IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 7, JULY 1997 437

The AETG System: An Approach to Testing
Based on Combinatorial Design

David M. Cohen, Member, IEEE Computer Society, Siddhartha R. Dalal, Member, IEEE
Michael L. Fredman, and Gardner C. Patton

Abstract —This paper describes a new approach to testing that uses combinatorial designs to generate tests that cover the pair-
wise, triple, or n-way combinations of a system’s test parameters. These are the parameters that determine the system’s test
scenarios. Examples are system configuration parameters, user inputs and other external events. We implemented this new method
in the AETG system. The AETG system uses new combinatorial algorithms to generate test sets that cover all valid n-way
parameter combinations. The size of an AETG test set grows logarithmically in the number of test parameters. This allows testers to
define test models with dozens of parameters. The AETG system is used in a variety of applications for unit, system, and
interoperability testing. It has generated both high-level test plans and detailed test cases. In several applications, it greatly reduced

the cost of test plan development.

Index Terms —Testing, combinatorial designs, experimental designs, orthogonal arrays.

1 INTRODUCTION

ESTING is an important but expensive part of the soft-

ware development process. Much research has been
aimed at reducing its cost. This paper describes a new ap-
proach to testing that uses combinatorial designs to gener-
ate efficient test sets. We implemented this method at Bell-
core in the AETG system, which is used in Bellcore [8], [4],
[5], [3], [6] and several of its clients [2] for unit, system, and
interoperability testing.

In this new approach, the tester first identifies parame-
ters that define the space of possible test scenarios. For ex-
ample, the parameters to test adding records to a data base
system would describe the records that can be added in a
transaction. The tester then uses combinatorial designs to
create a test plan that “covers” all pair-wise, triple, or n-
way combinations of the test parameters.

The motivation is two fold. First, there are many systems
where troublesome faults are caused by the interaction of a
few test parameters. A test plan should ideally cover those
interactions. The second is that the number of tests required
to cover all n-way parameter combinations, for fixed n,
grows logarithmically in the number of parameters. Thus,
testers can define test models that have dozens of parame-
ters and that still require only a small number of test cases.
This gives testers the freedom to define models with

* D.M. Cohen is with the IDA Center for Computing Sciences, 17100
Science Dr., Bowie, MD 20715. E-mail: dmcohen@super.org.

» S.R. Dalal and G.C. Patton are with Bellcore, 445 South St. Morristown,
NJ 07960. E-mail: {sid, gcp}@bellcore.com.

* M.L. Fredman is with the Department of Computer Science, Rutgers
University, Busch Campus—Hill Center, New Brunswick, NJ 08903.
E-mail: fredman@cs.rutgers.edu.

Please address all product inquiries about the AETG System to S.R. Dalal, Bell-
core, 445 South St., Morristown, NJ 07960. The AETG System is covered by
United States Patent 5,542,043.

Manuscript received 22 Aug. 1995; revised 2 Feb. 1997.

Recommended for acceptance by R. Hamlet.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 103736.

enough detail to capture the semantics of the system under
test accurately. They don’t have to worry that refining a
model by adding one more test parameter will cause the
number of tests to explode. Models with 80 and more pa-
rameters are common.

We did some experiments to test the effectiveness of
AETG tests. In one experiment, we found faults in previ-
ously tested modules from two releases of a Bellcore sys-
tem, System A. In another, we measured the code coverage
given by AETG tests for several Unix commands and sev-
eral modules from System A. The pair-wise AETG test sets
gave good code coverage for both examples.

The AETG system is used in a variety of applications.
This paper describes two sample applications. In one, it
designed a high-level test plan for the telephone 800 service
software. In the other, it created detailed test cases for an
ATM network performance monitoring system. Designing
good test plans for these systems by hand would usually
require one or two months. The AETG system reduced the
time to one or two weeks.

This paper reports on the AETG system. The next section
motivates the basic paradigm with an example. Section 3
proves that the number of tests required by the combinato-
rial design approach grows logarithmically in the number
of test parameters. Section 4 gives a heuristic algorithm to
generate tests. Section 5 gives an overview of the AETG
input language. Sections 6 and 7 describe the experiments
we did concerning effectiveness and two sample applica-
tions. Section 8 concerns related work.

2 THE BAsic COMBINATORIAL DESIGN PARADIGM

Consider the problem of testing a telephone switch’s ability
to place telephone calls. Table 1 shows four parameters that
define a very simple test model. The Call Type parameter
tells the type of call. Its values are Local, Long Distance,

0098-5589/97/$10.00 © 1997 IEEE

438 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 7, JULY 1997

and International. The Billing parameter says who pays for
the call. Its values are Caller (for bill to caller), Collect, and
800. The Access parameter tells how the calling party’s
phone is connected to the switch. The options considered in
this simple model are Loop, ISDN line, and a PBX trunk.
The final parameter, Status, tells whether or not the call was
successful or failed either because the calling party’s phone
was busy or the call was blocked in the phone network.

Since each different combination of parameter values
determines a different test scenario, and each of the four
parameters has three values, the table defines a total of 3=
81 different scenarios. Suppose for argument’s sake that 81
tests is too many as each individual test is expensive. Then
one alternative would be to select a default value for each
parameter and then vary one parameter in each test until all
the parameter values are covered. Table 2 shows the re-
sulting test set. It has nine tests instead of the 81 required
for exhaustively testing all possible parameter combina-
tions. However, although it covers all individual parameter
values, it covers only 30 of the 9 x 6 = 54 possible pair-wise
interactions between the test parameters.

The test plan shown in Table 3 also has nine test cases
but, unlike the default test plan in Table 2, it covers every
pair-wise combination of parameter values. This test plan
was constructed using a well-known combinatorial design
based on the projective plane [12]. Since 2/3 of the calls in
this test plan do not complete successfully, this plan does
not reflect the system’s normal operational profile. In many
applications, a significant number of faults are caused by
parameter interactions that occur in atypical, yet realistic,
situations [4], [22]. A comprehensive test should also cover
these interactions. Since the combinatorial design method
covers them very efficiently, testers who feel that the test
plan should reflect the operational profile can use the com-
binatorial design method to complement tests derived from
the operational profile.

Suppose that the test model had 13 parameters instead
of 9 and that each had three values, say 0, 1, and 2. Then
there are 3" = 1,594,323 possible parameter combinations.
The default method for this configuration requires 27 test
cases and covers (13 x 12/2) + 26 x 12 = 390 of the (13 x 12
/2) x 9 = 702 possible pair-wise parameter combinations.
Table 4 [7] shows 15 tests that cover all pair-wise parameter
combinations. In general, default testing for n parameters
with three values each requires 2 x n + 1 tests and covers
5/9 of the pair-wise parameter combinations while pair-
wise testing requires 4 x log, n tests and covers all the pair-
wise combinations. For example, for n = 40, exhaustive
testing requires 3% = 1.2 x 10" tests and default testing 81
tests. Pair-wise testing requires only 21 tests.

In the next section, we show that the number of test cases
required to test all pair-wise or n-way parameter combina-
tions grows logarithmically in the number of parameters.

3 LOGARITHMIC GROWTH FOR n-WAY INTERACTION
TESTING

We now show that the number of tests for n-way coverage
for fixed n grows logarithmically in the number of pa-

rameters. For ease of notation, we state the proof for pair-
wise coverage, i.e., for n = 2. The logarithmic growth fol-
lows from the following.

TABLE 1
PARAMETERS FOR PLACING A TELEPHONE CALL
Call Type Billing | Access | Status
Local Caller | Loop Success
Long Distance | Collect | ISDN | Busy
International | 800 PBX Blocked
TABLE 2
DEFAULT TEST CASES FOR PLACING A PHONE CALL
Call Type Billing | Access | Status
Local Caller | Loop Success
Long Distance | Caller | Loop Success
International | Caller | Loop Success
Local Collect | Loop Success
Local 800 Loop Success
Local Caller | ISDN | Success
Local Caller | PBX Success
Local Caller | Loop Busy
Local Caller | Loop Blocked
TABLE 3
PAIR-WISE TEST CASES FOR PLACING A PHONE CALL
Call Type Billing | Access | Status
Local Collect | PBX Busy
Long Distance | 800 Loop Busy
International | Caller | ISDN | Busy
Local 800 ISDN | Blocked
Long Distance | Caller | PBX Blocked
International | Collect | Loop Blocked
Local Caller | Loop Success
Long Distance | Collect | ISDN | Success
International | 800 PBX Success
TABLE 4

FIFTEEN TEST CASES FOR 13 PARAMETERS
WITH THREE VALUES EACH

P1 | P2\ P3 |P{|P5\P6|P7 | P8 |PY | P10| P11 | P12| P13
1 0 0 0 000 0 0 0 0 0 0 0
2 1 1 1 1)1 1 1 1 1 0 0 0 0
3 2 2 2 212 |2 2 2 2 0 0 0 0
4 0 0 0 1)1 2 2 2 1 1 1 0
5 1 1 1 212 |2 0 0 0 1 1 1 0
6 2 2 2 0100 1 1 1 1 1 1 0
7 0 0 0 2012 |2 1 1 1 2 2 2 0
8 2 2 2 1)1 1 0 0 0 2 2 2 0
9 1 1 1 0100 2 2 2 2 2 2 0
10 0 1 2 0] 1 2 0 1 2 0 1 2 1
11 1 2 0 1120 1 2 0 1 2 0 1
12 2 0 1 2101 2 0 1 2 0 1 1
13 0 2 1 021 0 2 1 0 2 1 2
14| 2 1 0 21110 2 1 0 2 1 0 2
15 1 0 2 110 2 1 0 2 1 0 2 2

COHEN ET AL.: THE AETG SYSTEM: AN APPROACH TO TESTING BASED ON COMBINATORIAL DESIGN 439

THEOREM. Given a system with k parameters, each of which has |
values, suppose that r test cases have already been chosen
and that the number of uncovered pairs is N. Then there is
a test case that covers at least N/I” new pairs.

PrROOF. Consider the set
U ={(t, p): where t is a test case and p is a pair covered by t}.

Since there are k parameters, each test case t covers k(k — 1)/2
pairs. Thus, each test case t appears in U with k(k — 1)/2 dif-
ferent pairs p. Since each parameter has | values, each pair p
appears in U with 2 different test cases.

Now, consider the subset V of (t, p) such that the test
case t is not one of the r already selected test cases and the
pair p is not covered by any of the selected test cases. We
will prove the theorem by counting the cardinality of V in
two different ways.

For any (t, p) in V, since the pair p is not covered, no test
case that contains p is among the already selected test cases.

Thus, p appears in V with Ik_2 different test cases t, i.e., there

are I different test cases t such that (t, p) is in V. Thus, if
the number of uncovered pairs is N, the cardinality of V is
N x %72,

Card(V) = Nx (2

For each unselected test case t, let m; be the number of
new pairs covered by t. Let m; be 0 if t is one of the r se-
lected test cases. Then t appears in V m, times. Thus,

Card(V) = 3, m

Now let m be the largest of the m,. To prove the theorem,
we must show that m is at least N / I2. Since the total num-
ber of possible test cases is I¥, we have the following ine-
quality:

Card(V) = ¥, m< mx f.
Thus, N x 1?2 < m x Ik, or

N/IZ<m.

We proved the theorem by showing that at each step in

generating a test set, there is a test case that covers 1/ 1% of
the remaining pairs. Now consider a greedy algorithm that
at each step chooses a test case that covers the most uncov-
ered pairs. Let N be the number of pairs at the start. Since
there are k fields with | values each, N = k(k — 1)72 x 1.
Using the greedy algorithm, after r test cases have been
chosen, the number of remaining pairs is

N'<s Nx(@1-1/1P)".
Thus, if r > —log(N) / log(1 - 1/I2) then N' <1 and all the
pairs have been covered. Using the approximation that

log(1 - 1/I2) = —1/1%, we get that the greedy algorithm
covers all pairs when

r>12xlog(N)=12x (logk k —1) / 2)+ 2log().

This shows that the number of test cases required by the
greedy algorithm grows at most logarithmically in k and
quadratically in I. Gargano, Korner, and Vaccaro have
shown [11] that for very large values of k, the number of
test cases n satisfies

[
n~ = log, k.

Their results are nonconstructive and it seems unlikely that
the linear growth in I is true for moderate values of k.

4 A HEURISTIC ALGORITHM

The proof of logarithmic growth for the greedy algorithm
assumes that at each stage it is possible to find a test case
that covers the maximum number of uncovered pairs. Since
there can be many possible test cases, it is not always com-
putationally possible to find an optimal test case. We now
outline a random greedy algorithm we developed. Again
for simplicity of notation we state the algorithm for pair-
wise coverage.

Assume that we have a system with k test parameters and
that the ith parameter has I; different values. Assume that we
have already selected r test cases. We select the r + 1 by first
generating M different candidate test cases and then choos-
ing one that covers the most new pairs. Each candidate test
case is selected by the following greedy algorithm:

1) Choose a parameter f and a value | for f such that that
parameter value appears in the greatest number of
uncovered pairs.

2) Let f, = f. Then choose a random order for the re-
maining parameters. Then, we have an order for all k
parameters fy, ... f,.

3) Assume that values have been selected for parameters
fi, ... fj. For 1 <i < j, let the selected value for f; be
called v;. Then, choose a value v;,, for f;,; as follows.
For each possible value v for f;, find the number of
new pairs in the set of pairs {f,,; =vand f = v; for 1 <i
<]} Then, let vj,, be one of the values that appeared in
the greatest number of new pairs.

Note that, in this step, each parameter value is con-

sidered only once for inclusion in a candidate test

case. Also, that when choosing a value for parameter

fis1, the possible values are compared with only the j
values already chosen for parameters fy, ..., f;.

We did many experiments with this algorithm. When we
set M = 50, i.e., when we generated 50 candidate test cases
for each new test case, the number of generated test cases
grew logarithmically in the number of parameters (when all
the parameters had the same number of values). Increasing
M did not dramatically reduce the number of generated
tests. Since the candidate test cases depend on the random
order selected in Step 2, using a different random seed can
produce a different test set. One useful optimization is to
generate 50 different test sets using 50 different random
seeds and then choose the best among them. This some-
times reduces the number of generated tests by 10 to 20
percent. There is also a deterministic construction and an
alternative random algorithm [7] that sometimes generate
fewer test cases.

5 AETG INPUT LANGUAGE

The basic constructs of the AETG input language are fields
and relations. The fields are the system’s test parameters

440

and the relations define relationships between the test pa-
rameters. To define a relation, the tester specifies the fields
it contains and a set of valid and invalid values for each
field. A test generated from valid values is a valid test and a
test generated from valid and invalid values is an invalid
test. Invalid tests usually abort before completion because
of some error condition.

Table 5 shows two relations that refine the test model
given in Table 1 in Section 2. The two relations, Relation 1
and Relation 2, have the same four fields: Call Type, Billing,
Access, and Status. Relation 1 defines 2 x 3° = 54 different
test scenarios, and relation 2 defines 2 x 3% = 18 different
test scenarios. Since International isn’t a valid value for Call
Type in relation 1 and 800 isn’t a valid value for Billing in
relation 2, the set of test scenarios defined by Table 5 has
the constraint that the pair (Call Type = International) &
(Billing = 800) is not valid, i.e., that there are no interna-
tional calls to 800 numbers.

TABLE 5
TwO RELATIONS FOR PLACING A CALL WITH CONSTRAINT

| Relation 1 ‘
Call Type Billing | Access | Status
Local Caller | Loop Success
Long Distance | Collect | ISDN | Busy
800 PBX Blocked
‘ Relation 2 |
Call Type | Billing | Access | Status
Internat. | Caller | Loop Success
Collect | ISDN | Busy
PBX Blocked

The tester specifies a degree to test for each relation. If the
tester specifies pair-wise testing, the AETG system gener-
ates tests that cover all valid pair-wise combinations of val-
ues of the relation’s fields. This means that for any two
fields f; and f, and any values v, for f; and v, for f,, there is
some test in which f; has the value v, and f, has the value v,.
If the tester specifies n-way testing, the AETG system will
generate a test set that covers all n-way parameter combi-
nations for each relation.

The AETG system generates tests for a set of relations by
combining tests for the individual relations. The algorithm
for combining tests insures that for each combined test
there is a set of relations such that the projection of the test
onto the fields in each relation in the set is a test for that
relation. If two relations have no common fields, the com-
bined tests for the two relations are simply concatenations
of tests for each individual relation.

The AETG system generates an invalid test for each invalid
value specified for a field in a relation. A value is an invalid
value only within the context of a relation. A value which is
invalid for a field in one relation may be a valid value for that
field in another relation. To avoid having one invalid value
mask another the AETG system uses only one invalid value
per test case. It creates the test for an invalid value by taking
a valid test for the relation and substituting the invalid value
in place of the field’s valid value in that test.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 7, JULY 1997

The tester can also guarantee inclusion of their favorite
test cases by specifying them as seed tests or partial seed tests
for a relation. The seed tests are included in the generated
test set without modification. The partial seed tests are seed
test cases that have fields that have not been assigned val-
ues. The AETG system completes the partial test cases by
filling in values for the missing fields.

5.1 Constraints

While constraints can be expressed using multiple relations
as shown in Table 5, it may be more efficient to express
them explicitly by using unallowed tests. An unallowed test
for a relation specifies a set of test cases that are not valid
for that relation. Table 6 shows a relation with an explicit
constraint. The relation, Relation 3, has the same four fields
as the two relations in Table 5. It also has the explicit con-
straint that any test case with (Call Type = International) &
(Billing = 800) is not allowed, independent of the values for
the Access and Status fields (the * in Table 6 is a wild card).

Relation 3 defines the same set of possible test scenarios as
relations 1 and 2, but the two AETG inputs are not identical.
Since relations 1 and 2 have incompatible values for the Call
Type field, tests generated for one relation are not valid tests
for the other. Since each relation requires nine tests for pair-
wise coverage, the union of the two test sets has 18 tests. Re-
lation 3 requires only the 10 tests shown in Table 7.

TABLE 6
DEFINITION OF RELATION 3
Relation 3
Call Type Billing | Access | Status
Local Caller | Loop Success
Long Distance | Collect | ISDN | Busy
International | 800 PBX Blocked
Constraints for relation §
International | 800 | * *
TABLE 7
TEN TEST CASES FOR RELATION 3
Call Type Billing | Caller Access | Status
Local Collect | PBX Busy
Long Distance | 800 Loop Busy
International | Caller | ISDN Busy
Local 800 ISDN Blocked
Long Distance | Caller | PBX Blocked
International | Collect | Loop Blocked
Local Caller | Loop Success
Long Distance | Collect | ISDN Success
International | Caller | PBX Success
Local 800 PBX Success

Relations 1 and 2 together require more tests than rela-
tion 3 because they impose more stringent test require-
ments. Relation 1 specifies that the pair (Access = ISDN) &
(Status = Busy) is covered in the context of Call Type = (Local
or Long Distance) and relation 2 specifies that the pair is
covered in the context of Call Type = International. Conse-

COHEN ET AL.: THE AETG SYSTEM: AN APPROACH TO TESTING BASED ON COMBINATORIAL DESIGN 441

quently, the pair is covered twice in the union of the test
sets for the two relations, once in each context. However,
the pair is covered only once in the test set for relation 3. A
relation specifies not only a set of pairs to be covered but
also a context for those pairs.

In this example, the tester may not care if the pair (Access
= ISDN) & (Status = Busy) is covered in both contexts. In
that case, an alternative semantics would regard the rela-
tion as specifying only a set of pairs and not a context. The
two specifications would then be equivalent and Table 7
would be a test plan for either specification.

A simple test generation algorithm is to first generate
tests for one relation and then use them to account for pairs
in the other relation. This algorithm however does not gen-
erate a minimal test set. For example, consider first cover-
ing Relation 1 and then Relation 2. Relation 1 would still
require nine test cases and Relation 2 would require two
test cases, one for the pair (Call Type = International) &
(Billing = Caller) and one for the pair (Call Type = Interna-
tional) & (Billing = Collect). The combined test set would
then have 11 test cases. This in one more than the 10 shown
in Table 7.

We doubt that testers would prefer as a rule to ignore
the context provided by the relation. Testers often use dif-
ferent relations to define different semantic situations. For
example, they may have one relation to define require-
ments to test a line interface card when the line’s protocol is
Ethernet and another for when the protocol is ATM. The
tester would want to insure that flow control worked in
both environments.

Since the fields in an AETG relation have only a finite
number of values, the user-interface can translate higher level
constraints such as x #y and x <y into the unallowed tests.

5.2 Hierarchy and Hierarchical Testing

A system often has several natural degrees of interaction
between its fields. A few fields might be important and the
tester may want to test their interactions with each other
more intensively then their interactions with the rest of the
system. One option is to have two relations. One which
contains all the fields and which is tested for pair-wise
combinations and another which contains only the most
important fields and which is tested for a high-degree of
interaction. However, that would be wasteful. A better so-
lution is to use a subrelation.

A subrelation is a relation that is used as a part of an-
other relation. The tester can put the most important fields
into a subrelation and give it a high degree of interaction
testing. The tester can then use the subrelation inside rela-
tions that are tested for a lower degree of interaction. When
generating tests, the AETG system will first generate tests
that cover the subrelation’s specified degree of interaction
and then use those tests as partial seed test cases when gen-
erating tests for the containing relation.

6 EXPERIMENTS

We did experiments to check the effectiveness of AETG test
sets. In one experiment, we tested user interface modules
from two releases of a Bellcore system. In another, we
measured code coverage of AETG test sets.

In the first experiment, the AETG system tested mod-
ules from two releases of a Bellcore system, System A. It
tested nine modules from the first release and 13 from the
second. The modules were designed to validate the user’s
input for internal consistency. A validation module usu-
ally has from 1,000 to 2,000 lines of C code. In this ex-
periment, the testers created the AETG input from the
module’s detailed development requirements. Although
the modules had already been tested, the experiment
found problems caused by defects in the code and by de-
fects in the requirement’s documents.

Table 8 shows the results. The column labeled Code
shows the number of code defects and the column labeled
Requirements shows the number of requirement defects.
There are more requirements defects than code defects. The
requirements defects are introduced when the system engi-
neers take the high-level user-oriented requirements and
write detailed development requirements. This process re-
quires a great deal of effort and knowledge; faults are often
introduced during it. Many of these faults are corrected in
the code later in the development process. Finding and
documenting them is important since the detailed devel-
opment requirements are used for maintenance.

We also measured the code coverage given by AETG test
sets. We used the ATAC [15], [23] coverage tool to measure
the block, decision, C-uses and P-uses metrics of AETG
tests generated for several Unix commands and several
validation modules from System A. The pair-wise AETG
test sets gave over 90 percent block coverage for both appli-
cation domains. For example, a set of 29 pair-wise AETG
tests gave 90 percent block coverage for the Unix sort com-
mand. We also compared pair-wise testing with random
input testing and found that pair-wise testing gave better
coverage. For the modules from System A, we also found
that code coverage didn’t increase when we increased from
pair-wise testing to testing all valid input combinations.
Table 9 has the results for one module. The Unix coverage
experiments are discussed in detail in [5].

Several coverage experiments were done at Nortel by
Burr and Young [2]. They also found that the AETG pair-
wise test sets gave good coverage in a variety of situations.

Of course, it is easy to construct examples where only
one unique combination of test parameters will trigger a
fault. However, there is growing evidence that for many
real-world systems, a large number of faults are triggered
by many parameter combinations. This is an area that mer-
its further study.

TABLE 8
DEFECTS FOUND IN TWO RELEASES OF SYSTEM A

9 modules from release 1 | 18 modules from release 2
Code | Requirements Code | Requirements
Range | 0-5 0-5 0-3 0-10
Average | 2 4 1 3
TABLE 9

CoODE COVERAGE RESULTS FOR MODULE A

Code coverage results for module A
Method | No of tests | Block | Decision | P-uses | C-uses
Pair-wise | 200 92 85 49 72
All 436 92 85 49 72
Random | 300 67 58 36 55

442 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 7, JULY 1997

7 OVERVIEW OF APPLICATIONS

The AETG system is used to generate both high-level test
plans and detailed test cases. This section gives an example
to illustrate each type of application. Other applications are
discussed in [4], [5], [6], [3]-

7.1 High-Level Test Planning

In this example, the AETG system designed a test plan for
the telephone switch software implementing 800 service.
Table 10 shows the relation to test calls reaching the switch
on a trunk from another switch. The first three fields spec-
ify the trunk’s type, its high-level protocol, and its signaling
protocol. The next two fields specify attributes of the
caller’s phone line. The last field says if the caller’s phone
number (ANI) is known to the switch. The three constraints
specify that certain trunk types can not use ISDN signaling.
Table 10 defines 336 possible valid test scenarios (480 sce-
narios without the constraint). Pair-wise testing required
only 30 tests. Since each test scenario takes a few hours to
run, going from 336 tests to 30 means a considerable cost
savings. The AETG input for the complete 800 software had
two additional relations and required 100 tests in total.

TABLE 10
800 SERVICE TESTING—CALLS ARRIVING ON TRUNKS

Relation for Calls arriving on trunks

Trunk Phone ANI

Type Protocol | Signalling | Phone Class
Inter-office | FGC MF flat rate No No
PBX FGD ISDN measured srv | Yes Yes
Operator ISDN phone
Cellular business
Billing coin

multi-party

Unallowed combinations for calls arriving on trunks

Operator | * ISDN * * *
Cellular * ISDN * * *
Billing * ISDN * * *

7.2 Test Case Generation

In this example, the AETG system generated detailed test
cases for an ATM network monitoring system. It generated
tests for two releases. Creating the AETG input for the first
release took one week and modifying it for the second took
an hour. This system has several monitors each of which
can signal when the number of corrupted ATM cells ex-
ceeds a specified threshold during a specified unit of time.
The system has commands to turn monitors on and off, to
set their thresholds and time units, and to display statistics.
To test the system, a tester gives it some configuration
commands and then uses an attenuator to corrupt the ATM
transmission facilities. The tester then checks if the system
displays the correct statistics.

The AETG input had one relation and modeled the con-
figuration commands and the attenuator. The input for the
first release had 61 fields; 29 fields with two values, 17 with
three values, and 15 with four values. This gives a total of
2% x 3" x 4% = 7.4 x 10% different combinations. The input
for the second release had 75 fields; 35 fields with two val-

ues, 39 with three values, and 1 with four values. This gives
a total of 2% x 3% x 4 = 5.5 x 10” different combinations.
The AETG system generated 41 pair-wise tests for the first
release and 28 pair-wise tests for the second. Even though
the second release had many more combinations, pair-wise
coverage required fewer tests. This illustrates the logarith-
mic growth properties of the AETG method. Even though
the second release had six more fields with two values and
22 more fields with three values, it required fewer tests be-
cause it had 14 fewer fields with four values.

This example also illustrates the distinction between the
AETG approach and some forms of input testing. Even
though the system had a screen interface, the AETG fields
modeled the system’s commands and not its user interface.
This distinction is discussed in greater detail in [5].

8 RELATED METHODS

The combinatorial design paradigm is a “black box” ap-
proach to testing; i.e., it generates tests from a model of the
system’s expected functionality. The test model can be cre-
ated from the system’s functional requirements or from its
detailed development specifications. The combinatorial de-
sign approach differs from most other black box methods in
that its basic test requirement is coverage of all valid n-way
test parameters combinations for tester defined values of n.

A method related to our approach is random input testing
and partition testing (see, e.g., Duran and Ntafos [9] and
Hamlet and Taylor [13]). The AETG approach differs from
random testing by allowing the tester to define complex rela-
tionships between the test parameters. The tester can use the
AETG constructs for relations, constraints and hierarchy to
focus testing. The AETG test plans are far from random.

Closely related to our work is the use by Mandl [17],
Brownlie, Prowse, and Phadke [1] and Heller [14] of or-
thogonal arrays to generate pair-wise test sets. Orthogonal
arrays are combinatorial designs used to design statistical
experiments [21], [18]. Because of their use in statistical ex-
perimentation, they have a balance requirement that every
pair is covered the same number of times. The AETG ap-
proach requires only that every pair is covered at least once.
It does not specify how many times each pair is covered.

The orthogonal array balance requirement is very severe
and preclues logarithmic growth in the number of test pa-
rameters. For example, an orthogonal array for 100 pa-
rameters each with two values would require 101 test cases.
An unbalanced pair-wise test set requires only 10 tests. (The
construction uses a combinatorial argument due to Renyi
[20].) Many applications have a large number of parameters
that have only a few values each. For these applications, the
balance requirement causes the number of test cases gener-
ated by orthogonal arrays to grow unacceptably large. For
example, it would not be practical to test the application
described in Section 7.2 using a balanced test set.

Another problem with balanced test sets is the incorpora-
tion of constraints that specify that some combinations of
values are invalid and must not occur in any test case. How
does one efficiently modify a balanced test set to prevent
some pair from occurring while insuring that the other pairs
still occur the same number of times? In contrast, it is easy to

COHEN ET AL.: THE AETG SYSTEM: AN APPROACH TO TESTING BASED ON COMBINATORIAL DESIGN 443

incorporate constraints into the heuristic algorithm in Section
4. One can either throw away candidate test cases that violate
a constraint or one can avoid generating them by not select-
ing a parameter value if it would violate a constraint.

By eliminating the balance requirement, we reduced the
number of required test cases to logarithmic growth in the
number of parameters. We also allowed easy specification
of constraints. Together these two properties allow testers
to have test models with many parameters. Test models
with 80 and more parameters are common. Testers are free
to add detail to a model by defining new test parameters.

The closest work to the AETG system is the CATS system
developed by Sherwood at AT&T [19], [16], [10]. CATS gen-
erates test sets that give n-way coverage for a set of relations.
However, it does not have the AETG notions of explicit con-
straints or hierarchy. Instead, it uses multiple relations to
express constraints. As shown above, using multiple relations
instead of explicit constraints may require more tests than
necessary. While we have not done a comparison study of
the AETG algorithms verses the CATS algorithms, the pub-
lished data suggest that the AETG algorithms generate fewer
test cases than CATS. For example, Sherwood [19] reports
that CATS generated 240 tests for pair-wise coverage of 20
fields with 10 values each. The AETG algorithms generate
only 180 tests for this example [7].

9 SUMMARY

The AETG system uses new combinatorial design algo-
rithms to generate test sets that efficiently cover the pair-
wise or n-way combinations of a system’s test parameters.
Examples of such parameters are a system’s configuration
parameters, the parameters that define its environment, its
inputs and internal events.

The basic AETG test requirement is that every pair-wise
or n-way combination of parameter values is covered. Un-
like the orthogonal array approach, the AETG method does
not require that every combination is covered the same
number of times. By allowing unbalanced test sets, it
greatly reduces the number of tests required to check the
specified level of interactions. For example, a balanced test
set for a system with 100 binary fields requires 101 tests,
while an unbalanced test set requires only 10.

In general, the number of tests required by the AETG
method grows logarithmically in the number of test pa-
rameters. For example, checking all pair-wise combinations
of 13 fields with three values each requires only 15 tests out
of a potential 1.5 million test combinations. Consequently,
the cost of adding detail in the form of additional parame-
ters is logarithmic. This is in contrast to models such as the
finite state model where each new feature adds a multipli-
cative factor to the number of tests.

Testers can use the AETG constructs to focus testing. The
AETG constructs for relations, constraints, and hierarchy
allow testers to express knowledge about the system under
test. The AETG test cases are far from random. In several
experiments with code coverage, the AETG test sets gave
significantly better coverage than randomly generated tests.

The AETG system is used in a variety of applications for
unit, system, and interoperability testing. It has generated

both high-level test plans and detailed test cases. Testers
can base the AETG input on detailed development re-
quirements or on a system’s high-level functional require-
ments, such as its user manual. The experience with this
new approach indicates that it is widely applicable and
generates efficient test sets of good quality.

ACKNOWLEDGMENTS

The authors thank Ajay Kajla, George Horruitiner, David
Carmen, Kirk Burroughs, Aridaman Jain, Robert Erickson of
Bellcore, and Nishit Goel, Kevin Burr, William Young and
Steve Yu of Nortel for developing new AETG applications.
We thank Ajay Kajla and Jesse Parelius for their work on the
code coverage experiments. Finally, we thank Isaac Perel-
mutter, Adam Irgon, and Jon Kettenring for their support.

REFERENCES

[1] R. Brownlie, J. Prowse, and M. Phadke, “Robust Testing of AT&T
PMX/StarMail Using OATS,” AT&T Technical J., vol. 71, no. 3, pp.
41-47, Mar. 1992.

[2] K. Burr and W. Young, “Test Acceleration and Automatic Effi-
cient Testcase Generation,” Nortel Technical Report, May 1997.

[3] K. Burroughs, A. Jain, and R.L. Erickson, “Improved Quality of
Protocol Testing through Techniques of Experimental Design,”
Proc. Supercomm/IEEE Int’l Conf. Comm. ‘94, pp. 745-752, 1994.

[4] D.M. Cohen, S.R. Dalal, A. Kajla, and G.C. Patton, “The Auto-
matic Efficient Tests Generator,” Proc. Fifth Int’l Symp. Software
Reliability Eng., pp. 303-309, IEEE, 1994.

[5] D.M. Cohen, S.R. Dalal, J. Parelius, and G.C. Patton, “The Combi-
natorial Design Approach to Automatic Test Generation,” |IEEE
Software, vol. 13, no. 5, pp. 83-89, Sept. 1996.

[6] D.M. Cohen, S.R. Dalal, G. Horruitiner, and G.C. Patton, “The
AETG System,” Fifth Int’l Conf. Software Testing, Analysis and Re-
view, Software Quality Eng., Jacksonville, Fla., 1996.

[7] D.M. Cohen and M.L. Fredman, “New Techniques for Designing
Qualitatively Independent Systems,” J. of Combinatorial Designs, to
appear.

[8] S.R. Dalal and G.C. Patton, “Automatic Efficient Test Generator
(AETG): A Test Generation System for Screen Testing, Protocol
Verification, and Feature Interactions Testing,” Internal Bellcore
Technical Memorandum, 1993.

[9] J. Duranand S. Ntafos, “An Evaluation of Random Testing,” IEEE
Tran. Software Eng., vol. 10, pp. 438-444, July 1984.

[10] W.K. Ehrlich, I.S. Dunietz, B.D. Szablak, C.L. Mallows, and A.

lannino, “Applying Design of Experiments to Software Testing,”

Proc. 19th Int’l Conf. Software Eng., IEEE, 1997.

L. Gargano, J. Kdrner, and U. Vaccaro, “Sperner Capacities,”

Graphs and Combinatorics, vol. 9, pp. 31-46, 1993.

M. Hall Jr., Combinatorial Theory. New York: Wiley Interscience,

1986.

D. Hamlet, and R. Taylor, “Partition Testing Does Not Inspire

Confidence,” IEEE Trans. Software Eng., vol. 16, pp. 1,402-1,412,

Dec. 1990.

E. Heller, “Using Design of Experiment Structures to Generate

Software Test Cases,” 12th Int’l Conf. Testing Computer Software,

pp. 33-41, June 1995,.

[15] J.R. Horgan and S. London, “ATAC: A Data Flow Coverage

Testing Tool for C,” Proc. IEEE Assessment of Quality Software De-

velopment Tools, pp. 2-10, IEEE, 1992.

C. Mallows, “Covering Designs in Random Environments,” Fest-

schrift for John Tukey, 1997, to appear.

R. Mandl, “Orthogonal Latin Squares: An Application of Experi-

mental Design to Compiler Testing,” Comm. ACM, vol. 28, no. 10,

pp. 1,054-1,058, Oct. 1985.

M.S. Phadke, Quality Eng. Using Robust Design. Englewood Cliffs,

N.J.: Prentice Hall, 1989.

G. Sherwood, “Effective Testing of Factor Combinations,” Third

Int’l Conf. Software Testing, Analysis and Review, Software Quality

Eng., Jacksonville, Fla., 1994.

[11]
[12]

[13]

[14]

[16]

[17]

[18]

[19]

444 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 7, JULY 1997

[20] N.J.A. Sloane., “Covering Arrays and Intersecting Codes,” J. Com-
binatorial Designs, vol. 1, no. 1, pp. 51-63, 1993.

[21] G. Taguchi, System of Experimental Design. Quality Resources,
1987. Translation of Jikken keikakuho, Maurzen Co., Tokyo, 1976.

[22] C.H. West, “Protocol Validation—Principles and Applications,”
Computer Networks and ISDN Systems, vol. 24, no. 3, pp. 219-242,
May 1992.

[23] W.E. Wong, J.R. Horgan, S. London, and A.P. Mathur, “Effect of
Test Set Minimization on Fault Detection Effectiveness,” Proc.
17th Int’l Conf. Software Eng., pp. 41-50, IEEE, 1995.

David M. Cohen received a BA degree from
Harvard University and a PhD degree in mathe-
matics from MIT. He is a member of the research
staff of IDA’s Center for Computing Sciences in
Bowie, Maryland, where he does research in
computer science in support of the NSA. From
1981 to 1996, he worked at Bellcore and Bell
Telephone Labs, where he most recently did
research in software engineering and telecom-
munications; he has two patents. Cohen has
held postdoctoral fellowships from the Institute
for Advanced Study in Princeton, New Jersey and the German Alexan-
der von Humboldt Foundation. Cohen is a member of the ACM and the
IEEE Computer Society.

Siddhartha R. Dalal received his MBA and PhD
degrees from the University of Rochester, and
then started his industrial research career at the
Bell Labs Math Research Center. He is a chief
scientist and a director of the Information Tech-
nologies and Internet Applications Laboratory at
Bellcore. Besides leading the research at Bell-
core on combinatorial designs and the AETG
system, he leads research projects in software
engineering, risk analysis, mathematics, and
statistics. He received the American Statistical
Association’s 1988-1989 award for an outstanding application paper
for work on the Challenger disaster on behalf of a National Research
Council committee. He is a member of a National Academy of Sci-
ences panel that produced an NRC report on software engineering. He
is a fellow of the American Statistical Association and an associate
editor of the Journal of the American Statistical Association.

Michael L. Fredman received his BS degree in
mathematics from California Institute of Technol-
ogy and a PhD degree in computer science from
Stanford University. He is currently a professor in
the Department of Computer Science at Rutgers
University Previously he was a professor of
mathematics and a professor of computer sci-
ence at the University of California at San Diego.
Fredman’s research interests mainly concern
algorithms and data structures. He is a member
of the editorial board of the SIAM Journal on
Computing and is a member of the ACM.

Gardner C. Patton received the BA degree in
physics from Brown University and a MS in in-
dustrial engineering from the New Jersey Insti-
tute of Technology. He is a senior scientist in the
Software Engineering and Statistical Research
group at Bellcore. After joining Bell Laboratories
in 1961, he worked on developing software mis-
sile guidance systems, telephone applications,
and operating systems. For 14 years, he man-
aged a group testing TIRKS, a telephone inven-
tory system containing more than 10,000,000
lines of code. He is currently interested in test measurement, automatic
test generation, client/server testing, and intranet testing. He is a
member of the ACM.

