
Testing of User-Configurable Software Systems Using Firewalls

Brian Robinson
 ABB Corporate Research

Raleigh, NC, USA
brian.p.robinson@us.abb.com

Lee White

EECS Department
Case Western Reserve University

Cleveland, OH, USA
lwhite4939@aol.com

Abstract

User-configurable software systems present many
challenges to software testers. These systems are created
to address a large number of possible uses, each of which
is based on a specific configuration. As configurations
are made up of groups of configurable elements and
settings, a huge number of possible combinations exist.
Since it is infeasible to test all configurations before
release, many latent defects remain in the software once
deployed. An incremental testing process is presented to
address this problem, including examples of how it can be
used with various user-configurable systems in the field.
The proposed solution is evaluated with a set of empirical
studies conducted on two separate ABB software systems
using real customer configurations and changes. The
three case studies analyzed failures reported by many
different customers around the world and show that this
incremental testing process is effective at detecting latent
defects exposed by customer configuration changes in
user-configurable systems.

1. Introduction

User-configurable systems are software programs (or
groups of programs) created as general-purpose solutions
to address a broad market need that many individual
customers may have, each of whom have a smaller set of
specific needs. The software provides the ability to solve
such varying and diverse issues by executing a specific
configuration created by a customer to address their
specific needs.

Configurations direct the execution of the software and
are made up of groups of configurable, library-like
components, called configurable elements. These
elements are only executed when they exist in a running
configuration. In addition, each of these elements can
contain a number of settings whose values further refine
the actions that the element performs. Configuring
systems such as these usually involves connecting or
grouping instances of these elements and assigning

specific values to their settings. These groupings can be
set up either graphically or programmatically, depending
on the implementation of the software and the needs of
the specific market.

Settings are defined as values that exist inside a
configurable element and are visible and changeable by
the user. Changes to settings can be made when the
system is offline or online, depending on the system.
Settings resemble and act as parameters or attributes to
the configurable elements they reside in. Similar to
parameters and attributes, these settings can influence the
specific behavior of the configurable element, such as
selecting the specific internal code path that is executed
or the return value that an internal algorithm computes.

Configurable elements, on the other hand, are defined
as individual, encapsulated parts of the system that can be
added to, or removed from, the system’s configuration.
These elements are represented in the source code as
groupings of code and are similar to a class. A
configurable element exists in a configuration as an
instance, each having its own settings and memory space,
just as creating an instance of a class does. Similarly, if a
configurable element has no instances configured its code
will never be executed.

Examples of these systems include real-time control
systems and Enterprise Resource Planning (ERP)
systems. Control systems are used to monitor and control
the operation of many critical systems, such as power
generation and pharmaceutical manufacturing. Users of
these kinds of systems purchase a base set of software
containing many different functions and rules which,
either independently or in cooperation with the vendor,
can be used to configure the system to the customer’s
specific process needs. ERP systems allow the unification
of multiple data sources into one system that performs
one or more specific business processes. Similarly, these
systems contain base libraries and functions that make up
the specific configurations used by customers.

Testing systems of this kind presents significant
challenges to practitioners in the field, due to the large
number of combinations possible. Currently, it is
infeasible to completely test configurable systems before

19th International Symposium on Software Reliability Engineering

1071-9458/08 $25.00 © 2008 IEEE

DOI 10.1109/ISSRE.2008.46

177

release [12, 13]. Due to this, the software contains many
defects after is deployed to the field. These are referred to
as latent defects and are the cause of significant cost and
rework over the lifecycle of these software systems.

In practice, industry testers verify the system using
common configurations that are created with expert
knowledge by engineers that configure systems for
customers directly. These configurations are created to
test areas perceived to be high risk [2]. Once the system is
verified using these methods, each new customer’s
configuration is very extensively tested. This testing is
conducted when the software is first delivered, installed,
and commissioned [3], and involves running the software
thoroughly at the customer’s site with both normal and
error operating modes.

Once installed, users of these systems make many
changes to their configurations during the software’s
lifecycle. These changes can cause failures related to
latent defects that were not detected before the product
was released. These latent defects are a major cause of
concern for customers, as no code within the software
changed, which customers often associate with the risk of
new failures.

In this paper, a new approach to testing user-
configurable software systems is presented, specifically
aimed at finding latent defects that customers would
detect. In this approach, each customer’s initial
configuration is thoroughly tested before the software is
deployed. Additional testing of the software is postponed
until customers make changes to their configurations,
instead of trying to test as many other configurations as
possible. By using a method completely based on user
changes, only customer relevant defects will be detected
and resolved. Data collected from failure reports at ABB
show that configuration-based failures found by internal
testing are only fixed 30% of the time, compared to non
configuration-based failures which have an overall fix
rate of 75% [24]. In addition, many of those
configuration-based defects are postponed until customers
in the field report them.

This new approach can be thought of a modified form
of regression testing, and, as such, the main goal is to
determine the testing required for each customer change
to verify that the system still performs correctly. This
method must also verify that no latent defects are
exposed, as traditional regression testing methods assume
no latent defects exist in the software.

The remainder of this paper is organized as follows.
Previous work in configurable systems and regression
testing is described in Section 2. Section 3 presents the
new firewall model for configurations and settings.
Section 4 describes how to create the new firewall.
Section 5 presents the setup for the empirical studies and
Section 6 presents their results. Finally, Section 7

discusses the conclusions of this research and future work
needed in this area.

2. Background and Related Work

Many recent approaches to testing user-configurable
software aim to run tests on configurations that span or
cover the overall configuration space. One such technique
combines statistical design of experiments, combinatorial
design theory, and software engineering practices in an
attempt to cover important, fault revealing areas of the
software [11, 14, 16]. One study of open source software
by NIST shows that these techniques can be effective
when tests can cover a large number of configurable
element pairs [19]. Another recent study shows a
technique which prioritizes configurations, allowing
earlier detection of defects but leading to a decrease in
overall defect detection [15]. These studies were
conducted on an open source software product and a
small set of test cases from the Software-artifact
Infrastructure Repository [20], respectively. While these
approaches have shown positive results, the systems they
were run were smaller and contained fewer configurable
elements and settings than industrial software.

One common approach, both in industry [2] and in
academia [13], aims to reduce the testing needed to all
pairs of inputs together. This approach, called
combinatorial interaction testing, has been shown to be
effective for many systems. It is effective on systems
where the majority of the defects are caused by two or
fewer interactions. This approach does not scale well to
systems with thousands of configurable elements and
settings.

Another current approach relies on parallelism and
continuous testing to reveal faults in a system. This
system, named Skoll [22], runs multiple configurations in
parallel on separate systems, allowing for a larger number
of combinations to be tested. In addition, the system
employs search techniques to explore the configuration
space and uses feedback to modify the testing as it is
being performed. Configuring many of these industrial
user-configurable systems is a very time consuming task
and generating enough configurations to allow this large
scale parallel testing could be prohibitively expensive.

No previous research has looked at the impact that
configuration changes have on exposing latent defects.
One closely related area is regression testing. Regression
testing involves selective retesting of a system to verify
that modifications have not caused unintended effects and
that the system still complies with its specified
requirements [1].

Many Regression test selection (RTS) methods make
use of control flow information to determine the impact
of a change, such as [7, 9]. Besides control flow, many
other dependency types are supported by RTS methods.

178

Using data flows allows the impact analysis to extend
along data flow dependencies and identifies impacted
areas that would otherwise be missed. These techniques,
such as [10, 18], take longer to determine the impact of
the change, but allow for increased defect detection when
data flow dependencies are present. Additionally,
research into scaling these techniques up to large systems
exists [4, 23]. These RTS methods are all intended to
detect regression defects coming from code changes
within the software under test. When users change their
configurations, these methods do not directly apply, as no
changes were made to the software itself.

While unable to directly address configuration
changes, the Firewall RTS method is used extensively
within the proposed solution. While this is not the only
RTS method that can be used, the firewall method was
selected as it does not require existing dependency
information. This method uses code-based change
information to determine impact. The Traditional Firewall
(TFW) uses control flow dependencies to identify impact,
stopping one level away from the change [7]. An
Extended Firewall (EFW) was created to identify impact
when longer data flow dependencies are impacted by the
change [18]. Firewalls also exist for dependencies dealing
with global variables [6], COTS components [8],
deadlock conditions [4], and GUI systems [5]. Due to
space limitations, specific details on these firewalls are
omitted from this paper. The steps needed to create each
firewall can be found in [24].

3. The Configuration and Settings Firewall

In this section, the Configuration and Settings Firewall
(CSF) is presented. This method addresses the problem of
users changing system configurations and settings which
may expose failures related to latent defects. Section 3.1
contains the overview of the approach. Changes to
settings values are described in Section 3.2 and changes
to configurable elements are presented in Section 3.3.

3.1 Overview

The CSF analyzes changes to the user’s configuration,
including both configurable elements and settings. This
analysis is conducted whenever the users change the
configuration or settings in the configuration that is
running on the software. This is similar to current RTS
methods, which are applied to software every time the
code changes.

Latent software defects can exist in many different
parts of the system. One common source of latent defects
involve data flow paths, where a configurable element’s
specific action or output result is dependent on a value
computed in a different configurable element. Another
common source involves simple code paths, including

paths inside a configurable element and paths involving
system functions. Additionally, latent defects can remain
hidden from view due to observability issues and can be
exposed by changes in operator interactions, hardware,
and other software running on the same shared resources
can also expose latent defects. These additional change
types are outside the scope of this research.

The CSF identifies the different types of changes that
exist in the configuration, including both settings changes
and configurable element changes. Each change will
require code-based firewalls to be created to identify
impacted dependencies. The specific firewalls needed for
a given change depend on both the type of configuration
change and the details of the code that implements the
changed setting or element. The details on creating the
CSF are presented in Sections 3.2 and 3.3.

Before the CSF is further described, two key
assumptions must be made. The first assumption states
that the focus of the CSF is on detecting latent software
defects that exist inside the source code of the system that
are revealed due to a change in the configuration. All
other defects are outside the scope of this research. This
includes detecting errors in the logic of the configuration
itself. The second assumption is that the software and the
configuration of the system should not be designed as a
fully connected system, where every object or function
has a dependency on every other object or function. If
either case is true, that system will not benefit from the
CSF or any other RTS method, since all changes will
require a complete retest.

3.2 Settings Changes

A settings change is a change to a specific value that
resides inside a configurable element that is both visible
to and changeable by the user. Often, changes to these
values can be made by either changing a configuration
file or using a GUI interface. Since these changes can be
made easily, customers often overlook the possible risks
in these changes. In addition, some settings changes can
be made to the system while it is executing, which can
lead to serious failures if latent defects are exposed.
Because of this risk, all settings changes should first be
done in a test environment using the CSF to verify that
new latent defects are not exposed.

Settings often affect the internal operation of the
element they reside in. In addition, impact from settings
changes can propagate to other external configurable
elements through data dependencies. A common data
dependency occurs when the output of one configurable
element is affected by a settings change and is used as an
input to another element connected to it. An example of a
setting affecting the internal operation of a configurable
element is shown in Figure 1

179

Figure 1. Example of a Settings Change

This figure shows an example of a settings change
within a configuration. A change is made to Setting 1 in a
configurable element. Setting 1 is represented in the code
by Variable A, which gets assigned the value of Setting 1
when the system initializes. Variable A is used to
determine if code path 1 or code path 2 is executed when
method X is called. The value of Setting 1 was changed
from ten to twenty. As a result of this change, code path 1
is now executed when method X is called, instead of code
path 2. In this example, code path 1 has never been
executed before in this configuration and could contain a
latent defect. This setting change impacts both control
flow and data flow dependencies, as it changes the path
taken and the data output of the configurable element.

In real industrial systems, such as ERP and control
systems, settings are usually represented as parameters,
configuration files, and database values that are passed
into or used by the various configurable elements in the
system. Common ways that settings affect execution
include defining boundary ranges for execution paths,
assigning specific response actions for system events, and
selecting between many options available to specialize
the provided general solution.

3.3 Configurable Element Changes

A configurable element change involves adding or
removing configurable elements from a preexisting
configuration. These configurable elements provide
functionality needed by users and are represented in the
system as classes or functions, usually contained in code
libraries. The code for a configurable element is never
executed in the system unless instances of that
configurable element exist in the running configuration,
even though the code exists inside the system. Each
configurable element can contain settings that control or
impact its execution, although some configurable
elements do not contain any.

 There are three types of configurable element changes
that can be made to a configuration, each of which can
have a different impact on the system. The first type of
change involves adding a new configurable element that
does not exist elsewhere in the configuration. In this case,
the code for this element has never been executed by this
customer. This type of change has the highest potential
risk for failures due to latent defects, as code that has

never been executed in this customer’s configuration is
now activated.

The second type of change involves the addition of a
configurable element that has been previously used in the
customer’s configuration, many times with different
setting values than previously used instances. This is the
most common configurable element change type found,
as customers often extend an existing system by adding
new instances of configurable elements they have used
previously. Differences in the settings values between the
new instance and those previously used are the main
source of impact for this change type.

The final type of change involves removing a
configurable element from an existing configuration. This
is the least common type of change, as customers rarely
remove previously running functionality. The most
common reason for this type of change involves
removing a configurable element and replacing it with a
different element type. This type of change does not
allow any new code to be executed and, in fact, removes
code from within a previously executing configuration.
Due to this, the highest risk for defects comes from the
configurable elements that were using the outputs of the
removed element.

In industrial systems, configurable elements are
manipulated either graphically or programmatically. In
the graphical case, configurable elements are represented
by logical blocks and relationships between elements are
represented as arcs connecting those blocks. For
programmatically configured systems, configurable
elements are often library functions or objects and
relationships between them are invocations or instances
of those functions or objects. Changes to these elements
affect execution directly, by adding new code to execute,
and indirectly, by changing data sent through the system
used elsewhere by preexisting configurable elements.

An example configurable element change involves the
addition of an element which shapes the input to smooth
out any sudden value spikes due to a noisy input sensor.
This added shaping algorithm is used elsewhere in the
system configuration with different setting values. This
type of change happens frequently, as customers change
their configuration to correct imprecise physical
behaviors that are not discovered until the actual plant is
running.

4. Constructing the Firewalls

This section presents the details on how to create
Configuration and Settings Firewalls. Section 4.1 presents
the process for creating a CSF for a settings change and
Section 4.2 presents the process for creating a CSF for
each of the three types of configurable element changes.

180

4.1 Constructing a Firewall for Settings Changes

Constructing a CSF for settings changes involve
following a set of steps, the totality of which define the
firewall creation process. The general process for creating
a CSF is shown in Figure 3. Each process step is
represented by a circle, each valid transition is
represented by an arrow, and any specific conditions that
must be true to take a transition are listed as labels on the
arrow. The two process steps inside of the box in the
center of Figure 3 are general steps. These two steps are
replaced with more detailed steps for settings changes and
each of the three configuration change types.

Initially, customers have a previously created and
tested configuration running in their environment. The
customer then makes some changes to the configuration,
involving one or more settings values, and saves it as a
new configuration. If source code is available, the user
can create the CSF for settings changes directly. If not,
the user must send both the original and changed
configuration to the software vendor for analysis and
testing. This description assumes the vendor is doing the
analysis, as many software vendors do not make source
code available to the users of their systems.

The first step of the process involves determining the
differences between the two configurations. The details
for this comparison depend completely on the specific
system being used. If the system is programmatically
configured, simple text-based differencing tools are used
to determine differences in the configuration code. For
graphical or other types of configuration, custom tools are
needed and are often supplied by the vendor. Only
changes that affect the execution of the system are
identified. Some changes, such as element names and
comments, do not have any effect on the system and will
not expose latent defects. Determining if the changes
affect execution requires analyzing the source code of the
configurable element to see how each changed setting is
used. All changes that do affect execution are added to a
list.

After the specific settings changes are identified, the
source code representing each must be identified. This
step is dependent on how configurable elements and
settings are implemented within the source code. In a
programmatic system, setting values are passed in to the
system as parameters or configuration files, usually at
system startup or in response to a defined event. In these
types of systems, finding where settings values are used
involves tracing parameter or input files from where they
are accessed to their various usages in the code. If the
system is graphically configured, a similar traceability is
conducted starting at the GUI window and following the
variable mappings into the source code to identify the
usages of the changed settings values. Each area of code
that uses the changed settings is marked as a code change.

Running

Configuration
(Start)

Determine
Next

Change

Mark
Code as
Changed

Changes to
Configuration

Create
TFW

Create
Deadlock
Firewall

Create
3rd Party
Firewall

Create
Memory
Firewall

Create
Perf.

Firewall

Create or
Select
Tests

Execute
Tests

Data

Dependency

Affected?

Performance
Impact?Memory

Affected?Block
ing C

all
s

Affe
cte

d?

Find in
Code

Other
Firewalls
Needed?

No / All
Made

Done

Create
Extended
Firewall

Adding New
Element

Figure 3. Process for Configuration Changes
Next, a Traditional Firewall is created for each section

of code marked as changed. While creating the TFW,
analysis is done to determine if the change impacts any
other dependency types besides control flow. Common
dependencies found in the systems studied include
settings changes that affect data dependencies or impact
the performance of the system. If any of these
dependencies are found, the corresponding code-based
firewalls are created. Some dependencies between
configurable elements and with system functions are
created dynamically when the configuration is loaded.
These dependencies between configurable elements are
only dynamic in the source code as they remain static
throughout the entire execution of the system. Due to this,
the configuration itself must be used when identifying
these additional relationship types.

Each of the impacted areas identified by the various
code-based firewalls has to be thoroughly tested to verify
that no latent defects were exposed. These tests can be
selected from previous testing done on these impacted
areas or, if none exist, new tests must be created. Sources
of reused tests include testing of previous changes for that

181

customer, testing completed for other customers on the
same areas, and tests that were used by the vendor for
product release testing. Traditional, non-configuration
based test techniques can be applied here, such as
coverage and profiling techniques, equivalence classes,
and boundary value analysis. Once the tests are ready,
they are executed on the system and any failures logged.

4.2 Constructing a Firewall for Configurable
Element Changes

Creating a CSF for changes in configurable elements
follows the same process as for settings changes. Initially,
a previously created and tested configuration is running in
the customer’s environment. The customer then decides
that a change to the configuration is needed and adds or
removes a configurable element from it, saving it as a
new configuration. As with settings, this description will
assume the vendor is doing the analysis and has access to
the source code and both the new and changed customer
configurations.

Next, the differences between the two configurations
must be determined. This can be accomplished by using
either a text based differencing tool for programmatically
configured systems, or by using a custom tool provided
from a software vendor for graphically configured
systems.

After the differences have been identified, each change
is categorized into one of the three possible changes types
and its underlying source code is identified and marked as
changed. Besides the configurable element itself, all
relationships from the added configurable element to
other parts of the system are marked as changed. These
relationships include static relationships, such as
accessing system functions, and dynamic relationships,
such as other configurable elements using the output of
the changed one.

Once all of the changes and relationships are marked
as changed, a TFW is created for each. As with settings
changes, analysis is done to determine if any of the
changed code has dependencies that are affected by the
change. Common dependencies in configurable element
changes include impacting a data flow dependency, new
code paths that can affect performance or memory, and
interfaces with third-party components. Each dependency
found has its respective code-based firewall created.

Each area identified by the firewalls as impacted must
be tested. For new, added configurable elements, the
testing focus is on covering the newly exposed code and
the relationships between the new element and other areas
in the system. When adding instances of previously used
configurable elements, the testing focus is on the areas of
code that deal with the differences in settings values
between the new and previous usages. Finally, if
configurable elements are removed, the testing focus is on

affected external dependencies. After the tests are created,
they are run and any failures found are logged.

5. Empirical Setup

In order to validate that the Configuration and Settings
Firewall is effective and efficient, two case studies were
performed on a GUI-based, real-time system
configuration product. The system runs in the Windows
OS on a standard PC. This product is implemented as a
hybrid of OO-designed C++ code and procedurally
designed C code. The system is made up of 5121 source
files, 3229 classes, 39655 methods and functions, 767431
Executable Lines of Code (ELOC), 2398 configurable
elements and 17 COTS components.

This software creates configurations for all of the
products in the system. Configurations for this software
are created graphically and compiled into binary.
Customers then load these binary files into the various
software products in the system.

Many customers are inherently secretive about their
configurations. Currently, ABB has access to
configuration data at two points in time. The first is the
initial configuration created when the plant was first
commissioned. The other configuration data comes from
customers detecting field failures in the software. In this
case, they share the configuration they used to expose the
defect. While customers are inherently secretive about
their configurations, they have expressed a willingness to
share this data if it will lead to improvements in released
software quality.

The first case study involves applying the CSF to a
large number of past customer configuration changes that
revealed latent defects. The customer-reported defects are
then studied to see if they exist in the impact identified by
the CSF. The goal of this case study is to determine the
effectiveness of the change determination, code mapping,
and impact analysis steps of the CSF at determining the
correct areas of the software to test. This first study did
not involve creating, selecting, or running any tests. This
allowed the analysis to focus on the accuracy of the
impact analysis independent of the quality of available
and created tests.

The accuracy for the first case study is computed by
analyzing the reported customer failures that are due to
latent software defects and checking them against the
impact identified by the CSF. If the defect exists within
the impacted area, it is considered detected. If it exists
outside the impacted area, the defect will be further
studied to determine if it was related to the configuration
change. If they are related, the defects are considered
missed, and if not, they are considered outside of the
scope of this firewall method and discounted.

The second case study takes a subset of the customer
changes used in the first study and involves creating and

182

executing tests for the impact identified by the CSF. The
three goals of this study are to show the time required for
creating the needed tests, to determine if the customer
reported defect can be detected by testing, and see if any
additional defects not initially reported by the customer
can be detected.

The accuracy for the second case study is measured by
the percent of customer-reported latent software defects
that were detected by the testing identified by the CSF.
Also, the time required to create and execute the tests is
logged, representing the overhead associated in this
process. Finally, any additional defects found by the
testing are logged and compared to known defects in the
system.

To prevent any bias in these two studies, no
information about the customer-found defect was
available at the time the CSF is created. Once the CSF is
completed, this information is determined to evaluate the
accuracy of the CSF method.

These case studies have two limitations. First, the
configurations used by ABB customers are treated as
trade secrets and there is no way to know exactly how all
of the changes were performed over time. Since time
sequence data for each change is not available, the total
changes made to the customer’s configuration are split
arbitrarily into a set of smaller changes. This could lead to
a larger amount of time for analysis and testing, due to
creating overlapping firewalls between each set. The
second limitation of the study is that the time to create
and execute the tests is based upon a smaller number of
changes. A larger study of test time will be created in
future work.

6. Empirical Results

This section is split into Section 6.1, describing the
results of the first case study, and Section 6.2, describing
the results of the second case study.

6.1 First Case Study

This case study involves a number of different
customer configurations and changes. A list of changes is
created for each customer change. This list is then split
randomly into smaller groups, each of which has a CSF
created for it. The data collected for all customer changes
are shown in Table 1. These data includes the number and
type of created CSFs and code-based firewalls that were
created for each customer change.

The first customer change studied for this GUI-based
system involves a customer adding new graphical display
elements into their configuration. The first set of changes
contained three settings changes and the addition of two

previously used configurable elements. The second set of
changes contained two settings changes and the addition
of one new configurable element. The corresponding
CSFs were created and the details recorded in Table 1.

Next, the failures reported from the customer were
analyzed. Each of the three added configurable elements
exposed failures in the system. These failures were
related to one latent defect in a support function used by
these elements. This defect involved connecting
configurable elements across different graphical pages of
the configuration, by way of a reference that is
implemented as a helper function available for all
configurable element types. This helper function only
produced a failure when called by the two types of
configurable elements added by this customer. This
defect existed in the impact identified by EFWs created
by the CSF.

The second customer change studied for this GUI
system involved a customer upgrading their Human
Systems Interface (HSI) software. The customer changed
the settings of existing configurable elements to take
advantage of new features in their HSI. The first set of
changes contained nine settings changes, each of which
had settings change CSFs created for it. The second set
contained the replacement of three configurable elements
with ones containing additional functionality. These
removals and additions, taken together, constituted an
atomic change made in response to the HSI upgrade. The
final set contains four settings changes. These settings
changes affect the format of output data needed by the
new HSI. The corresponding CSFs were created and the
details recorded in Table 1.

Once complete, the reported failures were studied.
There were four failures detected, each resulting in
incorrect data being displayed on the new HSI. The
failures caused values to be truncated to 14 characters,
instead of the 16 characters stated in the requirements,
and was caused by a single latent software defect
contained inside the added configurable elements. This
defect existed in the area of code identified as impacted
by TFWs created by the CSF.

The third customer change studied involved adding
five previously used configurable elements. These added
elements represent redundant controller modules that
were added for safety reasons. Once added, the customer
exported the configuration to their HSI system. The
operation failed to export all of the data to the HSI, as the
export code contained a routine that counts the newly
added redundant controllers incorrectly. This defect
existed in the impact identified by EFWs created by the
CSF.

183

Table 1. Summary of Case Study 1
of

Settings
Changes

of
Defects

of
Added

Used CEs
of

Defects

of
Added

New CEs
of

Defects

Analysis
Time

(Hours)

TFWs

EFWs

Deadlock

FWs
3rd
Pty

HSI System
Cust 1: 5 0 2 2 1 1 1.5 8 3 0 0
Cust 2: 13 0 0 0 3 1 2.5 16 4 0 0
Cust 3: 0 0 5 1 0 0 0.5 5 5 0 0
Cust 4: 0 0 10 1 0 0 3 18 0 0 1
Cust 5: 0 0 0 0 8 1 0.5 8 0 0 0
Cust 6: 25 1 0 0 0 0 4 25 0 1 0

Total: 43 1 17 4 12 3 12 80 12 1 1
The fourth customer change studied involves a change

where the customer added ten previously used
configurable elements to their configuration, eight of one
type and two of another. These elements represent
additional values needed by the operators and were added
to the configuration loaded into the HSI. These added
configurable elements are involved in a data dependency
with a third party component database, which stores all of
the data in the configuration. A failure was observed
when a user-passed parameter is set to a negative value,
as it is used as the index value to a database table. This
defect existed in the impact identified by a COTS
Firewall created by the CSF.

The fifth customer change studied involved a customer
who added eight new configurable elements to the
system. These elements represented an analog input
module and data values connected to it. After these
changes are made, the customer exports the configuration
for use in another software product in the system. The
export completes successfully, but when the configuration
is loaded into the other product, eight failures are
detected. The failures involved values from the newly
added configurable elements being exported incorrectly.
This defect existed in the impact identified by TFWs
created by the CSF.

The final customer change studied included 25 settings
changes. These settings changes affect the update rates of
data being displayed. The change in timing was just
enough to expose a latent deadlock to the customer when
the configuration was changed. No other customers or
testers had tested the system with those timing values
before. This defect was identified by the Deadlock
Firewall created by the CSF.

The final results of this study, detailed in Table 1,
show that this method is effective at determining the
impacted areas of the system that are at risk to expose
latent defects due to a configuration change. The studied
changes include 43 settings changes and the addition of
17 previously used configurable elements and 12 new
configurable elements. The average time to create these
CSFs manually was only two hours per change. These
changes exposed 8 latent defects at customer sites, all of

which were contained in the impact identified by the
CSFs.

6.2 Second Case Study

The goal of this study is to run the required tests for a
subset of the changes analyzed in the first case study. Few
detailed tests exist in ABB to select for retesting
configurable elements. As a result, the tests required for
this study are created with exploratory testing [2],
concepts from the Complete Interaction Sequences (CIS)
method [5], and basic boundary value and code coverage
metrics. The CIS method involves testing a required
action by creating tests for all of the possible ways the
GUI allows that action to occur.

As the tests were run on the system, certain measures
were recorded. These are shown in Table 2. The first
group of measures collects the time required to run these
tests. One measure collected is a count of tests run.
Another is analysis time, taken from the first case study,
which represents the time needed to create the firewalls.
The time required to run the tests, measured by a
stopwatch, is logged as the third measure. After that, the
total test time is calculated as the sum of the analysis and
test times. Next, the original time is calculated by
summing the time required to investigate and discuss this
problem, including technical support, development, and
management. By comparing the original time to the total
time, a time savings is computed. This savings represents
the time saved by using this method compared to the time
required for the field-reported failures.

The second category of measures in Table 2 involves
failures observed during the testing. First, the number of
observed failures is counted. Each of the observed
failures is split into two categories, known and new. New
defects are not currently known by ABB and are not in
the defect repository while known defects are.

The first change tested involved adding configurable
elements which export values out of the GUI system and
into the HSI. When the change was performed by the
customer, values were truncated to fourteen characters
instead of the required sixteen. When testing the impacted
area for this change, four failures were observed.

184

Table 2. Results from Case Study 2

GUI System
of Tests

Run
Analysis

Time Test Time Total Time
O riginal

Time
% Time
Saved:

of
Failures

of Known
Failures Found

of New
Failures Found

Reported
Failure Found?

Change 1: 25 2.5 2.5 5 42 88.10% 4 3 1 Yes
Change 2: 18 1.5 2 3.5 51 93.14% 4 4 0 Yes

Total: 43 4 4.5 8.5 93 90.62% 8 7 1 100%
The first failure occurs when a settings value is being

updated. If the user tries to switch GUI screens in the
middle of updating the settings, they are prompted to save
and, if the user selects cancel, all of the changes are lost.
This failure was not found in the failures listed in the
defect repository for this product, and is considered a new
failure.

A second failure was found that occurs when the user
enters 16 characters into a description field and tries to
export the list of configurable elements. This export
operation fails, as the exported list contains only 14
characters of the text. This failure matches the customer
reported failure exactly, so it is counted as a known
failure.

A third failure was detected when the customer
configuration was first imported into the tool. The tool
reported an error when this operation was first attempted,
displaying only “Non-recoverable Error”. This failure is a
known error as it was detected internally by ABB when
performing testing for a previous release.

The final observed failure occurred when a user
exports the list of configurable elements. If the user
selects an available option on the export dialog box, the
resulting output contains no data regardless of what
configurable elements are contained in the list. This
failure was the same as one described in the defect
repository originally reported by a separate customer one
year after the release of this version. Therefore, it is
counted as a known failure.

The second change tested in this study was the
addition of three previously used configurable elements.
These elements were connected across graphical pages by
references. A failure was observed by the customer where
the compiler did not complete correctly for the changed
configuration. No error message was presented to the user
and the only way to determine the compile failed is that
no binary file was created.

When testing the impact of this change, four failures
were observed. The first test involved simply compiling
the project. This basic operation exposed a defect, where
the compiler failed due to the customer adding three
configurable elements. This first failure matches the
original customer reported failure for this configuration
change.

A second failure was observed when testing alternate
ways to change settings in the added configurable
elements. If a specific setting contains a value which
comes from a configurable element on a different page of

the configuration, then the entire program crashes when
the configurable element is opened for change by the tool.
This failure matches a failure found in the defect
repository that was observed by a separate customer in
the field.

An additional failure was observed while testing the
export functionality. The system seems to export
correctly, as a file is generated and no errors are detected.
Once the file was opened, it was observed that the system
failed to export all of the configurable elements and
settings to the file and reported no errors. This failure was
matched to a separate customer reported failure described
in the first case study.

One final failure was observed when testing the impact
of this change. Any textual changes to a setting value in
the configurable element connected to the newly added
element are not saved. This failure was found by another
customer and existed in the defect repository at the time
of this study.

Table 2 shows the final results of case study two. The
average time required to create the CSFs and create and
execute the required tests is 4.25 hours. Seven of these
detected failures were reported by customers at a point in
time later than the original configuration change. These
represent defects that would have been found by ABB
before future customers observed them. In addition, one
new defect was found. These results show that testing the
CSF-identified impact can detect the original customer-
found failures as well as additional failures in areas
around the change without a large effort required.

7. Conclusions and Future Work

User-configurable systems present many difficult
challenges to software testers. Combinatorial problems
prevent exhaustive testing before release, leaving many
latent defects in the software after release. Customers are
then at risk to exposing these defects whenever they make
changes to their running configuration. The CSF was
created as a solution to this problem that allows
incremental testing of user-configurable systems based on
configuration changes made in the field. Configuration
changes are mapped to the underlying code of the
configurable elements and settings. After this, tests are
created or selected that cover the impacted areas.

Two case studies were performed on the CSF for this
paper, aimed at showing its efficiency and effectiveness
at detecting real customer found defects in deployed

185

industrial systems. The results of the study show that each
reported customer defect would have been detected if this
method were used for that change. In addition, the
analysis time required to create the CSFs is not
substantial compared to the cost of diagnosing and fixing
customer found problems.

The main area of future work is in initial release
testing of user-configurable systems. Previous work in
that area, such as [12, 13], shows some techniques which
have been shown to work on systems with a small
number of configurable elements and settings. These
studies will need to be expanded for software with a
larger number of configurable elements and settings, such
as ERP systems and industrial control systems.

A further reduction in the testing needed for
configuration changes can benefit from a better
understanding of their execution in the field, using
methods such as [21].

Automation is also needed for this method. Combining
differencing tools with recent advances in semantic
impact analysis techniques, such as [17], will allow many
steps of CSF creation to be automated. The final goal
would be a tool that enables customers to submit changes
and get immediate feedback on the system impact.

8. References

[1] IEEE, "IEEE Standard Glossary of Software Engineering
Terminology," IEEE Standard 610.12, 1990.

[2] Kaner, C, Bach, J., and B. Pettichord. “Lessons Learned in
Software Testing: A Context Driven Approach,” Wiley
Publishing, New Jersey, 2001.

[3] Sommerville, Ian, “Software construction by configuration:
Challenges for software engineering research”. ICSM 2005
Keynote presentation, Budapest, September 2005.

[4] L. White and B. Robinson, "Industrial Real-Time
Regression Testing and Analysis Using Firewall,"
International Conference on Software Maintenance,
Chicago, 2004, pp. 18-27.

[5] L. White, H. Almezen, and S. Sastry, "Firewall Regression
Testing of GUI Sequences and Their Interactions,"
International Conference on Software Maintenance, 2003,
pp. 398-409.

[6] H. Leung and L. White, "Insights into Testing and
Regression Testing Global Variables," Journal of Software
Maintenance, vol. 2, pp. 209-222, December 1991.

[7] L. White and H. Leung, "A Firewall Concept for both
Control-Flow and Data Flow in Regression Integration
Testing," International Conference on Software
Maintenance, 1992, pp. 262-271.

[8] J. Zheng, B. Robinson, L. Williams, and K. Smiley,
"Applying Regression Test Selection for COTS-based
Applications," International Conference on Software
Engineering, May 2006, pp. 512-521.

[9] S. Bates and S. Horwitz, "Incremental Program Testing
Using Program Dependence Graphs," ACM Symposium on
Principles of Programming Languages, January 1993, pp.
384-396.

[10] M. J. Harrold and M. L. Soffa, "Interprocedural Data Flow
Testing," Testing, Analysis, and Verification Symposium,
December 1989, pp. 158-167.

[11] Dunietz, I. S., Ehrlich, W. K., Szablak, B. D., Mallows, C.
L., and Iannino, A. “Applying design of experiments to
software testing.” International. Conference on Software
Engineering, 1997, pp. 205–215.

[12] Cohen, M. B., Dwyer, M. B., and Shi, J. “Interaction
testing of highly-configurable systems in the presence of
constraints,” International Symposium on Software Testing
and Analysis. July 2007, pp 129-139.

[13] Cohen, D. M., Dalal, S. R., Fredman, M. L., and Patton, G.
C. “The AETG System: An Approach to Testing Based on
Combinatorial Design,” IEEE Transactions on Software
Engineering. July 1997.

[14] Kuhn, D., Wallace, D. and Gallo, A. “Software Fault
Interactions and Implications for Software Testing.” IEEE
Transactions on Software Engineering. June 2004, pp. 418-
421.

[15] X. Qu, M.B. Cohen and K.M. Woolf, “Combinatorial
interaction regression testing: a study of test case
generation and prioritization,” International Conference on
Software Maintenance, October 2007, pp. 255-264.

[16] Cohen, M. B., Snyder, J., and Rothermel, G. 2006.
“Testing across configurations: implications for
combinatorial testing,” SIGSOFT Software Engineering
Notes November 2006, pp. 1-9.

[17] E. Hill, L. Pollock, and K. Vijay-Shanker. “Exploring the
Neighborhood with Dora to Expedite Software
Maintenance.” International Conference of Automated
Software Engineering. November 2007.

[18] White, L., Jaber, K., and Robinson, B. “Utilization of
Extended Firewall for Object-Oriented Regression
Testing.” International Conference on Software
Maintenance. September, 2005, pp. 695-698.

[19] Kuhn, D., and Reilly, M. “An investigation of the
applicability of design of experiments to software testing.”
NASA Goddard/IEEE Software Engineering Workshop.
2002, pp. 91–95.

[20] H. Do, S. G. Elbaum, and G. Rothermel. “Supporting
controlled experimentation with testing techniques: An
infrastructure and its potential impact.” Empirical Software
Engineering: An International Journal, 10(4):405–435,
2005.

[21] Dickinson, W., Leon, D., and Podgurski, A. “Finding
Failures by Cluster Analysis of Execution Profiles.”
International Conference on Software Engineering, May
2001.

[22] Adam Porter, Atif Memon, Cemal Yilmaz, Douglas C.
Schmidt, Bala Natarajan, “Skoll: A Process and
Infrastructure for Distributed Continuous Quality
Assurance.” IEEE Transactions on Software Engineering,
August 2007, 33(8), pp. 510--525.

[23] Orso, A., Shi, N., and M.J. Harrold, “Scaling Regression
Testing to Large Software Systems.” Symposium on the
Foundations of Software Engineering. November 2004, pp.
241-251.

[24] Robinson, Brian. “A Firewall Model for Testing User-
Configurable Software Systems.” Ph.D. Dissertation,
http://rave.ohiolink.edu/etdc/view?acc_num=case12064669
05, Case Western Reserve University, 2008.

186

