
1

Chapter 1

INTRODUCTION TO PARALLEL PROGRAMMING

The past few decades have seen large fluctuations in the perceived value of parallel

computing. At times, parallel computation has optimistically been viewed as the solution

to all of our computational limitations. At other times, many have argued that it is a waste

of effort given the rate at which processor speeds and memory prices continue to improve.

Perceptions continue to vacillate between these two extremes due to a number of factors,

among them: the continual changes in the “hot” problems being solved, the programming

environments available to users, the supercomputing market, the vendors involved in build-

ing these supercomputers, and the academic community’s focus at any given point and time.

The result is a somewhat muddied picture from which it is difficult to objectively judge the

value and promise of parallel computing.

In spite of the rapid advances in sequential computing technology, the promise of par-

allel computing is the same now as it was at its inception. Namely, if users can buy fast

sequential computers with gigabytes of memory, imagine how much faster their programs

could run if � of these machines were working in cooperation! Or, imagine how much larger

a problem they could solve if the memories of � of these machines were used cooperatively!

The challenges to realizing this potential can be grouped into two main problems: the

hardware problem and the software problem. The former asks, “how do I build a parallel

machine that will allow these � processors and memories to cooperate efficiently?” The

software problem asks, “given such a platform, how do I express my computation such that

it will utilize these � processors and memories effectively?”

2

In recent years, there has been a growing awareness that while the parallel community

can build machines that are reasonably efficient and/or cheap, most programmers and sci-

entists are incapable of programming them effectively. Moreover, even the best parallel

programmers cannot do so without significant effort. The implication is that the software

problem is currently lacking in satisfactory solutions. This dissertation focuses on one

approach designed to solve that problem.

In particular, this work describes an effort to improve a programmer’s ability to uti-

lize parallel computers effectively using the ZPL parallel programming language. ZPL is

a language whose parallelism stems from operations applied to its arrays’ elements. ZPL

derives from the description of Orca C in Calvin Lin’s dissertation of 1992 [Lin92]. Since

that time, Orca C has evolved to the point that it is hardly recognizable, although the foun-

dational ideas have remained intact. ZPL has proven to be successful in that it allows par-

allel programs to be written at a high level, without sacrificing portability or performance.

This dissertation will also describe aspects of Advanced ZPL (A-ZPL), ZPL’s successor

language which is currently under development.

One of the fundamental concepts that was introduced to Orca C during ZPL’s inception

was the concept of the region. A region is simply a user-specified set of indices, a concept

which may seem trivially uninteresting at first glance. However, the use of regions in ZPL

has had a pervasive effect on the language’s appearance, semantics, compilation, and run-

time management, resulting in much of ZPL’s success. This dissertation defines the region

in greater depth and documents its role in defining and implementing the ZPL language.

This dissertation’s study of regions begins in the next chapter. The rest of this chapter

provides a general overview of parallel programming, summarizing the challenges inherent

in writing parallel programs, the techniques that can be used to create them, and the metrics

used to evaluate these techniques. The next section begins by providing a rough overview

of parallel architectures.

3

1.1 Parallel Architectures

1.1.1 Parallel Architecture Classifications

This dissertation categorizes parallel platforms as being one of three rough types: dis-

tributed memory, shared memory, or shared address space. This taxonomy is somewhat

coarse given the wide variety of parallel architectures that have been developed, but it pro-

vides a useful characterization of current architectures for the purposes of this dissertation.

Distributed memory machines are considered to be those in which each processor has

a local memory with its own address space. A processor’s memory cannot be accessed di-

rectly by another processor, requiring both processors to be involved when communicating

values from one memory to another. Examples of distributed memory machines include

commodity Linux clusters.

Shared memory machines are those in which a single address space and global memory

are shared between multiple processors. Each processor owns a local cache, and its values

are kept coherent with the global memory by the operating system. Data can be exchanged

between processors simply by placing the values, or pointers to values, in a predefined

location and synchronizing appropriately. Examples of shared memory machines include

the SGI Origin series and the Sun Enterprise.

Shared address space architectures are those in which each processor has its own local

memory, but a single shared address space is mapped across the distinct memories. Such

architectures allow a processor to access the memories of other processors without their

direct involvement, but they differ from shared memory machines in that there is no implicit

caching of values located on remote machines. The primary example of a shared address

machine is Cray’s T3D/T3E line.

Many modern machines are also built using a combination of these technologies in

a hierarchical fashion, known as a cluster. Most clusters consist of a number of shared

memory machines connected by a network, resulting in a hybrid of shared and distributed

memory characteristics. IBM’s large-scale SP machines are an example of this design.

4

CPU CPU CPU CPUCPU CPU CPUCPU

Controller

Sparse Network

Figure 1.1: The Candidate Type Architecture (CTA)

1.1.2 The CTA Machine Model

ZPL supports compilation and execution on these diverse architectures by describing them

using a single machine model known as the Candidate Type Architecture (CTA) [Sny86].

The CTA is a reasonably vague model, and deliberately so. It characterizes parallel ma-

chines as a group of von Neumann processors, connected by a sparse network of unspeci-

fied topology. Each processor has a local memory that it can access at unit cost. Processors

can also access other processors’ values at a cost significantly higher than unit cost by

communicating over the network. The CTA also specifies a controller used for global com-

munications and synchronization, though that will not be of concern in this discussion. See

Figure 1.1 for a simple diagram of the CTA.

Why use such an abstract model? The reason is that parallel machines vary so widely in

design that it is difficult to develop a more specific model that describes them all. The CTA

successfully abstracts the vast majority of parallel machines by emphasizing the importance

of locality and the relatively high cost of interprocessor communication. This is in direct

contrast to the overly idealized PRAM [FW78] model or the extremely parameterized LogP

model [CKP � 93], neither of which form a useful foundation for a compiler concerned with

portable performance. For more details on the CTA, please refer to the literature [Sny86,

Sny95, Lin92].

5

1.2 Challenges to Parallel Programming

Writing parallel programs is strictly more difficult than writing sequential ones. In se-

quential programming, the programmer must design an algorithm and then express it to

the computer in some manner that is correct, clear, and efficient to execute. Parallel pro-

gramming involves these same issues, but also adds a number of additional challenges that

complicate development and have no counterpart in the sequential realm. These challenges

include: finding and expressing concurrency, managing data distributions, managing inter-

processor communication, balancing the computational load, and simply implementing the

parallel algorithm correctly. This section considers each of these challenges in turn.

1.2.1 Concurrency

Concurrency is crucial if a parallel computer’s resources are to be used effectively. If

an algorithm cannot be divided into groups of operations that can execute concurrently,

performance improvements due to parallelism cannot be achieved, and any processors after

the first will be of limited use in accelerating the algorithm. To a large extent, different

problems inherently have differing amounts of concurrency. For most problems, developing

an algorithm that achieves its maximal concurrency requires a combination of cleverness

and experience from the programmer.

As motivating examples, consider matrix addition and matrix multiplication. Mathe-

matically, we might express these operations as follows:

Matrix addition: Given matrices
�

and �������	��
�
��� ��������������
� where ����� ��� � ��� � � ����� � �

Matrix multiplication: Given matrices
� ���!�"��
 and �#�$�%��&'
�

� �(�����������(&'
� where �����)��+*-,�/.10 � ��� �324���5�)
Consider the component operations that are required to implement these definitions. Ma-

trix addition requires �627� pairwise sums to be computed. Matrix multiplication requires

6

the evaluation of � 2 �	2 & pairwise products and
� ��� 2������ �(2'&'
 pairwise sums. In con-

sidering the parallel implementation of either of these algorithms, programmers must ask

themselves, “can all of the component operations be performed simultaneously?” Look-

ing at matrix addition, a wise parallel programmer would conclude that they can be com-

puted concurrently—each sum is independent from the others, and therefore they can all

be computed simultaneously. For matrix multiplication, the programmer would similarly

conclude that all of the products could be computed simultaneously. However, each sum

is dependent on values obtained from previous computations, and therefore they cannot be

computed completely in parallel with the products or one another.

As a result of this analysis, a programmer might conclude that matrix addition is inher-

ently more concurrent than matrix multiplication. As a second observation, the programmer

should note that for matrices of a given size, matrix multiplication tends to involve more

operations than matrix addition.

If the programmer is designing an algorithm to run on � processors where �	� �(� � � & ,

a related question is “are there better and worse ways to divide the component operations

into � distinct sets?” It seems likely that there are, although the relevant factors may not be

immediately obvious. The rest of this section describe some of the most important ones.

1.2.2 Data Distribution

Another challenge in parallel programming is the distribution of a problem’s data. Most

conventional parallel computers have a notion of data locality. This implies that some data

will be stored in memory that is “closer” to a particular processor and can therefore be

accessed much more quickly. Data locality may occur due to each processor having its own

distinct local memory—as in a distributed memory machine—or due to processor-specific

caches as in a shared memory system.

Due to the impact of data locality, a parallel programmer must pay attention to where

data is stored in relation to the processors that will be accessing it. The more local the

values are, the quicker the processor will be able to access them and complete its work. It

7

should be evident that distributing work and distributing data are tightly coupled, and that

an optimal design will consider both aspects together.

For example, assuming that the � � � sums in a matrix addition have been divided

between a set of � processors, it would be ideal if the values of
�

, � , and � were distributed

in a corresponding manner so that each processor’s sums could be computed using local

values. Since there is a one-to-one correspondence between sums and matrix values, this

can easily be achieved. For example, each processor �) could be assigned matrix values
� ��� � , � ��� � , and ����� � , ������� ��� �
	 �
�������� � � �/� .

Similarly, the implementor of a parallel matrix multiplication algorithm would like to

distribute the matrix values, sums, and products among the processors such that each node

only needs to access local data. Unfortunately, due to the data interactions inherently

required by matrix multiplication, this turns out to be possible only when matrix values

are explicitly replicated on multiple processors. While this replication may be an option

for certain applications, it runs counter to the general goal of running problems that are
� times bigger than their sequential counterparts. Such algorithms that rely on replication

to avoid communication are not considered scalable. Furthermore, replication does not

solve the problem since matrix products are often used in subsequent multiplications and

would therefore require communication to replicate their values across the processor set

after being computed.

To create a scalable matrix multiplication algorithm, there is no choice but to transfer

data values between the local memories of the processors. Unfortunately, the reality is

that most interesting parallel algorithms require such communication, making it the next

parallel programming challenge.

1.2.3 Communication

Assuming that all the data that a processor needs to access cannot be made exclusively

local to that processor, some form of data transfer must be used to move remote values

to a processor’s local memory or cache. On distributed memory machines, this communi-

8

cation typically takes the form of explicit calls to a library designed to move values from

one processor’s memory to another. For shared memory machines, communication in-

volves cache coherence protocols to ensure that a processor’s locally cached values are

kept consistent with the main memory. In either case, communication constitutes work that

is time-consuming and which was not present in the sequential implementation. There-

fore, communication overheads must be minimized in order to maximize the benefits of

parallelism.

Over time, a number of algorithms have been developed for parallel matrix multiplica-

tion, each of which has unique concurrency, data distribution, and communication charac-

teristics. A few of these algorithms will be introduced and analyzed during the course of

the next few chapters. For now, we return to our final parallel computing challenges.

1.2.4 Load Balancing

The execution time of a parallel algorithm on a given processor is determined by the time

required to perform its portion of the computation plus the overhead of any time spent per-

forming communication or waiting for remote data values to arrive. The execution time of

the algorithm as a whole is determined by the longest execution time of any of the proces-

sors. For this reason, it is desirable to balance the total computation and communication

between processors in such a way that the maximum per-processor execution time is mini-

mized. This is referred to as load balancing, since the conventional wisdom is that dividing

work between the processors as evenly as possible will minimize idle time on each proces-

sor, thereby reducing the total execution time.

Load balancing a matrix addition algorithm is fairly simple due to the fact that it can

be implemented without communication. The key is simply to give each processor approx-

imately the same number of matrix values. Similarly, matrix multiplication algorithms are

typically load balanced by dividing the elements of � among the processors as evenly as

possible and trying to minimize the communication overheads required to bring remote
�

and � values into the processors’ local memories.

9

1.2.5 Implementation and Debugging

Once all of the parallel design decisions above have been made, the nontrivial matter of

implementing and debugging the parallel program still remains. Programmers often imple-

ment parallel algorithms by creating a single executable that will execute on each processor.

The program is designed to perform different computations and communications based on

the processor’s unique ID to ensure that the work is divided between instances of the exe-

cutable. This is referred to as the Single Program, Multiple Data (SPMD) model, and its

attractiveness stems from the fact that only one program must be written (albeit a nontrivial

one). The alternative is to use the Multiple Program, Multiple Data (MPMD) model, in

which several cooperating programs are created for execution on the processor set. In ei-

ther case, the executables must be written to cooperatively perform the computation while

managing data locality and communication. They must also maintain a reasonably bal-

anced load across the processor set. It should be clear that implementing such a program

will inherently require greater programmer effort than writing the equivalent sequential

program.

As with any program, bugs are likely to creep into the implementation, and the effects

of these bugs can be disastrous. A simple off-by-one error can cause data to be exchanged

with the wrong processor, or for a program to deadlock, waiting for a message that was

never sent. Incorrect synchronization can result in data values being accessed prematurely,

or for race conditions to occur. Bugs related to parallel issues can be nondeterministic and

show up infrequently. Or, they may occur only when using large processor sets, forcing the

programmer to sift through a large number of execution contexts to determine the cause.

In short, parallel debugging involves issues not present in the sequential world, and it can

often be a huge headache.

10

1.2.6 Summary

Computing effectively with a single processor is a challenging task. The programmer must

be concerned with creating programs that perform correctly and well. Computing with

multiple processors involves the same effort, yet adds a number of new challenges related

to the cooperation of multiple processors. None of these new factors are trivial, giving a

good indication of why programmers and scientists find parallel computing so challenging.

The design of the ZPL language strives to relieve programmers from most of the burdens

of correctly implementing a parallel program. Yet, rather than making them blind to these

details, ZPL’s regions expose the crucial parallel issues of concurrency, data distribution,

communication, and load balancing to programmers, should they care to reason about such

issues. These benefits of regions will be described in subsequent chapters. For now, we

shift our attention to the spectrum of techniques that one might consider when approaching

the task of parallel programming.

1.3 Approaches to Parallel Programming

Techniques for programming parallel computers can be divided into three rough categories:

parallelizing compilers, parallel programming languages, and parallel libraries. This sec-

tion considers each approach in turn.

1.3.1 Parallelizing Compilers

The concept of a parallelizing compiler is an attractive one. The idea is that program-

mers will write their programs using a traditional language such as C or Fortran, and the

compiler will be responsible for managing the parallel programming challenges described

in the previous section. Such a tool is ideal because it allows programmers to express

code in a familiar, traditional manner, leaving the challenges related to parallelism to the

compiler. Examples of parallelizing compilers include SUIF, KAP, and the Cray MTA

compiler [HAA � 96, KLS94, Ter99].

11

Listing 1.1: Sequential C Matrix Multiplication

for (i=0; i<m; i++) {
for (k=0; k<o; k++) {
C[i][k] = 0;

}
}
for (i=0; i<m; i++) {
for (j=0; j<n; j++) {
for (k=0; k<o; k++) {
C[i][k] += A[i][j] * B[j][k];

}
}

}

The primary challenge to automatic parallelization is that converting sequential pro-

grams to parallel ones is an entirely non-trivial task. As motivation, let us return to the

example of matrix multiplication. Written in C, a sequential version of this computation

might appear as in Listing 1.1.

Well-designed parallel implementations of matrix multiplication tend to appear very

different than this sequential algorithm, in order to maximize data locality and minimize

communication. For example, one of the most scalable algorithms, the SUMMA algo-

rithm [vdGW95], bears little resemblance to the sequential triply nested loop. SUMMA

consists of � iterations. On the � th iteration, A’s � th column is broadcast across the processor

columns and B’s � th row is broadcast across processor rows. Each processor then calculates

the cross product of its local portion of these values, producing the � th term in the sum for

each of C’s elements. Figure 1.2 shows an illustration of the SUMMA algorithm.

The point here is that effective parallel algorithms often differ significantly from their

sequential counterparts. While having an effective parallel compiler would be a godsend,

expecting a compiler to automatically understand an arbitrary sequential algorithm well

enough to create an efficient parallel equivalent seems a bit naive. The continuing lack of

such a compiler serves as evidence to reinforce this claim.

12

repeat for all i

multiply
elementwise

matrix A matrix B

accumulate

matrix C

replicated rowreplicated column

column

replicate

row

replicate

i

i

Figure 1.2: The SUMMA Algorithm For Matrix Multiplication

13

Many parallelizing compilers, including those named above, take an intermediate ap-

proach in which programmers add directives to their codes to provide the compiler with

information to aid it in the task of parallelizing the code. The more of these that need to be

relied upon, the more this approach resembles a new programming language rather than a

parallelizing compiler, so further discussion of this approach is deferred to the next section.

1.3.2 Parallel Programming Languages

A second approach to parallel programming is the design and implementation of parallel

programming languages. These are languages designed to support parallel computing better

than sequential languages, though many of them are based on traditional languages in the

hope that existing code bases can be reused. This dissertation categorizes parallel languages

as being either global-view or local-view.

Global-view Languages

Global-view languages are those in which the programmer specifies the behavior of their

algorithm as a whole, largely ignoring the fact that multiple processors will be used to

implement the program. The compiler is therefore responsible for managing all of the

parallel implementation details, including data distribution and communication.

Many global-view languages are rather unique, providing language-level concepts that

are tailored specifically for parallel computing. The ZPL language and its regions form

one such example. Other global-view languages include the directive-based variations of

traditional programming languages used by parallelizing compilers, since the annotated

sequential programs are global descriptions of the algorithm with no reference to individual

processors. As a simple example of a directive-based global-view language, consider the

pseudocode implementation of the SUMMA algorithm in Listing 1.2. This is essentially

a sequential description of the SUMMA algorithm with some comments (directives) that

indicate how each array should be distributed between processors.

14

Listing 1.2: Pseudo-Code for SUMMA Using a Global View

double A[m][n];
double B[n][o];
double C[m][o];
double ColA[m];
double RowB[o];

// distribute C [block,block]
// align A[:,:] with C[:,:]
// align B[:,:] with C[:,:]
// align ColA[:] with C[:,*]
// align RowB[:] with C[*,:]

for (i=0; i<m ; i++) {
for (k=0; k<o; k++) {
C[i][k] = 0;

}
}

for (j=0; j<n; j++) {
for (i=0; i<m; i++) {
ColA[i] = A[i][j];

}
for (k=0; k<o; k++) {
RowB[k] = B[j][k];

}

for (i=0; i<m ;i++) {
for (k=0; k<o; k++) {
C[i][k] += ColA[i] * RowB[k];

}
}

}

15

The primary advantage to global-view languages is that they allow the programmer

to focus on the algorithm at hand rather than the details of the parallel implementation.

For example, in the code above, the programmer writes the loops using the array’s global

bounds. The task of transforming them into loops that will cause each processor to iterate

over its local data is left to the compiler.

This convenience can also be a liability for global-view languages. If a language or

compiler does not provide sufficient feedback about how programs will be implemented,

knowledgeable programmers may be unable to achieve the parallel implementations that

they desire. For example, in the SUMMA code of Listing 1.2, programmers might like to

be assured that an efficient broadcast mechanism will be used to implement the assignments

to ColA and RowB, so that the assignment to C will be completely local. Whether or not

they have such assurance depends on the definition of the global language being used.

Local-view Languages

Local-view languages are those in which the implementor is responsible for specifying the

program’s behavior on a per-processor basis. Thus, details such as communication, data

distribution, and load balancing must be handled explicitly by the programmer. A local-

view implementation of the SUMMA algorithm might appear as shown in Listing 1.3.

The chief advantage of local-view languages is that users have complete control over

the parallel implementation of their programs, allowing them to implement any parallel

algorithm that they can imagine. The drawback to these approaches is that managing the

details of a parallel program can become a painstaking venture very quickly. This contrast

can be seen even in short programs such as the implementation of SUMMA in Listing 1.3,

especially considering that the implementations of its Broadcast...(), IOwn...(),

and GlobToLoc...() routines have been omitted for brevity. The magnitude of these

details are such that they tend to make programs written in local-view languages much

more difficult to maintain and debug.

16

Listing 1.3: Pseudo-Code for SUMMA Using a Local View

int m_loc = m/proc_rows;
int o_loc = o/proc_cols;
int n_loc_col = n/proc_cols;
int n_loc_row = n/proc_rows;

double A[m_loc][n_loc_col];
double B[n_loc_row][o_loc];
double C[m_loc][o_loc];
double ColA[m_loc];
double RowB[o_loc];

for (i=0; i<m_loc ; i++) {
for (k=0; k<o_loc; k++) {
C[i][k] = 0;

}
}

for (j=0; j<n; j++) {
if (IOwnCol(j)) {
BroadcastColSend(A,GlobToLocCol(j));
for (i=0; i<m_loc; i++) {
ColA[i] = A[i][j];

}
} else {
BroadcastColRecv(ColA);

}
if (IOwnRow(j)) {
BroadcastRowSend(B,GlobToLocRow(j));
for (k=0; k<o_loc; k++) {
RowB[k] = B[j][k];

}
} else {
BroadcastRowRecv(RowB);

}

for (i=0; i<m_loc ;i++) {
for (k=0; k<o_loc; k++) {
C[i][k] += ColA[i] * RowB[k];

}
}

}

17

1.3.3 Parallel Libraries

Parallel libraries are the third approach to parallel computing considered here. These are

simply libraries designed to ease the task of utilizing a parallel computer. Once again, we

categorize these as global-view or local-view approaches.

Global-view Libraries

Global-view libraries, like their language counterparts, are those in which the programmer

is largely kept blissfully unaware of the fact that multiple processors are involved. As a

result, the vast majority of these libraries tend to support high-level numerical operations

such as matrix multiplications or solving linear equations. The number of these libraries is

overwhelming, but a few notable examples include the NAG Parallel Library, ScaLAPACK,

and PLAPACK [NAG00, BCC � 97, vdG97].

The advantage to using a global-view library is that the supported routines are typically

well-tuned to take full advantage of a parallel machine’s processing power. To achieve

similar performance using a parallel language tends to require more effort than most pro-

grammers are willing to make.

The disadvantages to global-view libraries are standard ones for any library-based ap-

proach to computation. Libraries support a fixed interface, limiting their generality as com-

pared to programming languages. Libraries can either be small and extremely special-

purpose or they can be wide, either in terms of the number of routines exported or the

number of parameters passed to each routine [GL00]. For these reasons, libraries are a use-

ful tool, but often not as satisfying for expressing general computation as a programming

language.

Local-view Libraries

Like languages, libraries may also be local-view. For our purposes, local-view libraries are

those that aid in the support of processor-level operations such as communication between

18

processors. Local-view libraries can be evaluated much like local-view languages: they

give the programmer a great deal of explicit low-level control over a parallel machine,

but by nature this requires the explicit management of many painstaking details. Notable

examples include the MPI and SHMEM libraries [Mes94, BK94].

1.3.4 Summary

This section has described a number of different ways of programming parallel computers.

To summarize, general parallelizing compilers seem fairly intractable, leaving languages

and libraries as the most attractive alternatives. In each of these approaches, the tradeoff

between supporting global- and local-view approaches is often one of high-level clarity

versus low-level control. The goal of the ZPL programming language is to take advantage

of the clarity offered by a global-view language without sacrificing the programmer’s abil-

ity to understand the low-level implementation and tune their code accordingly. Further

chapters will develop this point and also provide a more comprehensive survey of parallel

programming languages and libraries.

1.4 Evaluating Parallel Programs

For any of the parallel programming approaches described in the previous section, there are

a number of metrics that can be used to evaluate its effectiveness. This section describes

five of the most important metrics that will be used to evaluate parallel programming in

this dissertation: performance, clarity, portability, generality, and a programmer’s ability to

reason about the implementation.

1.4.1 Performance

Performance is typically viewed as the bottom line in parallel computing. Since improved

performance is often the primary motivation for using parallel computers, failing to achieve

good performance reflects poorly on a language, library, or compiler.

19

0 4 8 16 32 64

Processors

0

16

32

48

64

S
p

ee
d

u
p

Sample Speedup Graph

linear speedup
program A
program B

Figure 1.3: A Sample Speedup Graph. The dotted line indicates linear speedup
(� ��������� �	� � �), which represents ideal parallel performance. The “program A” line
represents an algorithm that scales quite well as the processor set size increases. The “pro-
gram B” line indicates an algorithm that does not scale nearly as well, presumably due to
parallel overheads like communication. Note that these numbers are completely fabricated
for demonstration purposes.

This dissertation will typically measure performance in terms of speedup, defined to be

the fastest single-processor execution time (using any approach) divided by the execution

time on � processors:

� ��������� �	� ��
 0�	� ����
 �

If the original motivating goal of running a program � times faster using � processors

is met, then � ��������� ��� � � . This is known as linear speedup. In practice, this is chal-

lenging to achieve since the parallel implementation of most interesting programs requires

work beyond that which was required for the sequential algorithm: in particular, commu-

nication and synchronization between processors. Thus, the amount of work per processor

in a parallel implementation will typically be more than ��� � of the work of the sequential

algorithm.

On the other hand, note that the parallelization of many algorithms requires allocating

20

approximately ��� � of the sequential program’s memory on each processor. This causes the

working set of each processor to decrease as � increases, allowing it to make better use of

the memory hierarchy. This effect can often offset the overhead of communication, making

linear, or even superlinear speedups possible.

Parallel performance is typically reported using a graph showing speedup versus the

number of processors. Figure 1.3 shows a sample graph that displays fictional results for

a pair of programs. The speedup of program A resembles a parallel algorithm like matrix

addition that requires no communication between processors and therefore achieves nearly

linear speedup. In contrast, program B’s speedup falls away from the ideal as the number

of processors increases, as might occur in a matrix multiplication algorithm that requires

communication.

1.4.2 Clarity

For the purposes of this dissertation, the clarity of a parallel program will refer to how

clearly it represents the overall algorithm being expressed. For example, given that list-

ings 1.2 and 1.3 both implement the SUMMA algorithm for matrix multiplication, how

clear is each representation? Conversely, how much do the details of the parallel imple-

mentation interfere with a reader’s ability to understand an algorithm?

The importance of clarity is often brushed aside in favor of the all-consuming pursuit

of performance. However, this is a mistake that should not be made. Clarity is perhaps the

single most important factor that prevents more scientists and programmers from utilizing

parallel computers today. Local-view libraries continue to be the predominant approach to

parallel programming, yet their syntactic overheads are such that clarity is greatly compro-

mised. This requires programmers to focus most of their attention on making the program

work correctly rather than spending time implementing and improving their original algo-

rithm. Ideally, parallel programming approaches should result in clear programs that can

be readily understood.

21

1.4.3 Portability

A program’s portability is practically assured in the sequential computing world, primar-

ily due to the universality of C and Fortran compilers. In the parallel world, portability

is not as prevalent due to the extreme differences that exist between platforms. Parallel

architectures vary widely not only between distinct machines, but also from one genera-

tion of a machine to the next. Memory may be organized as a single shared address space,

a single distributed address space, or multiple distributed address spaces. Networks may

be composed of buses, tori, hypercubes, sparse networks, or hierarchical combinations of

these options. Communication paradigms may involve message passing, single-sided data

transfers, or synchronization primitives over shared memory.

This multitude of architectural possibilities may be exposed by local-view approaches,

making it difficult to implement a program that will run efficiently, if at all, from one ma-

chine to the next. Architectural differences also complicate the implementation of global-

view compilers and libraries since they must run correctly and efficiently on all current

parallel architectures, as well as those that may exist in the future.

Ideally, portability implies that a given program will behave consistently on all ma-

chines, regardless of their architectural features.

1.4.4 Generality

Generality simply refers to the ability of a parallel programming approach to express algo-

rithms for varying types of problems. For example, a library which only supports matrix

multiplication operations is not very general, and would not be very helpful for writing a

parallel quicksort algorithm. Conversely, a global-view functional language might make it

simple to write a parallel quicksort algorithm, but difficult to express the SUMMA matrix

multiplication algorithm efficiently. Ideally, a parallel programming approach should be as

general as possible.

22

Listing 1.4: Two matrix additions in C. Which one is better?

double A[m][n];
double B[m][n];
double C[m][n];

for (i=0; i<m; i++) {
for (j=0; j<n; j++) {
C[i][j] = A[i][j] + B[i][j];

}
}

for (j=0; j<n; j++) {
for (i=0; i<m; i++) {
C[i][j] = A[i][j] + B[i][j];

}
}

1.4.5 Performance Model

This dissertation defines a performance model as the means by which programmers under-

stand the implementations of their programs. In this context, the performance model need

not be a precise tool, but simply a means of weighing different implementation alternatives

against one another.

As an example, C’s performance model indicates that the two loop nests in Listing 1.4

may perform differently in spite of the fact that they are semantically equivalent. C spec-

ifies that two-dimensional arrays are laid out in row-major order, and the memory models

of modern machines indicate that accessing memory sequentially tends to be faster than

accessing it in a strided manner. Using this information, a savvy C programmer will always

choose to implement matrix addition using the first loop nest.

Note that C does not say how much slower the second loop nest will be. In fact, it does

not even guarantee that the second loop nest will be slower. An optimizing compiler may

reorder the loops to make them equivalent to the first loop nest. Or, hardware prefetching

may detect the memory access pattern and successfully hide the memory latency normally

23

associated with strided array accesses. In the presence of these uncertainties, experienced

C programmers will recognize that the first loop nest should be no worse than the second.

Given the choice between the two approaches, they will choose the first implementation

every time.

C’s performance model gives the programmer some idea of how C code will be com-

piled down to a machine’s hardware, even if the programmer is unfamiliar with specific

details like the machine’s assembly language, its cache size, or its number of registers. In

the same way, a parallel programmer should have some sense of how their code is being

implemented on a parallel machine—for example, how the data and work are distributed

between the processors, when communication takes place, what kind of communication it

is, etc. Note that users of local-view languages and libraries have access to this informa-

tion, because they specify it manually. Ideally, global-view languages and libraries should

also give their users a parallel performance model with which different implementation

alternatives can be compared and evaluated.

1.5 This Dissertation

This dissertation was designed to serve many different purposes. Naturally, its most impor-

tant role is to describe the contributions that make up my doctoral research. With this goal

in mind, I have worked to create a document that examines the complete range of effects

that regions have had on the ZPL language, from their syntactic benefits to their imple-

mentation, and from their parallel implications to their ability to support advanced parallel

computations. I also designed this dissertation to serve as documentation for many of my

contributions to the ZPL compiler for use by future collaborators in the project. As such,

some sections contain low-level implementation details that may not be of interest to those

outside the ZPL community. Throughout the process of writing, my unifying concept has

been to tell the story of regions as completely and accurately as I could in the time and

space available.

24

In telling such a broad story, some of this dissertation’s contributions have been made

as a joint effort between myself and other members of the ZPL project—most notably

Sung-Eun Choi, Steven Deitz, E Christopher Lewis, Calvin Lin, Ton Ngo, and my advisor,

Lawrence Snyder. In describing aspects of the project that were developed as a team, my

intent is not to take credit for work that others have been involved in, but rather to make

this treatment of regions as complete and seamless as possible.

The novel contributions of this dissertation include:

� A formal description and analysis of the region concept for expressing array compu-

tation, including support for replicated and privatized dimensions.

� A parallel interpretation of regions that admits syntax-based evaluation of a pro-

gram’s communication requirements and concurrency.

� The design and implementation of a runtime representation of regions which enables

parallel performance that compares favorably with hand-coded parallel programs.

� The design of the Ironman philosophy for supporting efficient paradigm-neutral com-

munications, and an instantiation of the philosophy in the form of a point-to-point

data transfer library.

� A means of parameterizing regions that supports the concise and efficient expression

of hierarchical index sets and algorithms.

� Region-based support for sparse computation that permits the expression of sparse

algorithms using dense syntax, and an implementation that supports general array

operations, yet can be optimized to a compact form.

The chapters of this dissertation have a consistent organization. The bulk of each chap-

ter describes its contributions. Most chapters contain an experimental evaluation of their

25

ideas along with a summary of previous work that is related to their contents. Each chapter

concludes with a discussion section that addresses the strengths and weaknesses of its con-

tributions, mentions side issues not covered in the chapter proper, and outlines possibilities

for future work.

This dissertation is organized as follows. The next three chapters define and analyze

the fundamental region concept. First, Chapter 2 describes the role of the region as a

syntactic mechanism for sequential array-based programming, using ZPL as its context.

Then, Chapter 3 explains the parallel implications of regions, detailing their use in defining

ZPL’s performance model. The implementation of regions and of ZPL’s runtime libraries

is covered in Chapter 4. The two chapters that follow each describe an extension to the

basic region concept designed to support more advanced parallel algorithms. The notion of

a parameterized region is defined in Chapter 5 and its use in implementing multigrid-style

computations is detailed. Chapter 6 extends the region to support sparse sets of indices,

and demonstrates its effectiveness in a number of sparse benchmarks. Finally, Chapter 7

presents my concluding remarks and summarizes opportunities for future work.

