could be declared as variables of type region, allowing them to be assigned dynamically, modified, or grown. Parallel arrays declared using region variables would be reallocated after the region was assigned, preserving any values in the intersection of the old and new index sets. Procedures could be written with formal parameters of type region. Moreover, types could be created that have region components, such as indexed arrays of regions and records with region fields.

The primary liability of this scheme is that current ZPL optimizations may be compromised due to an increased amount of confusion over a region’s definition. For example, in the presence of region assignments and aliasing, will the compiler be able to determine whether a region’s dimension is floodable, singleton, or normal? What about its rank? It seems reasonable to be optimistic about these issues since the absence of pointers should make most of a region’s salient features statically detectable using interprocedural analysis. Even in the worst-case, such an approach is worthy of more study in order to attempt to support more general region-based programming.

2.18.4 Proposed Support for User-Defined Region Operators

One feature that I believe is missing from the ZPL language is the ability for users to define their own region operators. While the region operators supported by ZPL form a useful basis set, it is not difficult to conceive of other operators that might also benefit a programmer. Rather than hoping to supply all region operators that a user could want, it
Listing 2.24: Proposed Syntax for User-Defined Region Operators

```pascal
postfixregionop grow(delta: integer; var l, h, s, a: integer);
begin
  if (delta < 0) then
    l += delta;
  else
    h += delta;
end;

direction nw = [-1, -1];
se = [ 1, 1];

region R = [1..m, 1..n];
BigR = [R grow nw grow se]
```

makes more sense to give the user the ability to define custom operators by describing the effect of a δ value on a sequence descriptor.

For example, I might define a `grow` region operator that pulls a region’s corner in the specified direction without changing its stride or alignment. Listing 2.24 shows proposed syntax for such an operator. Lines 1–8 define the grow operator by indicating the delta value’s effect on the four-tuple sequence descriptor (which could be expressed using a record type rather than four scalar variables). The region operator could then be used to define BigR as shown in line 14, rather than by explicitly specifying its bounds.

Such support seems like a useful and simple extension to ZPL as it currently stands. One important side-effect that this might have is to require parenthesization to indicate operator precedence in a region expression. ZPL’s built-in region operators are associative, so parenthesization is neither required nor allowed.

2.18.5 Implicit Storage Considered Frustrating

One feature of ZPL that has not been described in this chapter is its support for implicit storage. The implicit storage concept causes certain specifications of an array’s boundary
conditions to implicitly extend the amount of memory allocated for it. For example, in the
Jacobi iteration of Listing 2.15, variable A can be declared over region \mathcal{R}, and the initialization of its borders using of regions would cause its storage to automatically be extended by a row and column in each direction.

This feature was motivated by the observation that many ZPL programs use two regions for each problem size, one for the computation space and a second that extends the computation space by a few extra rows or columns to describe the array’s data space with boundaries. For example, most of the sample programs of Section 2.15 exhibit this characteristic. Therefore, it was believed that implicit storage would reduce the number of regions that programmers would have to declare, saving them some trouble.

In the long-run, it has turned out quite the opposite. Implicit storage allocation continues to be a confusing issue to most programmers due to the fact that (1) the rules are not as clear to them as they should be, (2) the rules are not always as general or intuitive as they ought to be, and/or (3) the fact that implicit storage is invisible in the program makes it hard to debug or even feel reassured that the expected behavior is going to take place. More questions and bugs have probably been addressed due to misunderstandings related to implicit storage than any other concept in ZPL. Most programmers eventually give up on the idea and simply explicitly declare the complete memory that their arrays require as I have done in this chapter’s sample codes.

As a result of these experiences, I believe that implicit storage allocation is a bad idea. Users are accustomed to explicitly declaring the type of their variables, which includes the sizes of their arrays. While giving them a mechanism to handle the common case with one less identifier is an admirable idea, it has caused more confusion than it is worth. In this sense, implicit storage seems much like optional variable declarations [Mac87] and should be similarly avoided.
2.18.6 Scalar Issues

For the most part, ZPL’s scalar concepts are not particularly interesting or inventive. They provide basic functionality without many surprises. This section touches on a few noteworthy characteristics.

Configuration Variables

The configuration variable is ZPL’s most interesting scalar concept. It has proven extremely useful as a means of specifying a value that a programmer will want to change from run to run, but which the compiler can use as a basis for optimization. This makes programmers’ lives easier by not requiring them to create and maintain a separate executable per program configuration. Yet, it provides more semantic flexibility than the `const` keyword in C, which requires its initializer to be statically specifiable. Having worked with ZPL for a number of years, I often find myself wishing that other languages had a concept that was equivalent to the configuration variable.

The Lack of Pointers

Up to this point, the lack of pointers in ZPL has kept the language clean and easy to analyze. Furthermore, the ZPL applications that have been studied to this date have not suffered due to the lack of pointers. As the language strives to support more irregular, graph-based data structures, some sort of pointer mechanism will be required. It will be an interesting challenge to see whether such a mechanism can be supported in a clean, high-level way analogous to regions, or whether such data structures necessarily require pointers and the difficulties that they entail. An interesting starting point for anyone approaching this problem would be Vassily Litvinov’s exploratory work in Graph ZPL [Lit95].
Parameter Specifications

One key place where I find ZPL’s scalar syntax lacking is in its lack of richness for describing how a procedure’s parameter will be used. In particular, the by-reference \texttt{var} specification might mean any of the following: (1) I will be sending this value into the procedure, modifying it there, and want the resulting modification to be reflected in the actual parameter; (2) The current value of this parameter is unimportant, but I will be using this parameter as a means of returning a new value calculated within the procedure; or (3) This is a very large data structure and the compiler should not make a copy of it when passing it into the procedure, though I will not be modifying it. There are many instances during ZPL compilation in which the compiler would like to differentiate between these meanings for optimization purposes. While many cases can be differentiated by analyzing procedure definitions, aliasing can complicate matters and foil the analysis. My sense is that a better-designed set of parameter tags, perhaps similar to those provided by Ada [TD97], would not represent a hardship to the user and would support better communication between the programmer and compiler.

2.19 Summary

This chapter has defined the concept of the region and explained its use in defining ZPL. Regions represent a succinct means of describing a set of indices for use in declaring arrays and expressing array computation. This chapter argues that regions have many syntactic benefits, including the elimination of redundant indexing expressions and an emphasis on different array access styles. However, the most important benefits of regions are related to their use in parallel computing. The next chapter describes these benefits.
Chapter 3

REGIONS AND PARALLELISM

As mentioned in the previous chapter, the most important benefits of regions pertain to their role in parallel computation. This chapter addresses the parallel interpretation of regions and their impact on parallel programming. In doing so, it justifies some of ZPL’s rules that seem somewhat arbitrary in the sequential context.

This chapter is organized as follows: Sections 3.1–3.5 interpret regions, arrays, and scalars in the parallel context. Section 3.6 explains how this implementation forms the basis of ZPL’s syntax-based performance model. The nagging questions of the previous chapter are re-examined in light of this performance model in Section 3.7. Sections 3.8 and 3.9 apply the performance model to Chapter 2’s sample codes and validate it experimentally. Section 3.10 defines a new type of region dimension for use in the parallel context. Section 3.11 contains a survey of other parallel programming languages and libraries, and Section 3.12 discusses issues related to this chapter’s contributions. This chapter presents an expanded discussion of work that was published previously [CCL+98, CLLS99].

3.1 Regions Imply Parallelism

The key to parallelism in ZPL is that each region’s indices are distributed among the processors that execute a ZPL program. This has two implications for the parallel interpretation of ZPL programs. First, since arrays are declared using regions, the distribution of a region’s indices determines the distribution of array elements between processors (hence the term “parallel array”). Second, since regions supply indices for array operations, the distribution of their indices determines the distribution of array computation between processors.