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Abstract 

User-configurable software systems present many 
challenges to software testers. These systems are created 
to address a large number of possible uses, each of which 
is based on a specific configuration. As configurations 
are made up of groups of configurable elements and 
settings, a huge number of possible combinations exist. 
Since it is infeasible to test all configurations before 
release, many latent defects remain in the software once 
deployed. An incremental testing process is presented to 
address this problem, including examples of how it can be 
used with various user-configurable systems in the field. 
The proposed solution is evaluated with a set of empirical 
studies conducted on two separate ABB software systems 
using real customer configurations and changes. The 
three case studies analyzed failures reported by many 
different customers around the world and show that this 
incremental testing process is effective at detecting latent 
defects exposed by customer configuration changes in 
user-configurable systems. 

1. Introduction 

User-configurable systems are software programs (or 
groups of programs) created as general-purpose solutions 
to address a broad market need that many individual 
customers may have, each of whom have a smaller set of 
specific needs. The software provides the ability to solve 
such varying and diverse issues by executing a specific 
configuration created by a customer to address their 
specific needs.  

Configurations direct the execution of the software and 
are made up of groups of configurable, library-like 
components, called configurable elements. These 
elements are only executed when they exist in a running 
configuration. In addition, each of these elements can 
contain a number of settings whose values further refine 
the actions that the element performs. Configuring 
systems such as these usually involves connecting or 
grouping instances of these elements and assigning 

specific values to their settings. These groupings can be 
set up either graphically or programmatically, depending 
on the implementation of the software and the needs of 
the specific market.  

Settings are defined as values that exist inside a 
configurable element and are visible and changeable by 
the user. Changes to settings can be made when the 
system is offline or online, depending on the system.  
Settings resemble and act as parameters or attributes to 
the configurable elements they reside in. Similar to 
parameters and attributes, these settings can influence the 
specific behavior of the configurable element, such as 
selecting the specific internal code path that is executed 
or the return value that an internal algorithm computes.  

Configurable elements, on the other hand, are defined 
as individual, encapsulated parts of the system that can be 
added to, or removed from, the system’s configuration. 
These elements are represented in the source code as 
groupings of code and are similar to a class. A 
configurable element exists in a configuration as an 
instance, each having its own settings and memory space, 
just as creating an instance of a class does. Similarly, if a 
configurable element has no instances configured its code 
will never be executed.  

Examples of these systems include real-time control 
systems and Enterprise Resource Planning (ERP) 
systems. Control systems are used to monitor and control 
the operation of many critical systems, such as power 
generation and pharmaceutical manufacturing. Users of 
these kinds of systems purchase a base set of software 
containing many different functions and rules which, 
either independently or in cooperation with the vendor, 
can be used to configure the system to the customer’s 
specific process needs. ERP systems allow the unification 
of multiple data sources into one system that performs 
one or more specific business processes. Similarly, these 
systems contain base libraries and functions that make up 
the specific configurations used by customers.  

Testing systems of this kind presents significant 
challenges to practitioners in the field, due to the large 
number of combinations possible. Currently, it is 
infeasible to completely test configurable systems before 
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release [12, 13]. Due to this, the software contains many 
defects after is deployed to the field. These are referred to 
as latent defects and are the cause of significant cost and 
rework over the lifecycle of these software systems. 

In practice, industry testers verify the system using 
common configurations that are created with expert 
knowledge by engineers that configure systems for 
customers directly. These configurations are created to 
test areas perceived to be high risk [2]. Once the system is 
verified using these methods, each new customer’s 
configuration is very extensively tested. This testing is 
conducted when the software is first delivered, installed, 
and commissioned [3], and involves running the software 
thoroughly at the customer’s site with both normal and 
error operating modes.  

Once installed, users of these systems make many 
changes to their configurations during the software’s 
lifecycle. These changes can cause failures related to 
latent defects that were not detected before the product 
was released. These latent defects are a major cause of 
concern for customers, as no code within the software 
changed, which customers often associate with the risk of 
new failures. 

In this paper, a new approach to testing user-
configurable software systems is presented, specifically 
aimed at finding latent defects that customers would 
detect. In this approach, each customer’s initial 
configuration is thoroughly tested before the software is 
deployed. Additional testing of the software is postponed 
until customers make changes to their configurations, 
instead of trying to test as many other configurations as 
possible. By using a method completely based on user 
changes, only customer relevant defects will be detected 
and resolved. Data collected from failure reports at ABB 
show that configuration-based failures found by internal 
testing are only fixed 30% of the time, compared to non 
configuration-based failures which have an overall fix 
rate of 75% [24]. In addition, many of those 
configuration-based defects are postponed until customers 
in the field report them.  

This new approach can be thought of a modified form 
of regression testing, and, as such, the main goal is to 
determine the testing required for each customer change 
to verify that the system still performs correctly. This 
method must also verify that no latent defects are 
exposed, as traditional regression testing methods assume 
no latent defects exist in the software.  

The remainder of this paper is organized as follows. 
Previous work in configurable systems and regression 
testing is described in Section 2. Section 3 presents the 
new firewall model for configurations and settings. 
Section 4 describes how to create the new firewall. 
Section 5 presents the setup for the empirical studies and 
Section 6 presents their results. Finally, Section 7 

discusses the conclusions of this research and future work 
needed in this area. 

2. Background and Related Work 

Many recent approaches to testing user-configurable 
software aim to run tests on configurations that span or 
cover the overall configuration space. One such technique 
combines statistical design of experiments, combinatorial 
design theory, and software engineering practices in an 
attempt to cover important, fault revealing areas of the 
software [11, 14, 16]. One study of open source software 
by NIST shows that these techniques can be effective 
when tests can cover a large number of configurable 
element pairs [19]. Another recent study shows a 
technique which prioritizes configurations, allowing 
earlier detection of defects but leading to a decrease in 
overall defect detection [15]. These studies were 
conducted on an open source software product and a 
small set of test cases from the Software-artifact 
Infrastructure Repository [20], respectively. While these 
approaches have shown positive results, the systems they 
were run were smaller and contained fewer configurable 
elements and settings than industrial software.   

One common approach, both in industry [2] and in 
academia [13], aims to reduce the testing needed to all 
pairs of inputs together. This approach, called 
combinatorial interaction testing, has been shown to be 
effective for many systems. It is effective on systems 
where the majority of the defects are caused by two or 
fewer interactions. This approach does not scale well to 
systems with thousands of configurable elements and 
settings. 

Another current approach relies on parallelism and 
continuous testing to reveal faults in a system. This 
system, named Skoll [22], runs multiple configurations in 
parallel on separate systems, allowing for a larger number 
of combinations to be tested. In addition, the system 
employs search techniques to explore the configuration 
space and uses feedback to modify the testing as it is 
being performed. Configuring many of these industrial 
user-configurable systems is a very time consuming task 
and generating enough configurations to allow this large 
scale parallel testing could be prohibitively expensive. 

No previous research has looked at the impact that 
configuration changes have on exposing latent defects.  
One closely related area is regression testing. Regression 
testing involves selective retesting of a system to verify 
that modifications have not caused unintended effects and 
that the system still complies with its specified 
requirements [1].  

Many Regression test selection (RTS) methods make 
use of control flow information to determine the impact 
of a change, such as [7, 9]. Besides control flow, many 
other dependency types are supported by RTS methods. 
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Using data flows allows the impact analysis to extend 
along data flow dependencies and identifies impacted 
areas that would otherwise be missed. These techniques, 
such as [10, 18], take longer to determine the impact of 
the change, but allow for increased defect detection when 
data flow dependencies are present. Additionally, 
research into scaling these techniques up to large systems 
exists [4, 23]. These RTS methods are all intended to 
detect regression defects coming from code changes 
within the software under test. When users change their 
configurations, these methods do not directly apply, as no 
changes were made to the software itself.  

While unable to directly address configuration 
changes, the Firewall RTS method is used extensively 
within the proposed solution. While this is not the only 
RTS method that can be used, the firewall method was 
selected as it does not require existing dependency 
information. This method uses code-based change 
information to determine impact. The Traditional Firewall 
(TFW) uses control flow dependencies to identify impact, 
stopping one level away from the change [7]. An 
Extended Firewall (EFW) was created to identify impact 
when longer data flow dependencies are impacted by the 
change [18]. Firewalls also exist for dependencies dealing 
with global variables [6], COTS components [8], 
deadlock conditions [4], and GUI systems [5]. Due to 
space limitations, specific details on these firewalls are 
omitted from this paper.  The steps needed to create each 
firewall can be found in [24]. 

3. The Configuration and Settings Firewall 

In this section, the Configuration and Settings Firewall 
(CSF) is presented. This method addresses the problem of 
users changing system configurations and settings which 
may expose failures related to latent defects. Section 3.1 
contains the overview of the approach. Changes to 
settings values are described in Section 3.2 and changes 
to configurable elements are presented in Section 3.3. 

3.1 Overview 

The CSF analyzes changes to the user’s configuration, 
including both configurable elements and settings. This 
analysis is conducted whenever the users change the 
configuration or settings in the configuration that is 
running on the software. This is similar to current RTS 
methods, which are applied to software every time the 
code changes.  

Latent software defects can exist in many different 
parts of the system. One common source of latent defects 
involve data flow paths, where a configurable element’s 
specific action or output result is dependent on a value 
computed in a different configurable element. Another 
common source involves simple code paths, including 

paths inside a configurable element and paths involving 
system functions. Additionally, latent defects can remain 
hidden from view due to observability issues and can be 
exposed by changes in operator interactions, hardware, 
and other software running on the same shared resources 
can also expose latent defects. These additional change 
types are outside the scope of this research. 

The CSF identifies the different types of changes that 
exist in the configuration, including both settings changes 
and configurable element changes. Each change will 
require code-based firewalls to be created to identify 
impacted dependencies. The specific firewalls needed for 
a given change depend on both the type of configuration 
change and the details of the code that implements the 
changed setting or element.  The details on creating the 
CSF are presented in Sections 3.2 and 3.3.  

Before the CSF is further described, two key 
assumptions must be made. The first assumption states 
that the focus of the CSF is on detecting latent software 
defects that exist inside the source code of the system that 
are revealed due to a change in the configuration. All 
other defects are outside the scope of this research. This 
includes detecting errors in the logic of the configuration 
itself. The second assumption is that the software and the 
configuration of the system should not be designed as a 
fully connected system, where every object or function 
has a dependency on every other object or function. If 
either case is true, that system will not benefit from the 
CSF or any other RTS method, since all changes will 
require a complete retest. 

3.2 Settings Changes 

A settings change is a change to a specific value that 
resides inside a configurable element that is both visible 
to and changeable by the user. Often, changes to these 
values can be made by either changing a configuration 
file or using a GUI interface. Since these changes can be 
made easily, customers often overlook the possible risks 
in these changes. In addition, some settings changes can 
be made to the system while it is executing, which can 
lead to serious failures if latent defects are exposed. 
Because of this risk, all settings changes should first be 
done in a test environment using the CSF to verify that 
new latent defects are not exposed.  

Settings often affect the internal operation of the 
element they reside in. In addition, impact from settings 
changes can propagate to other external configurable 
elements through data dependencies. A common data 
dependency occurs when the output of one configurable 
element is affected by a settings change and is used as an 
input to another element connected to it. An example of a 
setting affecting the internal operation of a configurable 
element is shown in Figure 1  
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Figure 1. Example of a Settings Change 

This figure shows an example of a settings change 
within a configuration. A change is made to Setting 1 in a 
configurable element.  Setting 1 is represented in the code 
by Variable A, which gets assigned the value of Setting 1 
when the system initializes. Variable A is used to 
determine if code path 1 or code path 2 is executed when 
method X is called. The value of Setting 1 was changed 
from ten to twenty. As a result of this change, code path 1 
is now executed when method X is called, instead of code 
path 2. In this example, code path 1 has never been 
executed before in this configuration and could contain a 
latent defect. This setting change impacts both control 
flow and data flow dependencies, as it changes the path 
taken and the data output of the configurable element.  

In real industrial systems, such as ERP and control 
systems, settings are usually represented as parameters, 
configuration files, and database values that are passed 
into or used by the various configurable elements in the 
system. Common ways that settings affect execution 
include defining boundary ranges for execution paths, 
assigning specific response actions for system events, and 
selecting between many options available to specialize 
the provided general solution.  

3.3 Configurable Element Changes  

A configurable element change involves adding or 
removing configurable elements from a preexisting 
configuration. These configurable elements provide 
functionality needed by users and are represented in the 
system as classes or functions, usually contained in code 
libraries. The code for a configurable element is never 
executed in the system unless instances of that 
configurable element exist in the running configuration, 
even though the code exists inside the system. Each 
configurable element can contain settings that control or 
impact its execution, although some configurable 
elements do not contain any.  

 There are three types of configurable element changes 
that can be made to a configuration, each of which can 
have a different impact on the system. The first type of 
change involves adding a new configurable element that 
does not exist elsewhere in the configuration. In this case, 
the code for this element has never been executed by this 
customer. This type of change has the highest potential 
risk for failures due to latent defects, as code that has 

never been executed in this customer’s configuration is 
now activated.  

The second type of change involves the addition of a 
configurable element that has been previously used in the 
customer’s configuration, many times with different 
setting values than previously used instances. This is the 
most common configurable element change type found, 
as customers often extend an existing system by adding 
new instances of configurable elements they have used 
previously. Differences in the settings values between the 
new instance and those previously used are the main 
source of impact for this change type. 

The final type of change involves removing a 
configurable element from an existing configuration. This 
is the least common type of change, as customers rarely 
remove previously running functionality. The most 
common reason for this type of change involves 
removing a configurable element and replacing it with a 
different element type. This type of change does not 
allow any new code to be executed and, in fact, removes 
code from within a previously executing configuration. 
Due to this, the highest risk for defects comes from the 
configurable elements that were using the outputs of the 
removed element.  

In industrial systems, configurable elements are 
manipulated either graphically or programmatically. In 
the graphical case, configurable elements are represented 
by logical blocks and relationships between elements are 
represented as arcs connecting those blocks. For 
programmatically configured systems, configurable 
elements are often library functions or objects and 
relationships between them are invocations or instances 
of those functions or objects. Changes to these elements 
affect execution directly, by adding new code to execute, 
and indirectly, by changing data sent through the system 
used elsewhere by preexisting configurable elements.  

An example configurable element change involves the 
addition of an element which shapes the input to smooth 
out any sudden value spikes due to a noisy input sensor. 
This added shaping algorithm is used elsewhere in the 
system configuration with different setting values. This 
type of change happens frequently, as customers change 
their configuration to correct imprecise physical 
behaviors that are not discovered until the actual plant is 
running.   

4. Constructing the Firewalls 

This section presents the details on how to create 
Configuration and Settings Firewalls. Section 4.1 presents 
the process for creating a CSF for a settings change and 
Section 4.2 presents the process for creating a CSF for 
each of the three types of configurable element changes.   
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4.1 Constructing a Firewall for Settings Changes 

Constructing a CSF for settings changes involve 
following a set of steps, the totality of which define the 
firewall creation process. The general process for creating 
a CSF is shown in Figure 3. Each process step is 
represented by a circle, each valid transition is 
represented by an arrow, and any specific conditions that 
must be true to take a transition are listed as labels on the 
arrow. The two process steps inside of the box in the 
center of Figure 3 are general steps. These two steps are 
replaced with more detailed steps for settings changes and 
each of the three configuration change types. 

Initially, customers have a previously created and 
tested configuration running in their environment. The 
customer then makes some changes to the configuration, 
involving one or more settings values, and saves it as a 
new configuration. If source code is available, the user 
can create the CSF for settings changes directly. If not, 
the user must send both the original and changed 
configuration to the software vendor for analysis and 
testing. This description assumes the vendor is doing the 
analysis, as many software vendors do not make source 
code available to the users of their systems.  

The first step of the process involves determining the 
differences between the two configurations. The details 
for this comparison depend completely on the specific 
system being used. If the system is programmatically 
configured, simple text-based differencing tools are used 
to determine differences in the configuration code. For 
graphical or other types of configuration, custom tools are 
needed and are often supplied by the vendor. Only 
changes that affect the execution of the system are 
identified. Some changes, such as element names and 
comments, do not have any effect on the system and will 
not expose latent defects. Determining if the changes 
affect execution requires analyzing the source code of the 
configurable element to see how each changed setting is 
used. All changes that do affect execution are added to a 
list.  

After the specific settings changes are identified, the 
source code representing each must be identified. This 
step is dependent on how configurable elements and 
settings are implemented within the source code. In a 
programmatic system, setting values are passed in to the 
system as parameters or configuration files, usually at 
system startup or in response to a defined event. In these 
types of systems, finding where settings values are used 
involves tracing parameter or input files from where they 
are accessed to their various usages in the code. If the 
system is graphically configured, a similar traceability is 
conducted starting at the GUI window and following the 
variable mappings into the source code to identify the 
usages of the changed settings values. Each area of code 
that uses the changed settings is marked as a code change.  
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Figure 3. Process for Configuration Changes 
Next, a Traditional Firewall is created for each section 

of code marked as changed. While creating the TFW, 
analysis is done to determine if the change impacts any 
other dependency types besides control flow. Common 
dependencies found in the systems studied include 
settings changes that affect data dependencies or impact 
the performance of the system. If any of these 
dependencies are found, the corresponding code-based 
firewalls are created. Some dependencies between 
configurable elements and with system functions are 
created dynamically when the configuration is loaded. 
These dependencies between configurable elements are 
only dynamic in the source code as they remain static 
throughout the entire execution of the system. Due to this, 
the configuration itself must be used when identifying 
these additional relationship types. 

Each of the impacted areas identified by the various 
code-based firewalls has to be thoroughly tested to verify 
that no latent defects were exposed. These tests can be 
selected from previous testing done on these impacted 
areas or, if none exist, new tests must be created. Sources 
of reused tests include testing of previous changes for that 
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customer, testing completed for other customers on the 
same areas, and tests that were used by the vendor for 
product release testing. Traditional, non-configuration 
based test techniques can be applied here, such as 
coverage and profiling techniques, equivalence classes, 
and boundary value analysis. Once the tests are ready, 
they are executed on the system and any failures logged. 

4.2 Constructing a Firewall for Configurable 
Element Changes 

Creating a CSF for changes in configurable elements 
follows the same process as for settings changes. Initially, 
a previously created and tested configuration is running in 
the customer’s environment. The customer then decides 
that a change to the configuration is needed and adds or 
removes a configurable element from it, saving it as a 
new configuration. As with settings, this description will 
assume the vendor is doing the analysis and has access to 
the source code and both the new and changed customer 
configurations. 

Next, the differences between the two configurations 
must be determined. This can be accomplished by using 
either a text based differencing tool for programmatically 
configured systems, or by using a custom tool provided 
from a software vendor for graphically configured 
systems.  

After the differences have been identified, each change 
is categorized into one of the three possible changes types 
and its underlying source code is identified and marked as 
changed. Besides the configurable element itself, all 
relationships from the added configurable element to 
other parts of the system are marked as changed. These 
relationships include static relationships, such as 
accessing system functions, and dynamic relationships, 
such as other configurable elements using the output of 
the changed one. 

Once all of the changes and relationships are marked 
as changed, a TFW is created for each. As with settings 
changes, analysis is done to determine if any of the 
changed code has dependencies that are affected by the 
change. Common dependencies in configurable element 
changes include impacting a data flow dependency, new 
code paths that can affect performance or memory, and 
interfaces with third-party components. Each dependency 
found has its respective code-based firewall created. 

Each area identified by the firewalls as impacted must 
be tested. For new, added configurable elements, the 
testing focus is on covering the newly exposed code and 
the relationships between the new element and other areas 
in the system. When adding instances of previously used 
configurable elements, the testing focus is on the areas of 
code that deal with the differences in settings values 
between the new and previous usages. Finally, if 
configurable elements are removed, the testing focus is on 

affected external dependencies. After the tests are created, 
they are run and any failures found are logged. 

5. Empirical Setup 

In order to validate that the Configuration and Settings 
Firewall is effective and efficient, two case studies were 
performed on a GUI-based, real-time system 
configuration product. The system runs in the Windows 
OS on a standard PC. This product is implemented as a 
hybrid of OO-designed C++ code and procedurally 
designed C code. The system is made up of 5121 source 
files, 3229 classes, 39655 methods and functions, 767431 
Executable Lines of Code (ELOC), 2398 configurable 
elements and 17 COTS components.  

This software creates configurations for all of the 
products in the system. Configurations for this software 
are created graphically and compiled into binary. 
Customers then load these binary files into the various 
software products in the system.  

Many customers are inherently secretive about their 
configurations. Currently, ABB has access to 
configuration data at two points in time. The first is the 
initial configuration created when the plant was first 
commissioned.  The other configuration data comes from 
customers detecting field failures in the software. In this 
case, they share the configuration they used to expose the 
defect. While customers are inherently secretive about 
their configurations, they have expressed a willingness to 
share this data if it will lead to improvements in released 
software quality.  

The first case study involves applying the CSF to a 
large number of past customer configuration changes that 
revealed latent defects. The customer-reported defects are 
then studied to see if they exist in the impact identified by 
the CSF. The goal of this case study is to determine the 
effectiveness of the change determination, code mapping, 
and impact analysis steps of the CSF at determining the 
correct areas of the software to test. This first study did 
not involve creating, selecting, or running any tests. This 
allowed the analysis to focus on the accuracy of the 
impact analysis independent of the quality of available 
and created tests.  

The accuracy for the first case study is computed by 
analyzing the reported customer failures that are due to 
latent software defects and checking them against the 
impact identified by the CSF. If the defect exists within 
the impacted area, it is considered detected. If it exists 
outside the impacted area, the defect will be further 
studied to determine if it was related to the configuration 
change. If they are related, the defects are considered 
missed, and if not, they are considered outside of the 
scope of this firewall method and discounted.  

The second case study takes a subset of the customer 
changes used in the first study and involves creating and 
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executing tests for the impact identified by the CSF. The 
three goals of this study are to show the time required for 
creating the needed tests, to determine if the customer 
reported defect can be detected by testing, and see if any 
additional defects not initially reported by the customer 
can be detected.  

The accuracy for the second case study is measured by 
the percent of customer-reported latent software defects 
that were detected by the testing identified by the CSF. 
Also, the time required to create and execute the tests is 
logged, representing the overhead associated in this 
process. Finally, any additional defects found by the 
testing are logged and compared to known defects in the 
system. 

To prevent any bias in these two studies, no 
information about the customer-found defect was 
available at the time the CSF is created. Once the CSF is 
completed, this information is determined to evaluate the 
accuracy of the CSF method.  

These case studies have two limitations. First, the 
configurations used by ABB customers are treated as 
trade secrets and there is no way to know exactly how all 
of the changes were performed over time. Since time 
sequence data for each change is not available, the total 
changes made to the customer’s configuration are split 
arbitrarily into a set of smaller changes. This could lead to 
a larger amount of time for analysis and testing, due to 
creating overlapping firewalls between each set. The 
second limitation of the study is that the time to create 
and execute the tests is based upon a smaller number of 
changes. A larger study of test time will be created in 
future work. 

6. Empirical Results 

This section is split into Section 6.1, describing the 
results of the first case study, and Section 6.2, describing 
the results of the second case study.  

6.1 First Case Study 

This case study involves a number of different 
customer configurations and changes. A list of changes is 
created for each customer change. This list is then split 
randomly into smaller groups, each of which has a CSF 
created for it. The data collected for all customer changes 
are shown in Table 1. These data includes the number and 
type of created CSFs and code-based firewalls that were 
created for each customer change. 

The first customer change studied for this GUI-based 
system involves a customer adding new graphical display 
elements into their configuration. The first set of changes 
contained three settings changes and the addition of two 

previously used configurable elements. The second set of 
changes contained two settings changes and the addition 
of one new configurable element. The corresponding 
CSFs were created and the details recorded in Table 1. 

Next, the failures reported from the customer were 
analyzed. Each of the three added configurable elements 
exposed failures in the system. These failures were 
related to one latent defect in a support function used by 
these elements. This defect involved connecting 
configurable elements across different graphical pages of 
the configuration, by way of a reference that is 
implemented as a helper function available for all 
configurable element types. This helper function only 
produced a failure when called by the two types of 
configurable elements added by this customer. This 
defect existed in the impact identified by EFWs created 
by the CSF. 

The second customer change studied for this GUI 
system involved a customer upgrading their Human 
Systems Interface (HSI) software. The customer changed 
the settings of existing configurable elements to take 
advantage of new features in their HSI. The first set of 
changes contained nine settings changes, each of which 
had settings change CSFs created for it. The second set 
contained the replacement of three configurable elements 
with ones containing additional functionality. These 
removals and additions, taken together, constituted an 
atomic change made in response to the HSI upgrade. The 
final set contains four settings changes. These settings 
changes affect the format of output data needed by the 
new HSI. The corresponding CSFs were created and the 
details recorded in Table 1. 

Once complete, the reported failures were studied. 
There were four failures detected, each resulting in 
incorrect data being displayed on the new HSI. The 
failures caused values to be truncated to 14 characters, 
instead of the 16 characters stated in the requirements, 
and was caused by a single latent software defect 
contained inside the added configurable elements. This 
defect existed in the area of code identified as impacted 
by TFWs created by the CSF.   

The third customer change studied involved adding 
five previously used configurable elements. These added 
elements represent redundant controller modules that 
were added for safety reasons. Once added, the customer 
exported the configuration to their HSI system. The 
operation failed to export all of the data to the HSI, as the 
export code contained a routine that counts the newly 
added redundant controllers incorrectly. This defect 
existed in the impact identified by EFWs created by the 
CSF. 
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Table 1. Summary of Case Study 1 
# of 

Settings 
Changes

# of 
Defects

# of 
Added 

Used CEs
# of 

Defects

# of 
Added 

New CEs
# of 

Defects

Analysis 
Time 

(Hours)
# 

TFWs
# 

EFWs

# 
Deadlock 

FWs
# 3rd 
Pty

HSI System
Cust 1: 5 0 2 2 1 1 1.5 8 3 0 0
Cust 2: 13 0 0 0 3 1 2.5 16 4 0 0
Cust 3: 0 0 5 1 0 0 0.5 5 5 0 0
Cust 4: 0 0 10 1 0 0 3 18 0 0 1
Cust 5: 0 0 0 0 8 1 0.5 8 0 0 0
Cust 6: 25 1 0 0 0 0 4 25 0 1 0

Total: 43 1 17 4 12 3 12 80 12 1 1
The fourth customer change studied involves a change 

where the customer added ten previously used 
configurable elements to their configuration, eight of one 
type and two of another. These elements represent 
additional values needed by the operators and were added 
to the configuration loaded into the HSI. These added 
configurable elements are involved in a data dependency 
with a third party component database, which stores all of 
the data in the configuration. A failure was observed 
when a user-passed parameter is set to a negative value, 
as it is used as the index value to a database table. This 
defect existed in the impact identified by a COTS 
Firewall created by the CSF. 

The fifth customer change studied involved a customer 
who added eight new configurable elements to the 
system. These elements represented an analog input 
module and data values connected to it. After these 
changes are made, the customer exports the configuration 
for use in another software product in the system. The 
export completes successfully, but when the configuration 
is loaded into the other product, eight failures are 
detected. The failures involved values from the newly 
added configurable elements being exported incorrectly. 
This defect existed in the impact identified by TFWs 
created by the CSF. 

The final customer change studied included 25 settings 
changes. These settings changes affect the update rates of 
data being displayed. The change in timing was just 
enough to expose a latent deadlock to the customer when 
the configuration was changed. No other customers or 
testers had tested the system with those timing values 
before. This defect was identified by the Deadlock 
Firewall created by the CSF. 

The final results of this study, detailed in Table 1, 
show that this method is effective at determining the 
impacted areas of the system that are at risk to expose 
latent defects due to a configuration change.  The studied 
changes include 43 settings changes and the addition of 
17 previously used configurable elements and 12 new 
configurable elements. The average time to create these 
CSFs manually was only two hours per change. These 
changes exposed 8 latent defects at customer sites, all of 

which were contained in the impact identified by the 
CSFs.  

6.2 Second Case Study 

The goal of this study is to run the required tests for a 
subset of the changes analyzed in the first case study. Few 
detailed tests exist in ABB to select for retesting 
configurable elements. As a result, the tests required for 
this study are created with exploratory testing [2], 
concepts from the Complete Interaction Sequences (CIS) 
method [5], and basic boundary value and code coverage 
metrics. The CIS method involves testing a required 
action by creating tests for all of the possible ways the 
GUI allows that action to occur.  

As the tests were run on the system, certain measures 
were recorded. These are shown in Table 2. The first 
group of measures collects the time required to run these 
tests.  One measure collected is a count of tests run. 
Another is analysis time, taken from the first case study, 
which represents the time needed to create the firewalls. 
The time required to run the tests, measured by a 
stopwatch, is logged as the third measure. After that, the 
total test time is calculated as the sum of the analysis and 
test times. Next, the original time is calculated by 
summing the time required to investigate and discuss this 
problem, including technical support, development, and 
management. By comparing the original time to the total 
time, a time savings is computed. This savings represents 
the time saved by using this method compared to the time 
required for the field-reported failures. 

The second category of measures in Table 2 involves 
failures observed during the testing. First, the number of 
observed failures is counted. Each of the observed 
failures is split into two categories, known and new. New 
defects are not currently known by ABB and are not in 
the defect repository while known defects are.  

The first change tested involved adding configurable 
elements which export values out of the GUI system and 
into the HSI. When the change was performed by the 
customer, values were truncated to fourteen characters 
instead of the required sixteen. When testing the impacted 
area for this change, four failures were observed.  
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Table 2. Results from Case Study 2 

GUI System
# of Tests 

Run
Analysis 

Time Test Time Total Time
O riginal 

Time 
% Time 
Saved:

# of 
Failures

# of Known 
Failures Found

# of New 
Failures Found

Reported 
Failure Found?

Change 1: 25 2.5 2.5 5 42 88.10% 4 3 1 Yes
Change 2: 18 1.5 2 3.5 51 93.14% 4 4 0 Yes

Total: 43 4 4.5 8.5 93 90.62% 8 7 1 100%    
The first failure occurs when a settings value is being 

updated. If the user tries to switch GUI screens in the 
middle of updating the settings, they are prompted to save 
and, if the user selects cancel, all of the changes are lost. 
This failure was not found in the failures listed in the 
defect repository for this product, and is considered a new 
failure.  

A second failure was found that occurs when the user 
enters 16 characters into a description field and tries to 
export the list of configurable elements. This export 
operation fails, as the exported list contains only 14 
characters of the text. This failure matches the customer 
reported failure exactly, so it is counted as a known 
failure. 

A third failure was detected when the customer 
configuration was first imported into the tool. The tool 
reported an error when this operation was first attempted, 
displaying only “Non-recoverable Error”. This failure is a 
known error as it was detected internally by ABB when 
performing testing for a previous release. 

The final observed failure occurred when a user 
exports the list of configurable elements. If the user 
selects an available option on the export dialog box, the 
resulting output contains no data regardless of what 
configurable elements are contained in the list. This 
failure was the same as one described in the defect 
repository originally reported by a separate customer one 
year after the release of this version. Therefore, it is 
counted as a known failure. 

The second change tested in this study was the 
addition of three previously used configurable elements. 
These elements were connected across graphical pages by 
references. A failure was observed by the customer where 
the compiler did not complete correctly for the changed 
configuration. No error message was presented to the user 
and the only way to determine the compile failed is that 
no binary file was created. 

When testing the impact of this change, four failures 
were observed. The first test involved simply compiling 
the project. This basic operation exposed a defect, where 
the compiler failed due to the customer adding three 
configurable elements. This first failure matches the 
original customer reported failure for this configuration 
change. 

A second failure was observed when testing alternate 
ways to change settings in the added configurable 
elements. If a specific setting contains a value which 
comes from a configurable element on a different page of 

the configuration, then the entire program crashes when 
the configurable element is opened for change by the tool.  
This failure matches a failure found in the defect 
repository that was observed by a separate customer in 
the field. 

An additional failure was observed while testing the 
export functionality. The system seems to export 
correctly, as a file is generated and no errors are detected. 
Once the file was opened, it was observed that the system 
failed to export all of the configurable elements and 
settings to the file and reported no errors. This failure was 
matched to a separate customer reported failure described 
in the first case study.  

One final failure was observed when testing the impact 
of this change. Any textual changes to a setting value in 
the configurable element connected to the newly added 
element are not saved. This failure was found by another 
customer and existed in the defect repository at the time 
of this study.  

Table 2 shows the final results of case study two. The 
average time required to create the CSFs and create and 
execute the required tests is 4.25 hours. Seven of these 
detected failures were reported by customers at a point in 
time later than the original configuration change. These 
represent defects that would have been found by ABB 
before future customers observed them. In addition, one 
new defect was found. These results show that testing the 
CSF-identified impact can detect the original customer-
found failures as well as additional failures in areas 
around the change without a large effort required. 

7. Conclusions and Future Work 

User-configurable systems present many difficult 
challenges to software testers. Combinatorial problems 
prevent exhaustive testing before release, leaving many 
latent defects in the software after release. Customers are 
then at risk to exposing these defects whenever they make 
changes to their running configuration. The CSF was 
created as a solution to this problem that allows 
incremental testing of user-configurable systems based on 
configuration changes made in the field. Configuration 
changes are mapped to the underlying code of the 
configurable elements and settings. After this, tests are 
created or selected that cover the impacted areas. 

Two case studies were performed on the CSF for this 
paper, aimed at showing its efficiency and effectiveness 
at detecting real customer found defects in deployed 
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industrial systems. The results of the study show that each 
reported customer defect would have been detected if this 
method were used for that change. In addition, the 
analysis time required to create the CSFs is not 
substantial compared to the cost of diagnosing and fixing 
customer found problems.  

The main area of future work is in initial release 
testing of user-configurable systems. Previous work in 
that area, such as [12, 13], shows some techniques which 
have been shown to work on systems with a small 
number of configurable elements and settings. These 
studies will need to be expanded for software with a 
larger number of configurable elements and settings, such 
as ERP systems and industrial control systems.  

A further reduction in the testing needed for 
configuration changes can benefit from a better 
understanding of their execution in the field, using 
methods such as [21]. 

Automation is also needed for this method. Combining 
differencing tools with recent advances in semantic 
impact analysis techniques, such as [17], will allow many 
steps of CSF creation to be automated. The final goal 
would be a tool that enables customers to submit changes 
and get immediate feedback on the system impact.   
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