
DSketch: Lightweight, Adaptable Dependency Analysis

Brad Cossette
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

cossette@cpsc.ucalgary.ca

Robert J. Walker
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada
walker@ucalgary.ca

ABSTRACT
Software developers who extend or repair existing software
systems spend considerable effort in understanding how
their modifications will require follow-on changes in order to
work correctly. Tool support for this process is available for
single, popular languages, but does not suffice for less pop-
ular languages, uncommon language variants, or arbitrary
combinations of languages and connection technologies. We
have created the DSketch tool so that developers can create
a lightweight pattern specification for how dependencies can
be heuristically identified in their systems. We performed
two case studies involving industrial developers who applied
our tool for conducting polylingual dependency analysis in
software systems; the developers found it easy to configure
the tool for their needs, were able to adapt their patterns
to new contexts, and had sufficiently accurate dependency
predictions for their work.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement—restructuring, reverse engineer-
ing, and reengineering.

General Terms
Design, Human Factors, Languages, Management.

Keywords
Dependency analysis, polylingual systems, pattern match-
ing, approximation, developer feedback, lightweight tool
support, DSketch, case study.

1. INTRODUCTION
To avoid introducing errors into their software systems, de-
velopers conduct change impact analysis to understand the
consequences of any modifications they enact [1]. Change
impact analysis must deal with the dependencies [19] in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

system; the presence of a dependency indicates the possibil-
ity that a change to the depended-upon entity may require a
change to the dependent entity—this is the dreaded “ripple
effect” [20]. Unfortunately, developers are surprisingly poor
at identifying dependencies manually [9], and tool support
is often unavailable and too expensive to create.

Tool support for dependency analysis is ideal when it is
aware of the detailed semantics of the programming lan-
guage used in a particular software system: the presence of
dependencies follows on directly. But such tools are tied to a
particular programming language—and worse, a particular
version thereof—making them hard to adapt to new lan-
guages or contexts without re-implementation [17]. In the
context of software systems where multiple programming
languages are in use [10] (which we refer to as polylingual
software systems) the problem is further complicated: in
addition to coping with each language in use, each combina-
tion of programming languages can use varying semantics to
describe interactions across language boundaries [6], leading
to a “combinatorial explosion” of situations that may need
support [3]. The identification of the dependencies either be-
comes an onerous task of interprocedural analysis or depends
heavily on the specific protocols used by the connection tech-
nology (e.g., JNI for communication between Java and C++
source code, embedded SQL queries, reflective configuration
via XML files). Sound analysis becomes impracticable or
even undecidable in such situations [16, 12].

To overcome these difficulties, we propose a lightweight
approximation of semantically-aware tool support (1) to
provide sufficiently accurate dependency detection, (2) to
provide tool support for dependency detection that can be
adapted to arbitrary language and technology combinations,
and (3) to require significantly less effort on the part of the
developer who needs to construct the tool support. Our ap-
proach is embodied in the DSketch tool, which leverages the
developer’s knowledge about the syntax and semantics of
the technologies used in his software system.

To use DSketch, the developer writes simple pattern spec-
ifications that should select identifiers involved in dependen-
cies. A set of heuristics is applied by the tool to find corre-
spondences between these identifiers, which represent prob-
able dependencies in the system. The result is displayed
to the developer by annotating the source code1 to indicate
which pattern matched which identifiers; DSketch is built
into the Eclipse integrated development environment, allow-
ing the developer to continue to use their other tool support

1We use the term “source code” liberally here to include
XML files, configuration text files, etc.

as desired. The developer can iterate on the pattern specifi-
cations to refine the set of dependencies until satisfied with
the results. The workflow intended for the tool involves one
developer configuring a set of patterns for a particular sys-
tem, and allowing other developers to use these patterns in
their tasks on the same (or similar) systems.

We conducted two case studies with industrial developers
to investigate the strengths and weaknesses of the approach,
particularly with respect to the intended workflow. We had
the first developer use DSketch to identify the dependencies
on a subset of an industrial system; we then had this same
developer apply and adjust the patterns on other parts of the
same system. The second developer took the patterns of the
first and adjusted them as needed to recognize dependencies
in another system which used the same programming lan-
guages, but differing technologies, and used the tool to assist
their investigation of a change task.

The remainder of the paper is structured as follows. Sec-
tion 2 provides a small motivational example to illustrate
the problem of polylingual dependency analysis. Section 3
describes the related work, and points out that our problem
has not been solved previously. Section 4 presents details of
our proposed solution. Section 5 describes the case studies
exploring the usefulness and usability of our proposed solu-
tion. Section 6 discusses remaining issues and future work.

This paper contributes a novel approach to lightweight
tool support for polylingual dependency analysis.

2. MOTIVATION
Consider a developer who is to create an online web-store
for her company’s employees to access over an internal net-
work. The intent is to allow employees to browse and order
company-branded clothing and merchandise, either as a re-
ward for service or at a subsidized rate to promote company
loyalty and identity. Because this is a small, internal appli-
cation, the developer believes that it might be worthwhile to
adapt an existing system to her needs, specifically the iBatis
JPetStore v5.0 reference application (a small-scale web-store
system that ships as an example with the iBatis data map-
ping framework). She knows that the login mechanism used
by JPetStore will need to be replaced with one that lever-
ages the company’s existing network login credentials for
each employee. Thus, she must estimate the impact of this
change on the rest of JPetStore.

JPetStore uses a series of XML files to define an object–
relationship mapping between Java classes and SQL queries,
for which the iBatis framework can then generate Java ob-
jects at run-time. Using a text editor, the developer looks
for the sql-map-config.xml file, which defines which XML
mappings are in use, and decides that Account.xml may be
the most relevant. Browsing the queries in the file, she no-
tices that account information is stored in the SIGNON table,
which has two columns: USERNAME and PASSWORD. One of
the relevant SQL queries for adding a new user’s credentials
(from Account.xml) is presented in Figure 1.

As a first attempt, the developer runs a case-insensitive
lexical search on the entire system to find other references to
the USERNAME column; the search returns 106 matches. Look-
ing through the results, she believes that these are mostly
false positives so she fails to examine them closely (as a
result, she overlooks references from within the Order.xml

file). She restricts the search to just the Account.xml file:
three other queries that access the USERNAME column are

<sqlMap namespace="Account">

<typeAlias alias="account"

type="com.ibatis.jpetstore.domain.Account"/>

<insert id="insertSignon"

parameterClass="account">

INSERT INTO SIGNON (PASSWORD,USERNAME)

VALUES (#password#, #username#)

</insert>

</sqlMap>

Figure 1: JPetStore’s XML specification to add a
new user’s credentials.

found. The developer is reasonably confident that these
are the only three queries that she has to worry about, as
the names of the other XML files do not suggest that they
deal with user authentication. Her next step is to identify
what Java functionality is dependent on these queries. To
do this, the developer must understand the semantics of the
iBatis framework in mapping a query to a Java method. As
an example, in Figure 1 the value of the id attribute in
the insert node is the same as the first parameter in up-

date("insertSignon", account), a method invocation in-
side the insertAccount() method in the AccountSqlMapDao
class. The class extends part of the iBatis framework, and
uses the update method it inherits to perform the query
lookup at run-time. The developer determines that a to-
tal of four methods in the AccountSqlMapDao class are de-
pendent on the authentication queries (two getAccount(..)

methods and insertAccount(..) are the others).
To continue her feasibility study, the developer determines

what other parts of the system are dependent on these four
methods in the AccountSqlMapDao class. After building the
JPetStore system in an IDE like Eclipse, she can use the
semantic tools it provides to quickly infer what classes are
dependent on these methods. She determines that three
classes are dependent on the four AccountSqlMapDao meth-
ods: Account, AccountBean, and AccountService.

The developer now has a problem: she knows that sev-
eral web-pages (forming the user interface for this system)
accept login information, and likely interact with the Java
code. But unlike the XML files, there is no contextual in-
formation in the Java code to suggest which pages those
are, or on which entities in the Java code the functional-
ity depends. The developer resignedly sets up a Tomcat
server on her machine, deploys the JPetStore system, and
manually investigates the web-pages. She guesses that New-
AccountForm.jsp, EditAccountForm.jsp, and SignOn.jsp

are the most relevant. These web-pages are written using
Java Server Pages (JSP), and make use of yet another frame-
work called Apache Struts to dynamically generate content.

Getting annoyed at the time this “estimate” is taking, the
developer opens the three webpages in her IDE. Again, an
understanding of how the Struts framework encodes depen-
dency information is needed for the developer to manually
and precisely determine what dependencies exist between
each JSP page and the Java source code. In Figure 2, the
developer knows that the name attribute refers to a Java ob-
ject, and property refers to a field on the same object. Using
a case-insensitive lexical search, the developer may correctly
infer that "accountBean" is referring to the AccountBean

class, which she identified earlier as depending on the au-
thentication queries. But a lexical search on the fields within

http://ibatis.apache.org

<table>

<tr><td>User ID:</td>

<td><html:text name="accountBean"

property="username"/>

</td></tr>

<tr><td>New password:</td>

<td><html:password name="accountBean"

property="password"/>

</td></tr>

</table>

Figure 2: Excerpt from NewAccountForm.jsp.

AccountBean will not yield a match for username or pass-

word. The developer must remember that the Struts frame-
work supplies “TagLibs” which allow an implicit mapping of
the property attribute here to get/set method invocations
on the AccountBean class (e.g. getUsername, setUsername),
and alter her search accordingly. The developer must now
repeat this manual analysis on the other two webpages be-
fore coming up with an estimate of the change impact on
the JPetStore system in replacing the login mechanism.

What the software developer wanted was to select a few
queries that she thought would change, and to quickly
see a set of classes and webpages that could be affected.
Since it was an exploratory investigation, some inaccuracy
would have been acceptable. Instead, she ended up trudg-
ing through a largely manual, method-level investigation of
the code with tool changes, context switches, and even a
system deployment being obstacles to obtaining her answer.
While JPetStore is a small-scale polylingual software system,
even conceptually-small change tasks can require demand-
ing dependency investigation across multiple programming
languages, protocols, and technology platforms.

3. RELATED WORK
Early work in dependency analysis took a highly formal ap-
proach, but was quick to recognize the need for approxima-
tion (even with precise definitions of language semantics)
and the important effects that subtly differing definitions
of dependencies could have [19, 16, 12]. More pragmatic
approaches to impact analysis followed [1], but still made
strong assumptions about having the intended change im-
plemented in order to perform the analysis.

The problem of conducting dependency analysis in a
polylingual context is not new; embedding SQL query frag-
ments inside code written in another language (e.g., Java or
C++) to communicate with databases has been a program-
ming practice for some time (e.g., see [5]). Some proto-
cols are independent of the implementing languages, such as
web services and the Common Object Request Broker Archi-
tecture. Others target specific language combinations, like
the Java Native Interface which bridges Java and C/C++
code [13, 7]. The semantics describing the cross-language
dependencies in each system are often specific to the tech-
nology used, and not generalizable.

Lexically-based dependency analysis tools permit the de-
veloper to define patterns, often based on regular expres-
sions, to recognize dependency structures in code; the most
well-known is the grep [4] family of tools. Regular expres-
sions are flexible and descriptive enough to be useful for
polylingual systems, yet they possess significant usability is-
sues in practice that result in their poor comprehensibility

and modifiability. As an example, consider the regular ex-
pression in Figure 3, used to describe the start of a method
declaration (not including modifiers) in Java. There are
three errors in this expression that we now know of, despite
multiple sets of eyes having looked at it over an extended
period. These errors are likely not obvious to a developer
under pressure to complete a task quickly (or to you).

([a-zA-Z_]\w*) \s+ ([a-zA-Z_]\w*) \s* "(" \s*

(([a-zA-Z_]\w*) \s+ ([a-zA-Z_]\w*))? (\s* "," \s*

([a-zA-Z_]\w*) \s+ ([a-zA-Z_]\w*))* \s* ")" \s*

"throws"? ([a-zA-Z_]\w*))? (\s* "," \s*

([a-zA-Z_]\w*))\s* "{"

Figure 3: The arcane nature of regular expressions.

A more refined approach is the lexical source model ex-
traction (LSME) tool [17], which improved upon several of
grep’s basic limitations including supporting hierarchically
structured patterns. However, LSME’s notation language is
similar in design to regular expressions, and requires more
information than perhaps is necessary if it were strictly fo-
cused on dependency analysis. Further, it also requires that
the user specify how pattern matches must be operated on
since it is not limited to dependency analysis. Atkinson
and Griswold [2] created the TAWK tool that requires the
user to supply an abstract syntax tree (AST) specification
for a language and AWK patterns to match AST nodes to
source code elements. This approach is aimed at generat-
ing a complete AST for a source code system, and requires
more information than may be minimally necessary to esti-
mate structural dependencies.

Syntactically-based tools for polylingual systems (e.g., [13,
7]) are typically focused on the technologies that bridge
languages for interoperability, and are configured for spe-
cific language combinations. All these approaches share
some basic common strengths and weaknesses. Because
the tools recognize the syntax and incorporate knowledge
about some of the semantics of the languages they analyze,
they are more likely to be accurate in their detection of de-
pendencies because they are not confused by cases where
there exists lexical similarity between two identifiers, yet
their semantic context indicates they are not dependent on
each other. Some tools can further leverage their under-
standing of a language’s semantics to support natural lan-
guage querying against semantically-meaningful identifiers
in source code [8]. However, providing complete syntactic
or semantic recognition of the source code is an expensive
prospect; in most cases, someone must construct a gram-
mar describing the syntax of a programming language in a
format proprietary to whatever tool is in use, which is a non-
trivial task [14]. If such support is not available, or is not
maintained as revisions/dialects to a programming language
are encountered, the onus falls on to the developer to enact
such updates or to abandon the tool.

Techniques for fault-tolerant parsing have been promoted,
such as fuzzy parsing [11] and the island grammars ap-
proach [14]. The latter allows certain details not of interest
(such as the modifiers in our regular expression above) to
be ignored. We have previously applied the island gram-
mar approach in order to detect dependencies in polylingual
software systems [6]. We created a testbed called Luther to
analyze the cost-to-accuracy relationship between a series of
island grammars. Our results for that study suggested that

http:www.w3.org/TR/soap
http://www.omg.org/technology/documents/formal/corba_iiop.htm
http://www.omg.org/technology/documents/formal/corba_iiop.htm

the effort involved in writing more accurate island grammars
rises faster than the resulting accuracy. We have not previ-
ously applied those results to define a specific approach for
lightweight dependency analysis.

4. APPROACH
Our approach, embodied in the DSketch tool, relies on the
developer to “sketch out” the patterns needed to recognize
relevant dependency syntax in the source code; in return,
DSketch uses these patterns to extract identifiers, to de-
lineate their contexts, and to apply a heuristic analysis to
tell the developer where dependencies exist in their system.
Our previous work with the Luther testbed [6] identified
several issues that made it difficult to adequately provide
lightweight tool support that could be configured by devel-
opers for polylingual dependency analysis, and our tool de-
sign incorporates this feedback by seeking to minimize the
developer’s effort as much as possible, sometimes sacrificing
precision as a tradeoff. The rest of this section is organized
as follows: in Section 4.1, we examine the language we pro-
vide to the developer for sketching patterns. We then ex-
plain how DSketch uses these patterns to detect identifiers
in the source code in Section 4.2. Section 4.3 describes our
heuristic approach for interrelating identifiers to suggest the
presence of dependencies. Finally, we describe the devel-
oper’s experience in applying DSketch, in Section 4.4.

4.1 Sketch Language
Our sketch language borrows several concepts and ideas
from work on fuzzy parsing [11], island grammars [14, 15],
and our previous work with Luther [6]. There are four key
design principles which shaped the development of our no-
tation: (1) human readability is paramount; (2) details that
hinder the expression of intent should be eliminated; (3) al-
low implicit and explicit ignoring of irrelevant code; and
(4) use “anchor points” to help deal with ambiguity [11].

The sketch language comprises four main components:

Identifier keywords. DSketch is primarily concerned with
extracting identifiers from source code on which depen-
dencies may be based. Two keywords are provided for
this purpose: global and local. Each of these key-
words matches a sequence of characters that lexically
conforms to a C-style identifier. The different key-
words are provided to allow the developer to give a very
crude approximation for scope resolution, by indicat-
ing if dependencies involving this identifier should be
sought across the developer’s entire source code base
(global), or only within the file (local).

Anchors. Patterns can require specific lexical sequences to
be embedded within them to improve their ability to
discriminate; these are called anchors. Any string or
character that serves as an anchor is enclosed in single
quotes (e.g., ’public’, or ’{’). A backslash is used as
an escape-character (i.e., ’\\’ matches a single back-
slash character and ’\’’ matches a single quotation
mark). Anchors allow developers to provide additional
pattern information to improve match precisions, with-
out confusing the tool as to what portions of the match
need to be analyzed for dependency analysis.

String literals. It is quite common for source code and
important identifiers from one programming language

to be embedded in the source code for another lan-
guage, typically as a string literal. In addition to
anchor patterns described earlier, the developer can
add the STRING_ prefix to the identifier keywords (e.g.
STRING_global) to instruct DSketch to grab the entire
contents of a string literal and treat it as having the
scope of the suffixed identifier.

Junk productions. Some patterns can be difficult to spec-
ify in detail, because of the various syntax combina-
tions that may exist in the source code; this is par-
ticularly onerous when these details are extraneous to
the purpose of the developer. Rather than anticipate
all such combinations, the developer can use a junk
production to instruct DSketch to ignore everything it
finds at that point in the pattern. The syntax of a junk
production is [junk]; it must be followed by an anchor
to give DSketch a concrete means of determining when
the irrelevant material ends. The junk production ac-
cepts every character it encounters until it reaches the
first match for the anchor.

4.1.1 Example
As an example usage of the sketch language, consider this
code snippet from the MenuData.xsql file in OpenBravo:

<SqlClass name="MenuData"

package="org.openbravo.erpCommon.utility">

To match the identifier in the package attribute, the devel-
oper can sketch this pattern:

’<’ ’SqlClass’ [junk] ’package’ ’=’ STRING_global

The anchors ’<’, ’SqlClass’, ’package’, and ’=’ are all
used to describe the characteristics of an XML tag element,
but also describe a specific tag element that has special
meaning (in OpenBravo, the SqlClass tag defines the Java
class to which the encapsulated SQL queries will be mapped
at runtime). Here the developer is not interested in captur-
ing the name (or any other) attribute, so he uses the [junk]

production to skip over anything intervening, and then uses
the STRING_global keyword to capture the contents of the
string literal and mark it as having global scope.

4.2 Detecting Identifiers
DSketch compiles the developer’s sketched patterns into a
set of equivalent regular expressions. The tool traverses the
source code, determines which patterns need to be applied
to each source file based on its extension, and attempts to
match the patterns. Matches for the identifier keywords and
details of their position are stored within a plugin-hosted
database. Once this process is completed for the entire code
base, the database is analyzed to build a symbol table listing
the unique identifiers found during the analysis, the relation-
ships between the identifiers in the system, the contexts each
identifier is found in, and which patterns discovered them.

4.2.1 Compiling Sketched Patterns
DSketch uses a parser we created using JavaCC to analyze
the patterns sketched by the developer, and to transform
them into a set of regular expressions. The transformation
rules are as follows:

• Occurrences of global and local are expanded into
a regular expression appropriate for matching C-style

http://javacc.dev.java.net

identifiers. This regular expression is enclosed in
parentheses to allow back-referencing to be used to re-
cover the identifiers matched in the pattern.

• Occurrences of the STRING_-variant keywords are used
to match the entire contents of a string literal, and
then record its matches as a global or local identifier.

• Anchors are embedded into the regular expression,
with appropriate escape-characters inserted when nec-
essary to avoid their interpretation as meta-characters.

• A junk production (which must be succeeded by an an-
chor) is translated into a regular expression that per-
mits arbitrary characters but that will greedily match
the anchor.

• The presence of whitespace is dynamically calcu-
lated based on the combination of productions in the
DSketch patterns. The rules are as follows:

– No whitespace characters match at the start or
end of the pattern.

– One or more whitespace characters must match
between any two consecutive identifier keywords.

– No whitespace is matched between a [junk] pro-
duction and its succeeding anchor.

– Between an anchor and any other element, zero
or more whitespace characters may be present.2

– Between any two other elements, zero or more
whitespace characters match.

DSketch then uses the regular expression engine provided
with the Java 6.0 Standard Edition SDK to apply these reg-
ular expressions to the developer’s source code. For each
file, all regular expressions appropriate to the programming
language(s) contained therein are applied, and matches are
extracted. For each match, DSketch stores: the match’s lo-
cation; the name of the pattern that found the match; the
identifiers in the match tagged as global or local; and in the
case where multiple identifiers were located from the same
match, annotates these identifiers as siblings.

4.2.2 Pattern Collisions
It is possible to sketch two or more patterns that match the
same portions of a file; perhaps the sketch is wrong, or it
may reflect the difficulty of writing patterns for that pro-
gramming language’s syntax. Such a pattern collision may
cause the same identifier in the source code to be recognized
by multiple patterns. We cope with pattern collisions in two
ways. (1) In cases where one pattern marks an identifier as
local, and another marks it as global, we prefer the pattern
which recognized the identifier as global to reduce the risk
of false negatives in the analysis. (2) If multiple patterns
all recognize the same identifier with the same scope (e.g.,
all global), we associate the identifier with the first pattern
match, and ignore subsequent matches.3

2This can cause a false match in some cases (e.g., ’public’
’void’ matches publicvoid), but we feel that this situation
would occur rarely in practice.
3In earlier iterations, we merged the meta-data associated
with each pattern collision, and showed the developer all the
patterns which matched a particular identifier. This seemed
to confuse them more than it helped.

4.3 Detecting Dependencies
Once a set of identifiers have been identified, DSketch applies
a set of simple heuristics to approximate how these identi-
fiers indicate dependencies in the system. The assumptions
that DSketch makes about how dependencies are formed
reflect both our attempts to provide a simplified notation
scheme for the developer to use, and our own experiences
in dealing with polylingual software systems. The following
heuristics are currently used by DSketch:

• Dependencies can only exist between identifiers ex-
tracted from source code through one of the devel-
oper’s patterns. That is, DSketch does not search the
source code to see if matches can be found outside of
the pattern set the developer provides.

• Dependencies must be lexically identical, ignoring
case.

• If the identifier was classified as global, it is dependent
on all other occurrences of that identifier, regardless if
they were marked as global or local.

• If the identifier is classified as local, it is dependent
on all other occurrences of that identifier that (a) are
marked as being local and that (b) are discovered
within the same source file. The identifier is still also
classified as being dependent on any lexically identical
identifiers which are classified as global that occur
elsewhere in the system.

These heuristics derive from our experience that many
polylingual systems rely on lexical identity in some form as
the primary means of indicating where a relationship exists.

4.4 Using DSketch
Figure 4 shows a screenshot of the DSketch dependency anal-
ysis tool, installed as a plugin to the Eclipse IDE. DSketch
is intended for use by developers looking to investigate de-
pendency relationships, particularly in a polylingual system,
where a reasonable approximation of the dependencies is suf-
ficient for their needs. A developer using the plugin will have
a project in Eclipse with the complete set of source code for
the software she intends to analyze.

The developer begins with a view (perhaps empty) of the
sketches currently defined for her system, as shown by the
Production Table View (see marker A in Figure 4). She
can add to the set of patterns (or edit existing patterns) by
editing or creating new sketches in the Sketch Editor window
(see marker D). If she desires, she can disable individual
patterns so that DSketch does not use them to either extract
pattern matches, or conduct analysis; we have found this
capability valuable in debugging sketched patterns. She can
also adjust the languages associated with various file types
in her source code base through the language mapping editor
(see marker B).

If she is interested in seeing where points of dependency
may exist in a file, she uses a right-click context menu in her
source code editor to highlight all of the pattern matches in
the current source code file (see marker C); DSketch then
highlights identifiers in the file, colour-coding them to in-
dicate which pattern matches at that location, as well as
setting a tooltip on the identifier with the same informa-
tion. For example, in Figure 4, the “XMLMethod” sketch

http://java.sun.com/javase/6/docs/api/java/util/regex/package-summary.html
file:www.eclipse.org

Figure 4: Screenshot of DSketch.

has extracted an identifier from the name attribute in the
SqlMethod tag, and has marked the identifier with the colour
pink (see marker C) to indicate (1) that it has been matched,
and (2) that the “XMLMethod” sketch has identified it as
relevant. If the developer right-clicks on the “select” identi-
fier, they can use a context menu to have DSketch display
polylingual dependencies on this identifier (see marker E),
which here shows a match to a static method invocation in
Java. She can also view the entire set of dependency predic-
tions for her system if she wishes to have a sense of the entire
scope (see marker F). In either view, each entry shows the
identifier matched, its location, and the context surround-
ing the match. She can leverage this information to initially
discriminate between the dependencies, and to find those
dependencies that are more relevant for her investigation
task. If the developer sees a dependency that she wishes to
explore, she can double-click on it to automatically navigate
to the appropriate location in a source code editor.

5. EVALUATION
The intent of DSketch is to provide developers with adapt-
able polylingual dependency analysis tool support that is rel-
atively easy to configure for a system, and sufficiently accu-
rate to justify its use over state-of-the-practice approaches.
We conducted a qualitative investigation of the tool to de-
termine whether it meets these goals. Our specific re-
search questions were as follows: (RQ1) “Can developers

successfully configure the tool for dependency analysis?”;
(RQ2) “How much effort is required to adapt the tool to a
new system?”; (RQ3) “Is the tool sufficiently accurate to be
useful for developers?”; and (RQ4) “How does our approach
conform with or contradict developers’ expectations?”

To address these questions, we conducted two case stud-
ies in which industrial developers used DSketch to perform
dependency analysis in two separate software systems.

5.1 Case Study Overview
Two industrial software developers were recruited to partic-
ipate in the study. Each of the participants was asked to in-
vestigate the polylingual dependency relationships between
two source code files in a particular system. Case Study 1
focused on the open-source OpenBravo ERP system, while
Case Study 2 involved the iBatis JPetStore v5.0 reference
implementation. Both of these software systems use a data-
mapping framework to allow Java source code to interact
with SQL queries and results, by embedding SQL queries
within XML tags that describe how Java code should inter-
act with them. However, each uses a different technology
with similar yet distinct semantics for facilitating these op-
erations: OpenBravo uses (in part) a compiler called SQLC,
while JPetStore uses the iBatis Data Mapper framework.

Each case study was structured as follows: After a short
tutorial explaining the mechanisms that the particular sys-
tem uses to map dependencies across these languages, the

file:www.openbravo.com
file:ibatis.apache.org/java.cgi
file:ibatis.apache.org/java.cgi
http://wiki.openbravo.com/wiki/ERP/2.50/Developers_Guide/Concepts/SQLC

participants were asked to manually investigate a portion of
the source code of the system and determine what were the
polylingual dependencies present. Each was provided with
the Eclipse IDE, v3.5. The goal was to have the participant
become sufficiently familiar with the system that they would
be able to later judge the efficacy of their DSketch config-
uration in detecting these same dependencies. Since the
developers were unfamiliar with the details of the particu-
lar systems under analysis, they were provided with training
material and permitted to ask the researchers questions con-
cerning dependency mechanics over the course of the study,
as a means of simulating the experience each would have
when working with their own systems.

After the developer declared himself as being done with
the manual investigation task, he was presented with our
tool. After a training session in which the tool’s operation,
sketch language, and behaviour were explained, each par-
ticipant was given time to experiment with the tool on a
piece of sample code to become familiar with writing pat-
terns. Once he felt comfortable with the tool, he was given
his assigned system to investigate. After their investigation
was complete, the participant was interviewed about his ex-
periences with DSketch.

5.2 Case Study 1
The participant here described himself as having 16 years of
industrial experience as a software developer, familiar with
maintenance of polylingual software systems, and for the
last several years as working as a principal developer and
architect on a polylingual software development kit used ex-
tensively in his company’s and clients’ products.

To constrain the task size, we asked the participant to
manually investigate all the polylingual dependencies be-
tween just two files in OpenBravo: VerticalMenu.java and
MenuData.xsql from the org.openbravo.erpCommon.util-

ity package. These two files comprise 429 non-commented
lines of code and extensively reference each other. After
configuring the tool to his satisfaction, he was supplied with
two additional files from the system (InvoiceLine.java and
InvoiceLine_data.xsql in the org.openbravo.erpCommon.
info package), and asked to adjust his configuration to rec-
ognize dependencies between them.

5.2.1 Manual Treatment
After being given demonstrations about the dependencies
on some example files, the participant commented that he
was accustomed to SQL/XML data mapping techniques, but
each is slightly different, and so he was primarily concerned
with understanding how the semantics of this particular
technology worked. The participant started his investiga-
tion by examining the relationship between the XML tags
and the Java code; he found tracing the various SQL queries
and enclosing XML tags painstaking in the default text ed-
itor, and opened the MenuData.xsql file in Eclipse’s XML
editor to browse the contents as a tree structure.4 With
this view in hand, he easily determined the mapping of the
MENUDATA table and its associated queries to the appropriate
type static method invocations in Java.

The participant continued with the laborious task of iden-
tifying where SQL column references in the MENUDATA table
were being accessed as fields on MenuData-typed objects, re-

4The file extension had to be changed to work around the
editor’s constraints.

marking at one point: “Is there an easier way to find all
of these field names?” He noticed that a particular coding
convention caused MenuData declarations to be labeled as
“menuData”, and he proceeded to perform lexical searches
on this identifier to find the related field accesses. In doing
so, the participant missed some occurrences elsewhere that
failed to follow this naming convention (he did not discover
this issue at the time). He then declared himself finished,
having spent roughly 40 minutes in the investigation.

5.2.2 DSketch Treatment
The researchers then commenced the training of the partic-
ipant in the use of DSketch, including practice at sketch-
ing patterns and interpreting the results. During training,
two issues arose. (1) The participant asked if regular ex-
pression closure operators (e.g., +, *) are supported; they
currently are not. (2) The notion of global versus local iden-
tifiers caused some confusion. When sketching a pattern to
recognize the value associated with an XML attribute, he
debated as to which scope made more sense: the XML lan-
guage defines that the value of an attribute only has meaning
within the context of its enclosing XML tag element, which
would imply that the value should be marked as having a
local meaning. However, OpenBravo uses the value associ-
ated with the name attribute in certain tags to define which
static method invocation the enclosed SQL query should be
mapped to, indicating that this attribute value has a mean-
ing outside of the file, and should be marked as global; the
participant eventually recognized this.

The case study was suspended at this point at the par-
ticipant’s request, and was resumed the following day. The
participant spent approximately 15 minutes reviewing the
test patterns sketched the previous day. He then chose to
delete these patterns before starting the configuration task.

The participant started by sketching three patterns
quickly (one for each of the languages in use, to detect
a particular cross-language dependency), and testing them
against the VerticalMenu class. In general, this participant
tended to pick a particular snippet of code that was typi-
cal of the dependency characteristic he wanted to recognize,
and to sketch a pattern designed to specifically recognize
that snippet. Upon reviewing the results, he would then re-
fine that pattern if it was too specific, or not specific enough,
to match other locations in the source code until he was sat-
isfied with the pattern’s coverage. Primarily, the participant
wrote patterns to recognize table and column references in
SQL, attribute values associated with XML tags which en-
capsulated SQL queries, static method invocations on the
MenuData class in Java, and field accesses in Java.

The participant was then given the second set of files
from the OpenBravo system, and asked to see what adjust-
ments needed to be made to recognize dependencies in this
files. The patterns written for the SQL and XML code did
not need to change, but his set of Java patterns needed to
change in two ways: (1) The participant originally sketched
a pattern to recognize static method invocations specifically
on the MethodData class, as these represented SQL queries;
in the new files, similar support had to be added for the
InvoiceLineData type. (2) The InvoiceLine class has nu-
merous string literals that contain references to SQL tables
and columns, a feature not present in the previous file set.
After making these modifications, he was satisfied with the
results. He had spent approximately 30 minutes configuring

DSketch for the first set of files, and an additional 10 minutes
to adapt the patterns to the second set of files.

5.2.3 Observations on Workflow, Success, and Effort
The participant tended to iteratively supplement his config-
uration by sketching a new pattern, testing it, and adjusting
it as needed before moving to the next. He worked through
one language at a time, capturing all the relevant syntax
before moving on. He also tended to sketch his patterns as
narrowly as possible; he said that his attitude was“Garbage-
in, garbage out. A tool is only as good as its inputs.”

Over time, the participant seemed to gain greater trust
with the tool as he investigated predicted matches. In the
first set of files, he noticed that DSketch did not find a match
for one of the SQL queries. After investigation, he realized
that this omission was correct—that query was never ac-
cessed in the Java code. Later, a similar issue occurred with
the second set of files, but he now accepted the tool’s pre-
dictions without feeling the need to investigate.

All the sketch language features were used at some point
by the participant, and with one exception were found use-
ful. During the study, the STRING_-variant keywords were
found to have an unintended consequence: these keywords
match the contents of a string literal but implicitly assumes
that the string is not empty. The presence of several empty
strings in the second set of files caused the resulting pattern
to match content between the last double quotation mark
(") in an empty string, and the first occurrence of a double
quotation mark later in the file. The participant easily fixed
this by eliminating the STRING_-variant of the keyword with
its normal variant and appropriate anchor productions.

5.3 Case Study 2
The second participant described himself as having 7 years
of industrial experience as a software developer, the vast
majority of that involving polylingual systems. We asked
the participant to manually investigate the change impact
of altering the user authentication mechanism in JPetStore.
To limit the required effort to a reasonable level for a case
study, we restricted his investigation to just the Java, XML,
and SQL portions of the system. After the manual investi-
gation, he was trained on DSketch, and provided with the
configuration generated by the Case Study 1 participant as
a starting-point configuration for JPetStore.

5.3.1 Manual Treatment
During the explanation of how iBatis maps data objects in
Java, the participant commented that he was familiar with
this paradigm as the semantics seemed very similar to those
used by the Hibernate data mapping framework, which he
had used before. The participant constructed a change plan
on paper to record his understanding of how the system
would be affected by the anticipated change. He largely in-
vestigated the system by opening source code files, and scan-
ning for relevant portions of code, pausing in some cases to
thoroughly understand a particular segment that seemed to
be of special significance to the authentication mechanisms.
After some initial exploratory searching in this fashion, he
returned to the Account.xml file which contained most of
the SQL queries involved in the user authentication mecha-
nism in JPetStore, and looked for dependencies emanating
from the SIGNON table throughout the code. The participant
would either use lexical searches, or Eclipse’s Java tooling, to

follow dependency links in the code, but occasionally would
investigate a new file when its name or package identifier
suggested it was of relevance. He continued this pattern of
investigation until he reached the AccountBean class which
interacts with the system’s presentation layer, after which
he finalized his change plan and declared himself finished.
He had spent roughly an hour creating this change plan.

5.3.2 DSketch Treatment
The researchers then commenced training the participant
on using DSketch, with the final configuration from Case
Study 1 provided as a starting point. During training, he
asked if the zero-or-one regular expression operator (i.e., ?)
was supported; it currently is not. Once the participant felt
comfortable with the tool, he began his configuration task
for JPetStore, again with the patterns from Case Study 1 as
a starting point.

The participant began by systematically examining the
patterns, and had no problems reasoning about the intent
behind the Java and SQL patterns. This changed when he
came across the first of the XML patterns: after examining
the pattern, he was confused about the intent as it described
syntax that he did not recognize in their system. He manu-
ally examined the JPetStore code to look for relevant exam-
ples, and only after a few minutes of this did he remember
that these patterns had been created to match dependency
syntax which differed from that used by iBatis in JPetStore.
He decided that the XML patterns were not useful for his
context, but the existing Java and SQL patterns could be
reused (even though at least one pattern described syntax
which did not occur in JPetStore); surprisingly, he decided
to not delete the irrelevant patterns since they seem to have
no ill effect.

He continued his configuration of DSketch by applying
the patterns to see what dependency syntax was missed. In
the case of the SQL code, he noticed that the existing pat-
terns captured most of the syntax he was interested in, but
missed a few small cases where queries did not use explicit
access of a table column (e.g., SIGNON.USERNAME) that the
other patterns had leveraged. He decided in this case that
the tool’s configuration was sufficient since it already found
relevant matches on those tables and columns in the same
file, and felt it was unnecessary to write specialized patterns
to capture these few cases. He also decided that only one
additional Java pattern was needed so that field declarations
were recognized, so that DSketch could match them against
the SQL column names to which they were mapped.

In exploring the resulting matches, he discovered two false
positives which he had not expected: DSketch indicated
that there were dependency matches on the USERNAME and
PASSWORD columns in the sql-map-config.xml file, which
otherwise is expected to simply list which XML files con-
tain SQL query mapping data for iBatis. DSketch’s depen-
dency preview indicated the context of these matches as
being JDBC.Username and JDBC.Password, which was am-
biguous: it could describe a Java field access, or a SQL
table/column pair. After investigating the match location,
the participant saw that these were actually describing prop-
erty values which were to be supplied by the iBatis system
for connecting to the JPetStore database.

5.3.3 Observations on Workflow, Success, and Effort
The participant’s workflow was substantially different than

http://www.hibernate.org/

that of the Case Study 1 participant, because he intended
to formulate a specific action plan for enacting a change to
the system. Consequently, he spent a considerable amount
of time attempting to understand how existing code func-
tioned, rather than simply tracing dependency connections.
Having an explicit change plan may also have explained why
he did not feel it necessary to configure DSketch to recog-
nize all the known polylingual dependencies in the system:
those few dependencies were easier to simply make note of
in the change plan, rather than invest additional effort to
address. The participant felt comfortable reusing the pat-
terns written by the earlier participant, and only needed to
make minor alterations for his system’s context.

In using DSketch’s dependency preview window, the par-
ticipant noted that the context provided for matches was
insufficient: “Having the filename and the context helps, but
I need to see the entire context.” The context currently pro-
vided by the tool is the entire match (including anchor and
junk productions) for that pattern, which in some cases he
encountered was too limited to provide useful feedback. Had
the preview included most of the code in that line, it would
have been sufficient information to reject the dependency
without needing to investigate the code snippet.

5.4 Analysis of Observations
Here we consider how our observations address research
questions RQ1–RQ4.

5.4.1 Can developers configure the tool?
Both participants were able to configure DSketch tool to rec-
ognize polylingual dependencies in systems, despite a limited
amount of exposure to the tool prior to use, and in spite of
not being experts with the systems they were analyzing. In
the case of the first study participant, he was able to re-
turn to his task a day later, revisit his previous work, and
continue his configuration of DSketch within a 15-minute
period. The second participant was able to take a set of pat-
terns written by a different developer for a different system,
understand the intent behind the patterns, and supplement
them appropriately for his own work.

5.4.2 How much effort is required to adapt?
Both participants described the effort as non-trivial, but rea-
sonable. The second participant was able to easily adapt the
DSketch configuration for OpenBravo to the JPetStore sys-
tem, by reasoning about what features the existing patterns
were intended to match. He discovered which patterns were
inappropriate, and appropriately supplemented the configu-
ration with additional patterns to address what was lacking.
The developer did note though that it was difficult to get
an initial sense of what was missing in the pattern config-
urations; if the pattern set were sufficiently large, it could
be difficult to understand the tool’s effective coverage. The
first participant commented that: “[DSketch] has an up-front
cost that has to be paid in learning the patterns and writing
them, but it’s reasonable. And once written, they’re easily
applied elsewhere.”

Both participants indicated that the sketch language was
far easier to work with than regular expressions; the first
participant pointedly commented that “Regular expressions
[are not sufficiently human-usable].”5

5We have suppressed his more “colourful” phrasing.

5.4.3 Is the tool sufficiently accurate?
Both participants indicated that the tool was reasonably ac-
curate: the first study participant thought he had detected a
false negative, but on further investigation it turned out the
tool was correct. The second participant noted there were a
few false positives, but he did not notice any false negatives
outside those cases he decided were not worth capturing.

Both participants felt the tool was useful for polylingual
dependency analysis, especially because they were not aware
of any other alternatives, but would not trust the predic-
tions without some manual investigation of the results. In
its current state though, it would dramatically reduce the
number of false positives they normally deal with in such
investigations, saving considerable time. The participants
both suggested some additional constructs to improve the
expressiveness of the pattern language, including the ability
to combine patterns using set operations (e.g., intersection).

5.4.4 Does the approach work?
How the developers configured the tool varied: the first par-
ticipant tended to write highly tailored and precise patterns
which attempted to match dependency features as specifi-
cally as possible, while the second participant was more flex-
ible in his matches and more willing to ignore cases which
were deemed to be too much work to catch, or to ignore
refining existing patterns if they were close enough. Their
attitudes towards configuring the tool reflected their tasks,
and the tool seemed amenable to both approaches.

6. DISCUSSION AND FUTURE WORK
Qualitative evaluation of accuracy and effort. Our evalua-
tion of DSketch reports the participants’ perceptions of the
effort required to configure the tool, and of the tool’s pre-
diction accuracy for their case study task. As our studies
were exploratory, we do not quantitatively report informa-
tion retrieval metrics, nor metrics of effort. Our tooling
sufficed to determine strengths and weaknesses of the ap-
proach; only after these results are taken into account in
the tool design will a formal and quantitative experiment be
appropriate [18].

Improving pattern expressiveness. The study participants
identified a few additional notations or capabilities to allow
writing more expressive or specific patterns. Some of these
limitations, specifically the lack of regular expression closure
support, were due to limitations we encountered when trying
to use back-referencing in our patterns to extract matches
in these cases (only the last back-referenced match in such
patterns are captured). Resolving these issues may require
adopting a different technology for applying the patterns, or
creating specialized support for these cases.

Usability and performance. Both participants suggested
modifications to the interface to adapt it more succinctly
to their desired workflow: the first participant wished for
more extensive pattern debugging capabilities, the second
expressed a strong desire to see the tool even more tightly
integrated into the Eclipse IDE such that it would resemble
the existing Java tooling support in operation and usage;
both indicated that it would be desirable to support their
tendency to choose a particular code snippet as exemplar
of the pattern they are trying to write. Performance is also
an issue: on the JPetStore system, the second participant
noted that the tool paused notably during its analysis. Since

his preferred workflow involved iteratively refining and ap-
plying patterns to the system, it was important to him that
the speed of the tool be as close to real-time as possible.

Adapting to large-scale system issues. As the systems un-
der analysis by DSketch grow in size, we expect (and our
participants expressed similar concerns) that it will become
more difficult to keep track of which patterns are contribut-
ing effectively to the tool configuration. The likelihood of
the tool’s confusing dependency matches due to its simpli-
fied notation language and heuristics will increase, leading
to more false positives in the developer results. Rather than
put additional onus on the developer to supply increasingly
detailed configuration information, we would like to explore
mechanisms that could allow the tool to adapt itself and its
heuristics to the systems it analyzes, perhaps by leveraging
feedback from the developer as to the accuracy of its predic-
tions as a means of learning, or by providing the developer
feedback as to which of their patterns (and why) are proving
effective or ineffective in their investigation of the system.
We are examining the feasibility of such extensions.

7. CONCLUSION
DSketch provides a lightweight approximation of
semantically-aware tool support for polylingual depen-
dency analysis. Developers configure the tool using simple
pattern specifications that are easy to write, and provide
reasonable approximations of the dependency syntax in
their system. DSketch leverages these patterns to extract
identifiers from the developer’s system and predict where
polylingual dependencies exist. The developer can iterate
on their patterns to refine the set of dependencies until
satisfied with the results, and can share these patterns with
other developers for work in the same, or similar systems.

We conducted case studies with industrial developers to
understand the strengths and weaknesses of our approach.
Our participants were able to configure DSketch reasonably
well with a brief period of training for polylingual depen-
dency analysis, and were able to adapt the configuration of
the tool to new situations easily. Both participants success-
fully used the tool to detect dependencies in their systems,
and were satisfied with the accuracy of its predictions.

Some further details of the DSketch project can be found
at http://lsmr.cs.ucalgary.ca/project/dsketch.

8. ACKNOWLEDGMENTS
We thank Soha Makady, Rylan Cottrell, and the anony-
mous reviewers for their feedback. This work was supported
by the Natural Sciences and Engineering Research Council
of Canada through a Discovery Grant and a Postgraduate
Scholarship and by the Alberta Informatics Circle of Re-
search Excellence through a Graduate Scholarship.

9. REFERENCES
[1] R. Arnold and S. Bohner. Impact analysis: Towards a

framework for comparison. In Proc. Conf. Softw.
Maintenance, pp. 292–301, 1993.

[2] D. Atkinson and W. Griswold. Effective pattern
matching of source code using abstract syntax
patterns. Softw. Pract. Exper., 36(4):413–447, 2006.

[3] T. Biggerstaff. The library scaling problem and the
limits of concrete component reuse. In Proc. Working
Conf. Reverse Eng., pp. 102–109, 1994.

[4] S. Bourne. An Introduction to the UNIX Shell. Bell
Laboratories, 1977.

[5] S. Burson, G. Kotik, and L. Markosian. A program
transformation approach to automating software
re-engineering. In Proc. IEEE Int. Comput. Softw.
Appl. Conf., pp. 314–322, 1990.

[6] B. Cossette and R. Walker. Polylingual dependency
analysis using island grammars: A cost versus
accuracy evaluation. In Proc. IEEE Int. Conf. Softw.
Maintenance, pp. 214–223, 2007.

[7] M. Furr and J. Foster. Polymoprhic type inference for
the JNI. In Proc. Europ. Symp. Progr., pp. 309–324,
2006.

[8] E. Hill, L. Pollock, and K. Vijay-Shanker.
Automatically capturing source code context of
NL-queries for software maintenance and reuse. In
Proc. Int. Conf. Softw. Eng., pp. 232–242, 2009.

[9] R. Holmes and R. Walker. Supporting task-specific
source code dependency investigation. In Proc. IEEE
Int. Wkshp. Visualiz. Softw. Understand. Analys.,
pp. 100–108, 2007.

[10] K. Kontogiannis, P. Linos, and K. Wong.
Comprehension and maintenance of large-scale
multi-language software applications. In Proc. Int.
Conf. Softw. Maintenance, pp. 497–500, 2006.

[11] R. Koppler. A systematic approach to fuzzy parsing.
Softw. Pract. Exper., 27(6):637–649, 1997.

[12] W. Landi. Undecidability of static analysis. ACM Lett.
Program. Lang. Syst., 1(4):323–337, 1992.

[13] D. Moise and K. Wong. Extracting and representing
cross-language dependencies in diverse software
systems. In Proc. Working Conf. Reverse Eng.,
pp. 209–218, 2005.

[14] L. Moonen. Generating robust parsers using island
grammars. In Proc. Working Conf. Reverse Eng.,
pp. 13–24, 2001.

[15] L. Moonen. Lightweight impact analysis using island
grammars. In Proc. Int. Wkshp. Progr.
Comprehension, pp. 219–228, 2002.

[16] M. Moriconi and T. Winkler. Approximate reasoning
about the semantic effects of program changes. IEEE
Trans. Softw. Eng., 16(9):980–992, 1990.

[17] G. Murphy and D. Notkin. Lightweight lexical source
model extraction. ACM Trans. Softw. Eng. Methodol.,
5(3):262–292, 1996.

[18] G. Murphy, R. Walker, and E. Baniassad. Evaluating
emerging software development technologies: Lessons
learned from assessing aspect-oriented programming.
IEEE Trans. Softw. Eng., 25(4):438–455, 1999.

[19] A. Podgurski and L. Clarke. A formal model of
program dependences and its implications for software
testing, debugging, and maintenance. IEEE Trans.
Softw. Eng., 16(9):965–979, 1990.

[20] W. Stevens, G. Myers, and L. Constantine. Structured
design. IBM Syst. J., 13(2):231–256, 1974.

http://lsmr.cs.ucalgary.ca/project/dsketch

	Introduction
	Motivation
	Related Work
	Approach
	Sketch Language
	Example

	Detecting Identifiers
	Compiling Sketched Patterns
	Pattern Collisions

	Detecting Dependencies
	Using DSketch

	Evaluation
	Case Study Overview
	Case Study 1
	Manual Treatment
	DSketch Treatment
	Observations on Workflow, Success, and Effort

	Case Study 2
	Manual Treatment
	DSketch Treatment
	Observations on Workflow, Success, and Effort

	Analysis of Observations
	Can developers configure the tool?
	How much effort is required to adapt?
	Is the tool sufficiently accurate?
	Does the approach work?

	Discussion and Future Work
	Conclusion
	Acknowledgments
	References

