
Faith, Hope, and Love
An essay on software science’s neglect of human factors

Stefan Hanenberg
University Duisburg-Essen,

Institute for Computer Science and Business Information Systems
stefan.hanenberg@icb.uni-due.de

Abstract
Research in the area of programming languages has differ-
ent facets – from formal reasoning about new programming
language constructs (such as type soundness proofs for new
type systems) over inventions of new abstractions, up to per-
formance measurements of virtual machines. A closer look
into the underlying research methods reveals a distressing
characteristic of programming language research: develop-
ers, which are the main audience for new language con-
structs, are hardly considered in the research process. As a
consequence, it is simply not possible to state whether a new
construct that requires some kind of interaction with the de-
veloper has any positive impact on the construction of soft-
ware. This paper argues for appropriate research methods in
programming language research that rely on studies of de-
velopers – and argues that the introduction of corresponding
empirical methods not only requires a new understanding of
research but also a different view on how to teach software
science to students.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Human Factors, Languages

Keywords Research methods, programming language re-
search, software engineering, empirical research

1. Introduction
The term software crises [8] is often applied in the area of
software engineering and programming language research in
order to argue that these crises still exist, and in order to ar-
gue that new techniques are required in order to overcome
the crises. And indeed, programming language and software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Onward ’10 October 17-21, 2010, Reno-Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0236-4/10/10. . . $10.00

engineering research seem to be inexhaustible fountains that
produce over and over again new techniques that reduce the
software crises: new development processes, modeling no-
tations, programming language constructs, frameworks, etc.
are invented and such techniques are claimed to overcome
existing problems.

However, a closer look reveals that research in the area
of programming languages and software engineering has a
fundamental problem with how they reason on their newly
invented artifacts. It turns out that many artifacts have an
inadequate foundation of how they are justified because they
do not consider that developers are part of the software
construction process. This means that many new techniques
are claimed as solutions for existing problems without any
sufficient investigation.

Hence, it is adequate to ask whether software engineer-
ing and programming language research can be considered
as serious scientific disciplines that construct new artifacts
and examine them in an objective way. Spoken in a more
practical way, it is valid to ask whether these artifacts con-
tribute to a solution to today’s problems – or whether they
are the main cause for today’s problems and consequently
the main cause for the crises that they claim to reduce.

As a consequence, developers have to decide on their own
whether a new artifact should be considered good or reason-
able: “for practitioners, it’s hard to know what to read, what
to believe, and how to put the pieces together” [23, p. 67].
Hence, the assessment of new artifacts is the product of sub-
jective experiences and sensations, which is an unacceptable
situation - faith, hope, and love are a developer’s dominant
virtues to estimate the benefit of new artifacts.

This essay argues for the urgent need to consider human
factors when reasoning about programming language and
software engineering artifacts and emphasizes the need for
appropriate empirical methods in order to provide valid and
adequate rationales for such artifacts.

This paper analyzes current research approaches in soft-
ware sciences and discusses their validity and adequacy. It
shows that there is already a practice to use human fac-
tors to argue for certain artifacts - but a practice which is
rather based on speculations instead of scientific methods.

After comparing the consideration of human factors in other
research disciplines, it is critically discussed why humans
factors hardly play any role in programming language and
software engineering research. Finally, the paper argues that
a number of fundamental changes are necessary in research
as well as in teaching in order to overcome the current inad-
equacies.

Notes: This paper uses a number of prominent scientific
works to illustrate the inappropriateness of current ratio-
nales used in software research. The aim is definitively not
to discredit any author. Because of that, research papers are
chosen in a way that they represent fundamental statements
about known and popular topics in software research and
rather no up-to-date papers. It is also necessary to note that
this paper does not claim that the statements of these papers
are wrong – it only argues about the missing evidence or the
inappropriateness of the chosen research methods.

This essay will use the term software science as a com-
mon term for software engineering research as well as pro-
gramming language research in order to ease the reading1.

2. Research Methods in Software Science
This section gives an overview of research methods and ra-
tionales which are currently applied in software science. The
overview should not be considered as a complete descrip-
tion of all practiced and possible research approaches. The
main intention is to show that there is already a variety of
different approaches which differ with respect to the sub-
ject of research, the kinds of statements being promoted by
them, and the techniques used to back up the corresponding
statements. Then, the validity and adequateness of such ap-
proaches is discussed with a special focus on how the results
can be used by a developer in order to determine whether the
application of a certain artifact improves the development of
software - with the result that human factors, which are es-
sential to determine whether an artifact improves software
development, are hardly (or inadequately) considered.

2.1 Classification of research approaches
The origin of software science is mathematics. Classical dis-
ciplines such as algorithms and data structures are based on
the approach to examine a program according to some for-
mal characteristics such as run-time behavior. Typical ap-
proaches in these disciplines are correctness proofs or run
time estimations using the O-notation. The programs, which
are understood as formal descriptions of a number of actions
that take place in a certain ordering, are the focus of these
approaches. Here, a program itself is the subject which is be-
ing studied. Mathematics is the underlying discipline which

1 The term software science was already used in [16] for a different purpose
- to describe a system of metrics. The author of this essay uses this term
for a different purpose because he thinks that it describes best the here
addressed topic and also meets best the common understanding of the topic.
The author considers the risk of misinterpreting the term to be rather low.

provides the research method. The aim is to construct theo-
rems and to prove them. This approach considers programs
as deterministic methods that transform input data into out-
put data. Programs are the subjects of research. In the fol-
lowing, this approach will be describes as the classical ap-
proach.

Over time, new approaches were developed that differ
from the classical approach. First, the assumption of deter-
minism was softened: disciplines such as parallel computing
do no longer assume that the ordering of statements during
the execution of a program is known. Further disciplines
concentrate on randomized algorithms where the result is
permitted to depend on random distributions. Nevertheless,
they still have in common with the classical approach that
the subject being studied is the program itself. However, the
research methods applied here differ from the classical ap-
proach. First, there is the stochastic-mathematical approach
where stochastic statements are achieved by mathematical
and analytical reasoning. Second, there is the stochastic-
experimental approach where stochastic statements are
achieved using statistical methods applied on measurements
resulting from corresponding experiments. The main differ-
ence to the classical approach is that statements are no longer
of kind true and false. Instead, the statements are stochastic
statements based on probabilities.

The stochastic-mathematical approach as well as the
stochastic-experimental approach depend on random dis-
tributions of certain variables contained in the programs to
be analyzed. One characteristic of these randomized vari-
ables is that they are under the control of the researcher:
researchers can control the input parameters, the underlying
distributions, etc.2.

There are further approaches that differ from the previous
ones. For examples, approaches for improving the perfor-
mance of software often have a characteristic that does not
match the previous descriptions. There, different strategies
or algorithms are examined in order to improve the perfor-
mance of applications. The characteristic of the approach is,
that software plays two different roles: first, there is a piece
of software that is examined (such as a new run-time sys-
tem), second, there are further pieces of software that are
used as input parameters (at least, the approach permits to
use software also as input parameters).

A noteworthy difference to the previous approaches is
the second role of software: software plays the role as in-
put parameters (instead of raw data such as integers, etc.).
Hence, this approach considers software as existing (real-

2 It is important to note that the stochastic-experimental approach does not
describe all kinds of approaches that perform experiments. The approach
describes those approaches where the subject of research and all other influ-
encing variables can be formally described (and controlled). Hence, works
that perform experiments on concrete machines (such as the measurement
of time of a concrete algorithm on concrete CPUs) typically do not fall into
this category, because they (typically) cannot control all influencing vari-
ables.

world) phenomena which are used to study the original sub-
ject (which is in this case the new run-time system). The soft-
ware being used as input parameter is (typically) intended to
give a representative sample from the reality. In order to gain
such a sample (and to compare different research results), a
typical approach is to use benchmarks, i.e. sets of upfront
known pieces of software. We call this approach, where a
predefined set of data is being used as input parameters for
experiments, the benchmark-based approach.

All previous approaches have a purely technical nature
– software is being examined either in an analytical way
(classical approach, stochastic-mathematical approach) or
in an experimental way (stochastic-experimental approach,
benchmark-based approach). However, the software devel-
oper or the user of a piece of software does not play any
role in these approaches. Consequently, we call of these ap-
proaches technical approaches in the following.

Figure 1. Categorization of research approaches

Apart from the technical approaches, further research di-
rections have been followed that fundamentally differ from
the technical ones - works that provide or invent new pro-
gramming language constructs or new tools, such as the
invention of object-oriented programming. The main argu-
mentation in such directions is that a new construct or ab-
straction permits developers to write better software. Bet-
ter typically means in this context that the piece of soft-
ware to be written using the new abstraction or tool has
fewer errors, is better maintainable or more reusable (cor-
responding qualitative criteria can be found in many text
books such as [34]). The fundamental change to the previ-
ous technical approaches is that the subject being examined
has changed. While in all previously described approaches
a concrete piece of software (algorithm, run-time machine,
etc.) was analyzed, this new approach studies the way devel-
opers construct pieces of software using a new artifact. Con-
sequently, the developer becomes part of the argumentation
for or against new techniques – a developer, a human being,
is in addition to a new artifact in the focus of research. In
the following we call this approach the socio-technical ap-
proach (see Figure 1).

Before considering the socio-technical approach we will
consider the technical approaches from two perspectives.

First, we consider to what extent the approaches are able to
provide valid rationales. Next, we discuss to what extent the
technical approaches are adequate to provide arguments in
software science. Here, the main perspective is to ask to what
extend the technical approaches provide adequate arguments
for the decision whether the application of a new artifact is
beneficial.

2.2 Validity of technical approaches
It is obviously not necessary to discuss the classical ap-
proach with respect to its validity: the subject of research
can be formally described and the theorems can be proven.
The same is true for the stochastic-mathematical approach,
although “only” stochastic statements can be proven.

The stochastic-experimental approach already widely dif-
fers from the previous ones: the research method is no longer
based on formal reasoning. Instead, the results of experi-
ments are used as rationales for or against a certain technique
(or piece of software). Although there are obvious parallels
to empirical methods from other disciplines apart from com-
puter science (such as medicine, experimental physics, etc.),
it must be emphasized that there are also huge differences to
them: the subject (the algorithm, etc.) as well as the result
that is being examined (run-time benefit, exactness of result)
can be formally described. As a consequence, all influencing
variables that play a role in experiments can be (typically)
formally described and are completely under the control of
the researcher: the researcher can define upfront the distri-
bution of input parameters, the random number generators
being used, etc.. Consequently, there are no unknown factors
that potentially influence the results of the experimentation.
As a consequence, a repetition of an experiment using the
stochastic-experimental approach leads to the same results.

Nevertheless, it seems clear that this way of reasoning on
software leads to valid results, especially in situations where
the subject cannot be analyzed using analytical methods.
Nevertheless, the approach also has the characteristic that
the experimenter decides the chosen distributions for input
variables – and it is at least speculative how the results
potentially differ if different distributions would have been
chosen. For the same reason, it is potentially problematic to
compare different pieces of research based on the stochastic-
experimental approach, since the input parameters can be
individually chosen by researchers.

The benchmark-based approach is quite similar to the
stochastic-experimental approach with respect to its ex-
perimental character. Both perform experiments and apply
statistical methods. However, in contrast to the stochastic-
experimental approach, the experimenter cannot influence
the data used within the experiment – the benchmark is typ-
ically an external factor. Consequently, the influence of an
experimenter on the results is much more reduced in com-
parison to the stochastic-experimental approach, which im-
proves the ability to compare different research works (since

the experiments are based on the same input data)3. How-
ever, in order to gain this benefit it is necessary that that
there is a commonly accepted definition for such a bench-
mark. This situation is typically only given if the techniques
under examination are already applied since a number of
years. Furthermore, it requires some consensus in the (sci-
entific or industrial) community about such benchmarks.
The benchmark-based approach still has some subjective el-
ement: a benchmark is intended to be some representative
sample over the set of all possible data which is constructed
by human. For example, in [4] a benchmark suite is pro-
posed which is “a set of general purpose, realistic, freely
available Java applications” [4] which can be used to mea-
sure for example the performance of Java Virtual Machines.
Although the authors of the benchmark suite argue for the
quality of the suite it is at least questionable whether these
applications are representative. Nevertheless, this is not the
subjectivity of the researcher applying the benchmark - this
is the subjectivity which is part of the benchmark itself.

The benefit of comparing different research works based
on the benchmark-based approach lies in the application of
new techniques to the same benchmark. Consequently, a
benchmark is hardly able to evolve, because otherwise this
benefit would no longer exist. But if the benchmark does
not evolve, it cannot consider the continuous change in soft-
ware development: new programming techniques, develop-
ment environments, architectures, etc. frequently appear and
have a direct impact on the resulting software (with respect
to size, complexity, etc.) – but these changes are not part
of the benchmark. Because of the above described poten-
tial problems, “benchmark composition is always hotly de-
bated” [36, p. 36].

Although these problems are known, it still seems obvi-
ous to consider research statements or theories whose ra-
tionales are based on the benchmark-based approach to be
valid, because it seems obvious that it is not possible to de-
fine benchmarks that evolve over time and that still permit
to compare different pieces of work based on common data.
The problem with the subjectivity of the benchmark remains,
but since we have to accept that it is not possible to gather all
current and possible future pieces of software in one single
benchmark, we have to live with the remaining subjectivity.

2.3 Adequacy of technical approaches
It is important to consider the validity of research results
based on the underlying research method. It is maybe even
more important to consider whether the research methods
are adequate to reason on statements about the techniques.

A general view on software science is that it provides
(new) tools and techniques to build, maintain and exe-
cute software. The terms tools and techniques should be

3 Of course, researchers still have the freedom to decide which benchmark
they use - in case there are different alternatives available. But once a
benchmark is chosen, the influence is reduced.

considered to be rather abstract. Examples for such tools
are concrete software tools (such as development environ-
ments, software libraries, programming languages), as well
as methods (such as development processes, or test tech-
niques) up to models (such as formal languages, modeling
notations, etc.). It is important to note that the construction
of a new artifact itself does not represent a scientific activity.
The scientific activity is the evaluation of statements about
the technique, where the benefit of a certain technique is
shown (or disproved). Other scientific activities are the con-
struction and evaluation of theories that permit to predict
certain phenomena that appear while a piece of software is
constructed, maintained or run.

In the technical approaches the benefit of an artifact can
be argued based on rationales on an artificial artifact. For
example, the benefit of a JIT compiler in comparison to an
interpreter can be argued by comparing the run-time using
benchmarks (benchmark-based approach). The benefit of
a certain type system that requires some additional type
annotations can be argued by proving its type soundness
(classical approach).

Although the technical arguments seem to be quite strong,
they still have weaknesses. The argumentation for the JIT
compiler is problematic, because it is unclear whether the
underlying benchmark represents a representative sample
– but we already argued above that this argument is rather
weak. However, there are more serious objections against
the argumentation for the second example (type system).
Although type soundness has been proven, it is not shown
whether a developer is able to use the type system. It might
be possible that the type system is too complicated that de-
velopers are overstrained when applying it. Consequently,
the positive statement based on the technical approach would
turn out to be rather misleading if used by developers in or-
der to determine whether the type system should be applied:
a type soundness proof does not say a word about whether
the type system improves the construction of software. In
this situation, the classical approach turns out to be inad-
equate for developers to decide whether the application of
the new artifact is beneficial. For the JIT compiler the situa-
tion is different. The application of the JIT does not require
additional actions by the developer. Consequently, a pure
technical statement is adequate here.

The examples show that the technical approach is ade-
quate in some situations – and in some situations it is in-
adequate. Although technical statements can be potentially
proven, they prove a formal characteristic within a formal
system. This does not permit one to reason about a possible
benefit of the artifact that requires special user interactions
because the possible behavior of users is outside the formal
system.

If we assume that most techniques provided by software
science require additional user interaction, it can be con-

cluded that most of the time the application of a technical
approach is rather inappropriate.

2.4 Further approaches
It should be noted that even other kinds of approaches are
applied – a close look into international journals and confer-
ences reveals that technical approaches do not represent the
majority of research approaches4.

Frequently, a common approach is to identify a problem
by means of an example, to provide a new artifact and to
show that the problem is solved by applying the artifact.

An example for such an approach can be found in [38]5.
There, it is argued that class-based object-oriented languages
tend to be too complex, since they provide constructs such
as classes, etc.. Then, a new language (the programming
language Self) is introduced. Then, the benefit of Self is
being argued by the absence of certain language constructs
such as classes, etc..

From the scientific point of view the argumentation is
problematic. First, it is unclear whether the addressed prob-
lem is really a problem. However, this (weak) argument is
directed to the relevance of the work - which can be argued
against any kind of research work. However, a really prob-
lematic question is, what exactly the research question is in
the paper. If it was whether a programming language can
be provided without the language construct class, then the
answer already could have been given upfront (with a ref-
erence to procedural or functional programming languages).
If the intention was to provide a language that is easier to
use than a class-based language, then the paper failed to pro-
vide any rationales showing that the resulting language is
easier. Hence, from the scientific point of view, it must be
concluded that the paper does not give a scientific argument
for the new language.

A different kind of approach that also can be frequently
found is the transfer of artifacts from one discipline to an-
other one. An example can be found in [18]. Here, the au-
thors address the topic of how to document software frame-
works. They provide a hint, that pattern languages have been
used in architecture (not software architecture). Then, they
transfer this idea to framework documentation. Then, the au-
thors mention that a group of developers was satisfied with
the pattern-based documentation after some iterations. Fi-
nally, they conclude that pattern languages are a good way
to document software frameworks.

Again, the arguments are problematic. The transfer of the
artifact (pattern language) from one discipline (architecture)

4 See e.g. [37, 42] for overviews of research methods and [3, 31] for
overviews of experiments found in past conferences and journals.
5 Once again, the author would like to emphasize that the intention is not to
discredit any authors or any techniques (in fact, the author is an enthusiastic
Self-programmer and an admirer of the works by David Ungar and Randy
Smith). This essay also does not make any statement about the possible
benefit of Self. The intention is only to argue that the approach in the Self-
paper does not permit to draw the conclusions drawn in the paper.

to another one (software construction) is achieved more or
less arbitrarily. Moreover, the paper just states that a group
of developers was satisfied after some iterations. It does
not state whether the developers were unsatisfied with the
existing solution or whether they were more satisfied with
the new solution. Finally, no scientific argument (based on
a valid research approach) is given in order to conclude that
patterns language are suited for documenting frameworks6.

A characteristic of the examples is, that their argumenta-
tion does not follow any scientific approach. Consequently,
the argumentation is not valid and the argued benefit of the
proposed artifacts is purely speculative.

For readers of such works it is quite complicated how to
handle such situations. Either they ignore the works because
of the missing scientific approach, or they decide for them-
selves whether or not they consider the proposed artifacts to
be beneficial. In the latter case the benefit of the artifacts lies
only in the eye of the beholder.

Expressed in a more provocative way this means that it is
up to the developer’s faith to decide whether or not he be-
lieves in the proposed artifact; in case he decides to use the
artifact in an industrial setting, he has to hope that the artifact
will not have a bad impact on the software construction pro-
cess. Finally, the developer has to decide on his own whether
he loves the new artifact – since no objective rationales are
given, the choice of a new artifact is a purely subjective and
rather emotional process. Faith, hope, and love turn out to
be the dominant factors for selecting and applying technical
artifacts provided by software science.

2.5 Speculative considerations of human factors in
software science

While the previously discussed approaches are often used in
the scientific literature, the socio-technical approach is (still)
controversially discussed. There is no answer to the question
whether or not human factors should play any role in the sci-
entific argumentation in software construction that is com-
monly accepted among all researchers. For example, Tichy
reports in [36] about “the fear that computer science will
fall into the trap of soft science” - where human subjects are
typically considered to be the characteristic of soft science.
Hence, it is even unclear whether a socio-technical approach
really exists or whether this is rather one branch of popular
and unscientific work.

However, a closer look into a number of commonly ac-
cepted research works reveals that human factors already
play an essential role in software science – although they are
typically not considered within a valid research approach. In
order to exemplify this, two examples should be mentioned
here.

6 Again, the author (who likes software patterns and design patterns) would
like to mention that he refers here only to the paper and discusses whether
the argumentation within the paper follows a valid scientific approach. In
fact, the area of software documentation using design patterns is already
studied in other works (see for example [26]).

• Dijkstra wrote in [9, p. 210] that “it is a characteristic
of intelligent thinking to study in depth an aspect of
one’s subject matter in isolation”, a principle that he calls
“separation of concerns”. A large bunch of literature
refers to the phrase separation of concerns in order to
argue for the benefit of a certain technique (typically, the
aspect-oriented literature, see [13], refers to this phrase in
order to argue for aspect-oriented software composition).

• Another example can be found in [21, p. 8]: there, in or-
der to argue for the benefit of object-oriented program-
ming, it is stated that object-orientation “is close to the
natural perception of the real world: viewed as consist-
ing of objects with properties and actions”.

For both (very prominent) arguments the human factors are
essential. In both cases the reference to the human factors is
the key argument – the first argument is the foundation for
the aspect-oriented literature7, the second argument intends
to highlight the need for the new approach object-oriented
programming. Both arguments refer to human characteris-
tics – “human thinking” and “human perception”. But from
the scientific point of view the above examples must be con-
sidered to be problematic:

• Both works apply a characteristic from one discipline
(psychology) more or less arbitrarily to a different one
(software science).

• In both cases, the statements “come out of nowhere”.
Neither of the statements has any references to any neu-
ronal science or psychology journal or something similar.
Consequently, in the best case both sentences can only
be considered as “a possible hypothesis that needs to be
tested”. In the worst case, one could say that both state-
ments are just the result of the author’s fantasy. In any
case, it is not valid to conclude anything from them8.

• Even under the assumption that the statements are right,
it is unclear how the causal relationship between each
statement and the argued technique (aspect-orientation,
object-orientation) is. Even assuming the validity of a
statement “people perceive the world as objects” it needs
to be checked whether this has anything to do with soft-
ware construction – and whether this has anything to do
with our understanding of object-oriented programming.

So far, we can conclude that the human factors are already
considered even in programming language research. How-
ever, the way how they are used does not follow any valid
scientific approach. Consequently, it is necessary to under-

7 It should be noted that the strong emphasis on the phrase “separation of
concerns” was probably not intended by Dijkstra: the phrase hardly plays
any role in [9].
8 Both statements are different from those ones that are traditionally ana-
lyzed by computer scientists. Consequently, it is highly probable that com-
puter scientists are not able to determine whether these statements have any
scientific background - or whether those statements represent some com-
mon sense in these disciplines.

stand how the human factors can be integrated into a valid
socio-technical approach for software science. Therefore, it
is reasonable to have a look into sciences that do not rely on
formal methods, i.e. sciences that do not purely rely on the
technical approaches.

3. Beyond Formal Systems: Consideration of
Human Factors in other Disciplines

Disciplines that do not rely on formal systems typically des-
ignate the critical rationalism as the foundation of their re-
search method. The core of the critical rationalism according
to Karl Popper [24] is that all scientific statements must by
falsifiable, i.e. it must be possible to test the statement in
order to determine whether it is false. Furthermore, a sci-
entific statement must be universally quantified: an existen-
tially quantified statement is not considered to be scientific.

The tasks of a scientist are twofold. First, his task is to
construct sets of (hopefully consistent) scientific statements
which are called theories. Second, he needs to try to falsify
them using empirical methods. It is important to note that the
critical rationalism does not assume that the correctness of a
theory can be proven. Instead, it can only be shown whether
a theory is false. The more often falsification trials of a
theory fail, the more stable is a theory considered. The most
extreme interpretation of the critical rationalism demands
only one falsification of a theory in order to reject it. In order
to explain the critical rationalism, Popper uses a number of
examples, mainly from physics.

However, if human behavior is observed using empirical
methods the idea of falsification slightly differs. For physical
objects a number of “objective” metrics such as “mass” exist
and the physical object is not able to change this metric “be-
cause of the absences of a free will”. Humans on the other
hand can reflect on themselves and change in that way their
behavior. Hence, humans are even able to “behave in a way
they usually would do not”. As a consequence, a singular
observation in disciplines that depend on human factors can-
not be used to falsify a theory (or a single statement, see for
example [6], p. 11). Instead, it is necessary to make observa-
tions on multiple subjects. This implies that a corresponding
statistical analysis is necessary on those subjects. And a con-
sequence of this is that the result of observations can only
be expressed using probabilistic methods. This is probably
the main reason why computer scientists, whose educational
background is mainly influenced by mathematics, are rather
reluctant to consider this as a hard science: they use rather
the devalued term soft science.

Disciplines that use humans as subjects are for example
medicine, psychology, pedagogic, or social sciences. How-
ever, each discipline typically has a different view on hu-
mans with a different focus. All of these disciplines have in
common that they require statistical methods in order to in-
terpret their measurements.

In the German computer science literature, medicine (es-
pecially drug research) is sometimes named as a discipline
whose research method should be applied in software sci-
ences (see for example [32]). The parallel to software sci-
ence seems obvious – neither a human nor a certain medicine
or therapy is in the main focus of research. Instead, it is the
influence of a certain artifact (medicine or therapy) on a set
of individuals. This seems to be very similar to software sci-
ence where a certain artifact has some effect on a developer
(or a development team) and the resulting software. How-
ever, a closer look reveals that this parallel does not match.
In drug research, some objective (at least well studied) met-
rics such as blood pressure are being used to evaluate the ef-
fect of a medicine; metric whose causal effect on subjects is
known (such as the effect of high blood pressure on heart dis-
eases, or the probability of suffering from an apoplexy)9. For
such metrics, differences between subjects caused by differ-
ent educational or cultural background typically do not play
any role – because it is assumed that the subjects cannot at-
tentively influence the results of the experiments. An excep-
tion to this are experiments where the effects of placebos are
also measured or where no objective metrics are available.
Here, the experimental design explicitly assumes a potential
influence of the subjects on the results and which also influ-
ences the analysis of the measurements.

Applying this approach to software science would imply
that the effect of an artifact on a developer would hardly
be influenced by the developer’s background. For obvious
reasons, this cannot be considered to be serious. It needs to
be emphasized that software artifacts require an intellectual
action of the developer: instead of considering the developer
as some kind of “physical machine” he is considered as an
intellectual individual who performs some creative actions
while developing software. Although the developer (who
corresponds to the patient in medical research) used a new
technique (which corresponds to a medicine), the effect of
this technique cannot be predominantly measured on the
subject itself (which would correspond to the measurement
of blood pressure): the effect can predominantly measured
on the artificial product (the software) resulting from the
creative actions.

Here, it seems more likely to consider other empirical dis-
ciplines that also have a focus on human factors. Psychology
seems closely related to software science. In psychology, hu-
man beings are in the focus of or at least part of the subject
being examined. Different facets such as cognition, percep-
tion, learning, memory, thinking, problem solving, knowl-
edge, etc. are being studied – facets which are for soft-
ware science of obvious importance, too. Furthermore, psy-
chology has a long experience in empirical methods which
means that there is already a knowledge-base for experimen-

9 It should be clear that such objective metrics from medicine have hardly
something in common with metrics such as lines of code where causal ef-
fects of this metric (other than the length of a program) are rather unknown.

tal design, experiment execution and analysis techniques.
Furthermore, there are standards (cf. e.g. [40]) that need to
be considered in order to gain valid scientific results and in
order to get such works published. From that perspective,
psychology seems to be an adequate discipline that could be
used as an example for software science.

4. The Socio-Technical Approach: Empirical
Software Engineering Today

The demand for applying empirical methods with special fo-
cus on human factors is far from being new. Especially, in
the 70’s and 80’s there were a number of works that em-
phasized the need for empirical methods (taken from psy-
chology) in software science (see for example [27, 28, 39]).
Probably the most drastic criticism of current practice in
software science can be found in [27], which describes “the
study of programming as an unholy mixture of mathematics,
literature criticism and folklore”. Also, there are a number of
German authors that argue for the need of corresponding em-
pirical methods from (see for example [25, 32, 33, 35, 36])10.

It should be mentioned that the terms “empirical meth-
ods” or “empirical software engineering” in the area of
software science typically describes the socio-technical ap-
proach, i.e. the explicit consideration of the human factors
within an empirical approach11.

Meanwhile, there are a number of teaching books about
empirical methods available for software science (see for
example [19, 25, 41]). An interesting characteristic is, that
the content of these books is quite heterogeneous: for exam-
ple sometimes the necessary statistical methods are the main
content of the books (see for example [19]) or fundamental
considerations for the experimental design and experiment
execution are the main content (see for example [25, 41]),
sometimes in combination with descriptions of experiments
done so far (see for example [25]).

What is slightly irritating about the literature on empiri-
cal software science is the fact that the teaching books de-
scribe concrete results of performed experiments, but they
hardly provide any special knowledge for software science.
This means, concrete, domain-specific knowledge required
to perform the socio-technical approach in software science
is hardly provided.

The following example should explain this in more detail.
For example Prechelt gives in [25] the hint, that subjects par-
ticipating in an experiment, should have homogeneous capa-
bilities (see [25], p. 112). In fact, many empirical studies ex-

10 It also needs to be emphasized that there is a number of authors that ar-
gue against the use of empirical methods and the consideration of human
factors in computer science. For example [15] states that when comparing
approaches that have an empirical character and those ones that are primar-
ily speculative, none should be considered to me more worthy.
11 Of course, this use of the term “empirical software engineering” is quite
misleading, because it ignores that even technical approaches such as the
stochastic-experimental as well as the benchmark-based approach are em-
pirical approaches.

hibit the need to distinguish between professional software
developers and beginners and to analyze both kinds of devel-
opers separate from each other. However, if someone tries to
perform an experiment, one question remains: How to do
that?

It turns out that a number of different studies try to ad-
dress this question in many different ways. Diverse kinds of
questionnaires were applied in the past, different kinds of
pretests for developers, etc.. This means that “every experi-
menter has his own view on how to classify subjects”. But
it is important to note that “the experience on developers”
is domain-specific knowledge for software science. While
information about different kinds of experimental designs,
statistical analysis, etc. can be directly gathered from funda-
mental teaching books about psychology or social sciences,
information about “how to classify subjects” cannot.

As a consequence, teaching books about empirical soft-
ware science are typically summaries of knowledge gathered
from other disciplines about experimental design and analy-
sis – but they hardly provide special, domain-specific knowl-
edge required in the area of software science in order to per-
form experiments. Literature that provides domain-specific
knowledge (such as concrete “laws” for software science
which can be found in [11] or concrete lessons learned from
a long lists of experiments which can be found for example
in [3]) is rather the exception.

If we take a look into concrete experiments that were
performed in the past, we see that a typical approach of these
experiments is to compare two techniques. For example, it
is measured how long a group of subjects requires to solve
a given programming problem using technique A or B, or
it is measured how many failures were performed by the
subjects using technique A or B (an example for such an
approach can be found in [1]). A characteristic of these
studies is, that finally some insights are collected – because
it was possible to measure a difference between technique
A and B – but it is hard to get any more insights from
these studies that could be used in different experimental
settings. For example, it is unclear whether the same or
similar results would have been measured under slightly
different experimental settings. The reason for this problem
is, that most of the studies compare technique A and B in a
concrete setting, but this comparison is not meant to back
up any underlying theory such as “technique A requires
10% more time to solve a problem” or “for problems that
require only 200 lines of code technique A requires less
time, if more than 200 lines of code are required to solve the
problem technique B requires less time”12. In fact, there is no
underlying theory (set of scientific statements) but typically
only one single statement be tested. Hence, these “theories”
have hardly any means to predict any possible situation.

12 Of course, a theory that states that a technique A requires less time for
all problems than a technique B is some kind of prediction. But for obvious
reasons, such theories cannot be often found.

Coming back to the original idea of the critical rational-
ism, this means that the current situation in empirical soft-
ware science (using the socio-technical approach) is rather
frustrating: the original idea of constructing and testing the-
ories is hardly followed (such theories are not even con-
structed). Instead, only singular statements are tested.

It should be mentioned that there are prediction models
in software science, i.e. models that represent some kind of
theory in order to predict future situations, like for example
the one proposed in [5]) for estimating the effort for soft-
ware projects13. From the perspective of programming lan-
guage research, these models are far away from the topic of
programming languages, because the influencing factor pro-
gramming language is hardly considered in these models.
Hence, from the programming language research perspec-
tive these prediction models rather do not represent domain
knowledge that could be used to design and perform experi-
ments.

However, beyond the area of programming languages,
modeling notations, etc. there are disciplines that could be
considered as part of software science and which intensively
make use of the socio-technical approach and which al-
ready use theories with corresponding empirical evidence:
the area of Human-Computer-Interaction (HCI, see for ex-
ample [29]). The overlap with the area of software science
is (typically) in the area of design of graphical user inter-
faces. An interesting characteristic of HCI is, that psychol-
ogy does not only provide the dominant research method
(the socio-technical approach), but that psychology also pro-
vides a number of theories that are applied there. Examples
for such theories are models for the cognitive capabilities
(see [17]) or the reaction time of users (see [14]). Both kinds
of models represent domain-specific knowledge and theo-
ries; fundamental knowledge that researchers in these areas
need to know. Such corresponding theories and common
knowledge (with empirical evidence) does not exist in the
area of programming language.

A first conclusion is that the socio-technical approach is
hardly applied in software science, but that there are already
studies that consider the socio-technical approach. We have
already discussed potential problems of the approach (which
was the missing domain knowledge). But there are more
reasons why the socio-technical approach is not frequently
applied which need to be discussed.

5. Why is the Socio-Technical Approach
Hardly Applied?

If the socio-technical approach is a valid approach to vali-
date statements about software artifacts, why isn’t it simply
applied – and why should it be necessary to write this essay?

First, we need to accept that empirical works are hardly
applied (see for example [36, 42]) – and that the socio-

13 However, some authors rather doubt about the empirical evidence of
current prediction models (see for example [12], p. 445).

technical approach is only a subset of all empirical studies14.
Hence, only a very small part of all empirical works (which
are already just a small part of current scientific publications)
follows the socio-technical approach.

One could argue that this small number is just a matter of
time – considering that software science is still a very young
discipline, it is no wonder that no adequate research method
has been established and applied so far. Although it is ob-
viously true that software science is relatively young, this
argument is still hard to follow, since the area of software
science was established in the 20th century – and it should be
assumed that researchers in the 20th century are already fa-
miliar with different kinds or research methods and are able
to distinguish between valid and adequate research methods,
unscientific reasoning and pure speculations.

However, there is also a number of different arguments
why the socio-technical approach plays a minor role in soft-
ware science.

5.1 Problems in education
Foundations for empirical studies, which are also the foun-
dation for the socio-technical approach, are typically not
taught in the area of software science. Furthermore, empir-
ical education requires knowledge from a number of differ-
ent disciplines. First, knowledge from the area of stochastics
is required which provides knowledge about different dis-
tributions and their characteristics. Furthermore, knowledge
in the area of statistics is necessary which provides knowl-
edge about descriptive and inductive statistics, the differ-
ences between both, and knowledge about significance tests
which are required in order to interpret measurements. Fur-
thermore, knowledge from the area of experimental design
is required – in order to understand how an experiment can
be designed, what the pros and cons of a certain experimen-
tal design are, what implications a certain design has on the
resulting analysis techniques, etc.15.

However, looking into the current curricula at universi-
ties that teach different facets of software science reveals
that hardly any stochastics, statistics, and experimental de-
sign is being taught. As a consequence, students are simply
not aware of “what this empirical thing” is. Even if students
should (by luck) see some empirical works during their stud-
ies, their knowledge is simply not sufficient to test, whether
these works potentially suffer from errors in the experimen-
tal design or analysis. Consequently, students are not able to
verify, whether the results of these empirical studies are to be
trusted and whether the conclusions drawn from the studies
by the corresponding authors are valid and adequate. Hence,

14 In [7], Denning reports about a panel in 2004 that discussed the accom-
plishments of computer science [22] that hardly said a word about experi-
mentation.
15 An interesting (or maybe even alarming) observation is, that such a
knowledge is not only required in order to understand and apply the socio-
technical approach: it is required in order to understand and apply empirical
approaches (see figure 1) in general.

the original motivation for empirical studies becomes ab-
surd. The motivation is to gather objective, empirical knowl-
edge by backing up or falsifying theories. If no one is able to
understand these empirical works, no one is able to come to
an objective conclusion about the subject of the study. Con-
sequently, students are doomed to perceive empirical works
as strange collections of huge, arbitrary data sets, without
any obvious relationship to the topic software science.

The problem is not only, that the research method is not
explicitly taught. The method is typically also not implic-
itly taught, too. In mathematics for example, the underly-
ing research method (formal reasoning) is also typically not
explicitly taught. Nevertheless, the research method is prac-
tices in all courses. A course in mathematics does not only
teach theorems, it also contains the proofs for such theorems.
Students always come in touch with the research method.
They are implicitly educated in the research method with-
out explicit courses about it. In psychology, the research
method is typically explicitly taught. Furthermore, the re-
search method is part of most courses. There, students do
not only learn theories. They learn the experiments that back
up these theories. They learn how the experiments were built
up, what data has been measured, how the data has been an-
alyzed, and what conclusions were drawn from it.

In software science, education practice is completely dif-
ferent. While in theoretical computer science the research
method is also typically implicitly taught, in the area of soft-
ware science research methods hardly play any role. New (or
old) techniques such as programming languages, software
development processes, modeling notations, etc. are taught
without any scientific argumentation for or against them16.
In the best case, students learn “examples” where a certain
technique “does not seem to be adequate” or “possible sce-
narios where a certain technique possibly dominates another
one”. However, how such examples or possible scenarios
could be evaluated, i.e. how the objective reasoning about
these examples works is typically not part of the education.
Due to the missing educational background, students are not
able to distinguish between singular observations, specula-
tive reasoning on measurements and valid applications of
empirical research.

This has tragic consequences. Students typically do not
learn how to investigate a certain technique – they do no
learn how to doubt about the benefit of a certain technique.
One of the main academic properties – the objective reason-
ing on certain topics – is hidden to the students. This also
typically means that hardly any bachelor or master thesis is
done using the socio-technical approach, because the nec-

16 A small test for the reader: Most of us believe in object-oriented program-
ming. What experiment are you aware of that measured a positive impact
of object-oriented programming over procedural programming? In case you
rather believe in e.g. function programming: what experiment are you aware
of that measured a positive impact of functional programming over proce-
dural programming? Try to answer this question without using additional
literature.

essary background is unknown to students and the time for
such theses is not sufficient to train students in theses topics.
In case a student is still willing to apply the socio-technical
approach, the problems of designing and performing an ex-
periment (which will be discussed in sections 5.2 and 5.3)
become relevant - problems that make it even more improb-
able that students get a chance to apply the socio-technical
approach.

If any kind of socio-technical approach was hidden to the
students, what should be their motivation to search for them
(and to apply them) when they are scientists?

5.2 Problems in designing experiments
As already mentioned in section 4, a fundamental problem of
the socio-technical approach is, that domain-specific knowl-
edge from the area of software science is missing. As a con-
sequence, an experimenter is forced to make a large num-
ber of assumptions on his own. Following the argumentation
from section 4, an experimenter decides on his own how to
distinguish “good developers from bad ones”. Consequently,
the results highly depend on the experimenter’s personal de-
cision about the distinction of good and bad developers -
which is a subjective decision. One could argue here in a ma-
licious way: from the current perspective, the socio-technical
approach provides, because of the missing domain knowl-
edge, means to misuse the original idea of gathering objec-
tive knowledge. Instead of “objective knowledge” this ap-
proach provides “subjective number generators” which are
highly influenced by the researcher.

Although this is not satisfying, there are from the current
point of view no means to get rid of this problem: if no
empirical domain-specific knowledge is available, there is
no way to get it somehow by magic. The probability that
current socio-technical studies rely on wrong assumptions
is very high. The only way to reduce this problem (and to
get still meaningful data that can be potentially used and
interpreted in the future) is to document experiments as
detailed as possible. Additionally, there are already some
(preliminary) guidelines available that state how to perform
empirical research in the area of software science (see for
example [20]).

For the researcher applying the socio-technical approach
the missing domain-knowledge has the tragic consequence
that he is aware that possibly a number of experiments he
performs might turn out to be in vain (maybe already in the
near future), because they start from wrong assumptions - a
problem that researchers applying for example the classical
approach typically do not suffer from.

Although this problem is real, it should be emphasized
that this fear is rather the result of the researchers’ math-
ematical background: students and researchers which are
mainly by the classical approach tend to believe that a re-
search statement, once it is proven, is eternally valid. How-
ever, it is rather naïve to assume that research results (out-
side formal systems) are stable over decades or centuries.

And the reason for today’s problems (the absence of missing
domain-knowledge among many others) is that the socio-
technical approach (and empirical methods in general) has
hardly been applied in the last decades - and still plays only
a minor role in the software science today.

5.3 Problems in performing experiments
Even if someone ignores the problems described above,
another problem is: “What chances do I have to apply
the socio-technical approach?”. Assuming that the socio-
technical approach typically relies on experiments with hu-
mans, the question can be refined: “What chances do I have
to perform an experiment with humans”?

The main problem here is that universities and other insti-
tutions hardly provide a corresponding required infrastruc-
ture. A researcher has to find subjects, who typically vol-
untary participate in an experiment. Paying these subjects is
typically not possible because such a payment assumes some
kind of funding and a grant for getting such a funding typ-
ically requires a bunch of publications in conferences and
journals with high reputation, which is typically quite prob-
lematic (which will be discussed in section 5.4). However,
even if the number of publications would not play a major
role for getting a grant, the problem of the socio-technical
approach is, that it competes with research proposals that
rely on technical approaches – and which do not require any
funding for paying subjects. For the organization providing
a grant the question is, whether a grant should be given for
a proposal where the chances for publications are rather low
(see section 5.4) and which costs a lot, or whether the grant
should be given to a proposal that does not suffer from these
problems.

Even ignoring the payment issue, the researcher has still
a problem to find subjects. Since students hardly come in
touch with the socio-technical approach during their studies,
a socio-technical experiment rather looks strange from their
point of view – what should be their motivation to participate
in experiments?

In empirical sciences such as psychology this problem of
finding subjects was already identified and addressed. It is
a typical scenario that the participation in experiments is a
necessary prerequisite for psychology students to pass their
studies – the execution of experiments becomes in that way
part of the daily business at universities17. In these domains,
it is also quite normal that a bachelor thesis or a master thesis
performs an experiment where other students are used as
subjects. Such a situation in the area of software science is
from the current point of view far from being realistic.

17 Although it should be mentioned that there are different practical prob-
lems that need to be addressed. While in psychology an experiment about
for example eye movement control in reading requires maybe just one hour
time from each subject, experiments in software science, which require sub-
ject to build software, typically require much more time.

5.4 Problems for the academical career
The socio-technical approach plays a minor role in the lit-
erature about software science. In conferences and journals
with a good reputation it is hard to find works that ap-
ply the socio-technical approach. Although there are some
means to publish socio-technical studies in conferences and
journals that explicitly call for socio-technical studies (such
as the International Symposium on Empirical Software En-
gineering and Measurement or the Journal on Empirical
Software Engineering), these conferences and journals play
rather a minor role. However, scientists need to publish their
works – and they need to publish at conferences and journals
with a good reputation. Consequently, doing research using
the socio-technical approach drastically reduces a young re-
searcher’s career opportunities.

6. Demands to Research and Teaching
In order to overcome the current frustrating situation with
software science’s carelessness with regard to human fac-
tors, there is a need for a number of fundamental changes
in software science not only with respect to research but
also with respect to teaching. Hence, this section describes a
number of demands directed to different audiences: to peo-
ple that teach students, to students, to researchers, and to
people participating in the publication process.

6.1 Demands to teaching
In teaching, research methods need to be taught. This implies
an explicit as well as an implicit teaching of those meth-
ods. Here, the socio-technical approach needs to be com-
municated as a different approach among the possible re-
search approaches. Valid and adequate rationales must be
made explicit in teaching, i.e. teaching must not only con-
sist of the introduction of new artifacts. Instead, for every
artifact corresponding valid and adequate rationales must be
given. Consequently, this means that curricula in software
science require an orientation toward curricula of those sci-
ences that have already identified a strong impact of hu-
man factors. Of course, this orientation should not mean that
socio-technical approaches should become the dominant ap-
proaches. Instead, they should at least be considered as of
equals status or level.

For those artifacts for which such rationales do not exist,
at least possible studies must be proposed – and additional
effort should be spent on performing such studies as soon
as possible. Furthermore, in these situations it must be com-
municated to students that currently objective knowledge is
missing for these artifacts in order to preserve them from the
(potentially misleading) faith about artifacts taught at uni-
versities.

Finally, universities should provide some kind of infras-
tructure to students that permits them to perform socio-
technical experiments using subjects. This could be done

by pushing a duty to students to participate for a number
of hours (or days) in experiments.

6.2 Demands to students
While the previous demands were mainly directed to teach-
ers, there are also demands to students. Students needs to
be encouraged to doubt about artifacts taught at universities.
Whenever new artifacts (or statements) are being taught, stu-
dents should actively ask for valid and adequate rationales
for such artifacts. Most importantly, students should ask for
such rationales directly at the beginning of a course in or-
der to determine whether the course provides insights into a
topic with sufficient evidence: students should consider ev-
idence as a desirable aim for their studies and should make
explicit that missing evidence is a reason for disapproving
certain courses and topics. This implies that students should
try to establish a new attitude with regard to their studies: in-
stead of trying to come in touch with new technologies over
and over again, students should consider stable knowledge
about fewer topics to be worth more than speculations about
many topics.

Students should become aware that many artifacts that
they are being taught are not as well studied as they are
probably being told. Instead of considering this situation to
be frustrating, it should be considered as a great challenge
that needs to be addressed - and that a thesis could be a good
mean to address such a challenge. This, of course, requires
also a cooperative attitude of students, because if a fellow
student requires subjects for experiments, they should try to
provide help.

6.3 Demands to researchers
The demands for researchers are manifold. As a first step, it
is necessary to guarantee that all research works and publi-
cations at least contain a falsifiable statement (which permits
at least other researchers to test the proposed statement). For
all scientific papers it must be made explicit what the cho-
sen research method is with a short discussion, why the re-
search method is valid and adequate in order to follow the
corresponding research question. Hence, researchers should
actively work on discussions about chosen research methods
and possible alternative research methods. It would probably
also help if researchers would discuss why certain research
methods are considered to be inadequate for a certain re-
search question.

When referring to related work in scientific publications,
researchers should make explicit which of these works pro-
vide evident knowledge and which ones do not. This does
not mean that literature without sufficient evidence should
be ignored but such literature should be used more carefully.
At least it is very problematic if literature whose statements
are not provided with sufficient evidence becomes part of the
argumentation for or against a certain artifact.

Finally, the current trend of researchers to become mainly
experts for a certain topic (object-oriented languages design,

etc.) should be abandoned. Instead, the main focus of re-
searchers should be to become an expert in a certain research
method - the more mature the applied research methods are,
the better are the scientific results.

6.4 Demands to editors, pc chairs, and reviewers
One demand to editors, pc chairs and reviewers of journals
and conferences is that a consciousness must be established
that research methods are the foundation for every kind of
research, that a research method must be valid and adequate
to evaluate a certain artifact and that empirical research (es-
pecially the socio-technical approach) is one possible way to
evaluate statements about artifacts. The persons responsible
for the publication process must become aware that techni-
cal approaches are rather inadequate to back up arguments
that focus on human factors.

The persons responsible for the publication process should
also explicitly ask authors to make the research method ex-
plicit and to argue about the appropriateness of the chosen
research method. Editors and pc chairs should make sure that
reviewers are familiar with the research methods of those
papers they are responsible for. Reviewers should also make
sure on their own that they are familiar with the research
method of paper they are asked to review. In case they are
not familiar with the method, they should reject to review
the paper. This also requires an awareness that there is a dif-
ference between a familiarity of the subject of research and
a familiarity of a research method: while familiarity with the
subject helps to identify problems in a related work section
of a paper, this does not necessarily mean that it helps to
understand (and evaluate) the value of a paper.

Reviewers of socio-technical papers must be quite disci-
plined to distinguish between a plausible, probable, subjec-
tive, valid, or invalid argumentation for and against a paper.
Using the example from the previous sections, it is plausible
that reviewers of a paper about a socio-technical program-
ming experiment ask for a classification of subjects within
an experiment. However, reviewers must also be aware that
currently no objective (or at least commonly accepted) dis-
tinction between good and bad programmers exists. Conse-
quently, reviewers must be aware that in such a situation the
missing classification is not a scientific objection against a
paper - it is a speculative objection where the author (cur-
rently) has no objective chance to fulfill this requirement.

Finally, editors and pc chairs should be aware that a lot of
knowledge about fundamental questions in software science
is missing. Instead of only asking for papers whose focus is
mainly in up-to-date topics in software science, they should
ask for works that address more fundamental questions in
order to reduce the problem of missing domain knowledge
that we currently have - and that we will still have in 20 years
if this kind of research will not be promoted.

7. Summary and Conclusion
Software science is a domain which frequently provides
new artifacts which claim to solve current problems. This
essay addresses the question what research methods are valid
and adequate to argue for or against statements about such
artifacts and emphasizes the need to consider human factors
by using appropriate scientific methods.

This essay started with a short introduction of research
methods and identifies, that although a number of research
works address human factors, typically no valid and ade-
quate research methods are applied – a socio-technical ap-
proach, which considers technical artifacts as well as hu-
mans which apply them, is more or less missing in software
science. Furthermore, the paper shortly discussed possible
reasons why the socio-technical approach is hardly applied.

In order to establish the application of such a research
approach, this paper argued that software science should
take sciences that address the human factors as an example
– psychology might be the right choice here. The essay
argued that this does not only imply how research should be
performed, this also implies how teaching should be done in
software science - in order to establish an environment where
the socio-technical approach can be practices and taught.

In general, this paper advocates the need for empirical
methods in software science considering the human factors.
In fact, this idea is far from being new. This paper is just
another one in a long history of papers that try to raise this
issue (see for example [27, 28, 35, 36, 39]).

It should be noted that there is literature available where
authors already argue about the future of empirical software
science (see for example [2, 30]). The author of this essay
shares the idea that there is a need to discuss the future
of empirical software engineering in general but the author
considers fundamental changes in teaching and research to
be necessary as a first step.

While this paper speaks about the socio-technical ap-
proach, it should be clear that there is no single socio-
technical approach which considers human factors. Instead
there are a number of different research methods which can
be considered as socio-technical approaches (see for exam-
ple [10] for an introduction into different kinds of empirical
methods which focus on the human factor). It would be de-
sirable and necessary to have more literature that discusses
the validity and adequacy of these approaches to back up
different kinds of research statements. In general software
science rather suffers from the problem that the topic of
research methods rather plays a minor role in literature, re-
search, and teaching. A situation which the author of this
essay considers to be tragic.

The author would like to emphasize that this essay does
not not try to claim that the socio-technical approach (as well
as empirical approaches in general) should be the only re-
search approaches to be taught and practiced. Especially, the
author does not try to argue that non-empirical approaches

(such as the classical approach with its focus on mathe-
matical reasoning) should be abandoned by the research
community or ignored in teaching. This essay argues that
researchers and students need to become aware that there
are different research methods for different purposes. And
researchers and students should at least become skeptical
whenever a software artifact appears which claims to have
a positive impact on software development and which pro-
vides rationales where the underlying research method does
take the existence of software developers into account.

An implicit demand of this essay is to distinguish clearly
between scientific and non-scientific works in the scientific
literature. This does not imply that unscientific work is con-
sidered to be useless - but it is very dangerous if unscientific
literature becomes part of an argumentation for or against
certain artifacts.

It is important to note that this paper mainly addresses
the need to apply the socio-technical approach in order to
provide evidence for scientific statements that consider not
only a piece of software but also the developer or a user of
a piece of software. This essay does not say a word about
how scientific statements appear - the question of how sci-
entific statements appear needs to be discussed completely
separate from the question how scientific statements should
be evaluated.

This essay can be considered as a catalyst to start the dis-
cussion about a topic which is rarely addressed in software
science although this topic plays a major role in other sci-
ences: research methods. It emphasizes the need to address
one obvious fundamental problem in software science: the
carelessness with regard to human factors. And it argues that
without considering human factors in software science, the
construction of software and the application of new software
artifacts will still be based on the developer’s subjectivity
which relies mainly on three principles – faith, hope and
love.

Acknowledgments
The author would like to thank David Ungar, Randy Smith,
Robert Hirschfeld, and Michael Haupt for discussions about
the paper, and Walter Tichy, whose keynote at the German
Software Engineering Conference largely influenced this es-
say (and who made the author aware of the conflict of the
term software science). Mark Mahony shepherded this pa-
per and helped to significantly improve the paper. The au-
thor would like to thank Holger Wiese from the department
of general psychology from the University of Jena for his
patience and guidance into the research methods of psychol-
ogy. Finally, the author would like to thank Erik Ernst for
giving very detailed, critical feedback which substantially
improved this essay.

References
[1] BARTSCH, M., AND HARRISON, R. An exploratory study of

the effect of aspect-oriented programming on maintainability.
Software Quality Control 16, 1 (2008), 23–44.

[2] BASILI, V. R. The role of experimentation in software engi-
neering: past, current, and future. In ICSE ’96: Proceedings
of the 18th international conference on Software engineer-
ing (Washington, DC, USA, 1996), IEEE Computer Society,
pp. 442–449.

[3] BASILI, V. R., SELBY, R. W., AND HUTCHENS, D. H. Ex-
perimentation in software engineering. IEEE Trans. Software
Eng. 12, 7 (1986), 733–743.

[4] BLACKBURN, S. M., GARNER, R., HOFFMANN, C.,
KHANG, A. M., MCKINLEY, K. S., BENTZUR, R., DI-
WAN, A., FEINBERG, D., FRAMPTON, D., GUYER, S. Z.,
HIRZEL, M., HOSKING, A., JUMP, M., LEE, H., MOSS, J.
E. B., MOSS, B., PHANSALKAR, A., STEFANOVI, D., VAN-
DRUNEN, T., VON DINCKLAGE, D., AND WIEDERMANN,
B. The DaCapo benchmarks: Java benchmarking develop-
ment and analysis. In OOPSLA ’06: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented pro-
gramming systems, languages, and applications (New York,
NY, USA, 2006), ACM, pp. 169–190.

[5] BOEHM, B., BOEHM, B., CLARK, B., HOROWITZ, E.,
WESTL, C., MADACHY, R., AND SELBY, R. Cost models
for future software life cycle processes:. In Annals of Soft-
ware Engineering (1995), pp. 57–94.

[6] BORTZ, J., AND DÖRING, N. Forschungsmethoden und
Evaluation: für Human- und Sozialwissenschaftler, 4. ed.
Springer, Heidelberg, 2006.

[7] DENNING, P. J. Is computer science science? Commun. ACM
48, 4 (2005), 27–31.

[8] DIJKSTRA, E. W. The humble programmer. Commun. ACM
15, 10 (1972), 859–866.

[9] DIJKSTRA, E. W. A Discipline of Programming. Prentice
Hall, Inc., October 1976.

[10] EASTERBROOK, S. M., SINGER, J., STOREY, M., AND

DAMIAN, D. Selecting empirical methods for software en-
gineering research. In Guide to Advanced Empirical Soft-
ware Engineering, F. Shull, J. Singer, and D. Sjøberg, Eds.
Springer, 2007.

[11] ENDRES, A., AND ROMBACH, D. A Handbook of Software
and Systems Engineering. Pearson Addison-Wesley, 2003.

[12] FENTON, N. E., AND PFLEEGER, S. L. Software Metrics:
A Rigorous and Practical Approach. PWS Publishing Co.,
Boston, MA, USA, 1998.

[13] FILMAN, R. E., ELRAD, T., CLARKE, S., AND AKŞIT,
M., Eds. Aspect-Oriented Software Development. Addison-
Wesley, Boston, 2005.

[14] FITTS, P. M. The information capacity of the human motor
system in controlling the amplitude of movement. Journal of
Experimental Psychology 47, 6 (June 1954), 262–269.

[15] GÉNOVA, G. Is computer science truly scientific? Commun.
ACM 53, 7 (2010), 37–39.

[16] HALSTEAD, M. H. Elements of Software Science (Operating
and programming systems series). Elsevier Science Inc., New
York, NY, USA, 1977.

[17] HICK, W. E. On the rate of gain of information. The
Quarterly Journal of Experimental Psychology 4, 1 (1952),
11–26.

[18] JOHNSON, R. E. Documenting frameworks using patterns.
In OOPSLA ’92: Conference proceedings on Object-oriented
programming systems, languages, and applications (New
York, NY, USA, 1992), ACM, pp. 63–76.

[19] JURISTO, N., AND MORENO, A. M. Basics of Software
Engineering Experimentation. Springer, 2001.

[20] KITCHENHAM, B., AL-KHILIDAR, H., BABAR, M. A.,
BERRY, M., COX, K., KEUNG, J., KURNIAWATI, F., STA-
PLES, M., ZHANG, H., AND ZHU, L. Evaluating guidelines
for empirical software engineering studies. In ISESE ’06: Pro-
ceedings of the 2006 ACM/IEEE international symposium on
Empirical software engineering (New York, NY, USA, 2006),
ACM, pp. 38–47.

[21] MADSEN, O. L., AND MØLLER-PEDERSEN, B. What
object-oriented programming may be - and what it does not
have to be. In Proceedings of European Conference on Object-
Oriented Programming (ECOOP’88) (1988), Springer, pp. 1–
20.

[22] NATIONAL RESEARCH COUNCIL. Computer Science: Re-
flections on the Field, Reflections from the Field. National
Academy Press, 2004.

[23] PFLEEGER, S. L. Soup or art? the role of evidential force
in empirical software engineering. IEEE Software 22 (2005),
66–73.

[24] POPPER, K. In Logik der Forschung (2007), H. Keuth, Ed.,
Akademie Verlag GmbH.

[25] PRECHELT, L. Kontrollierte Experimente in der Soft-
waretechnik. Springer, Berlin, March 2001.

[26] PRECHELT, L., UNGER, B., AND TICHY, W. Two controlled
experiments assessing the usefulness of design pattern doc-
umentation in program maintenance. IEEE Transactions on
Software Engineering 28 (2002), 595–606.

[27] SHEIL, B. A. The psychological study of programming. ACM
Comput. Surv. 13, 1 (1981), 101–120.

[28] SHNEIDERMAN, B. Software Psychology: Human Factors
in Computer and Information Systems. Winthrop Publishers,
August 1980.

[29] SHNEIDERMAN, B., AND PLAISANT, C. Designing the User
Interface: Strategies for Effective Human-Computer Interac-
tion, 5. ed. Pearson Addison-Wesley, Upper Saddle River, NJ,
2009.

[30] SJØBERG, D. I. K., DYBA, T., AND JØRGENSEN, M. The
future of empirical methods in software engineering research.
In FOSE ’07: 2007 Future of Software Engineering (Washing-
ton, DC, USA, 2007), IEEE Computer Society, pp. 358–378.

[31] SJØBERG, D. I. K., HANNAY, J. E., HANSEN, O., BY KAM-
PENES, V., KARAHASANOVIĆ, A., LIBORG, N.-K., AND

C. REKDAL, A. A survey of controlled experiments in soft-
ware engineering. IEEE Trans. Softw. Eng. 31, 9 (2005), 733–
753.

[32] SNELTING, G. Paul Feyerabend und die Softwaretechnologie.
Informatik-Spektrum 21, 5 (October 1998), 273–276.

[33] SNELTING, G. Feyerabend - zwei Jahre später.
Softwaretechnik-Trends 21, 1 (February 2001), 40–43.

[34] SOMMERVILLE, I. Software Engineering, 9. ed. Addison-
Wesley, Harlow, England, 2010.

[35] TICHY, W. F. Die Bedeutung der Empirie für die Soft-
waretechnik. Keynote at German Conference on Software En-
gineering, Essen, March, 8-11, 2005.

[36] TICHY, W. F. Should computer scientists experiment more?
IEEE Computer 31 (1998), 32–40.

[37] TICHY, W. F., LUKOWICZ, P., PRECHELT, L., AND HEINZ,
E. A. Experimental evaluation in computer science: A quan-
titative study. Journal of Systems and Software 28, 1 (1995),
9–18.

[38] UNGAR, D., AND SMITH, R. B. Self: The power of sim-
plicity. In OOPSLA ’87: Conference proceedings on Object-
oriented Programming Systems, Languages, and Applications
(December 1987), ACM, pp. 227–242.

[39] WEINBERG, G. M. The Psychology of Computer Program-
ming. John Wiley & Sons, Inc., New York, NY, USA, 1985.

[40] WILKINSON, L., AND THE TASK FORCE ON STATISTI-
CAL INFERENCE. Statistical methods in psychology jour-
nals: Guidelines and explanations. American Psychologist 54
(1999), 594–604.

[41] WOHLIN, C., RUNESON, P., HÖST, M., OHLSSON, M. C.,
REGNELL, B., AND WESSLÉN, A. Experimentation in soft-
ware engineering: an introduction. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 2000.

[42] ZELKOWITZ, M. V., AND WALLACE, D. R. Experimental
models for validating technology. Computer 31 (1998), 23–
31.

