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IN GREEK MYTHOLOGY THE SIRENS’
beautiful songs lured sailors to
their doom. Today, the
CAITLIN musical program
auralization system [12] renders
the runtime behavior of Pascal
programs into a structured musi-
cal framework allowing pro-
grammers to hear when their
programs deviate from the
expected path. Now, instead of
the bugs luring programmers to
their doom, with CAITLIN the
bugs sing their swan songs to sig-
nal their own impending demise.

Our world is full of sound.
Indeed, sound is so pervasive and
integrated into our visual world
that those of us fortunate to have
both the visual and the auditory
senses usually underestimate the
importance of the auditory chan-

nel. It rates highly in our order of
sensory priorities, probably
because of its unique warning
capability; auditory interrupts are
difficult to ignore. Our brains
process information heard very
differently from information
seen; moreover, audition has
properties that complement
vision. While vision provides
excellent spatial perception, the
auditory sense offers a number of
temporal advantages. A single
sound communicates many prop-
erties simultaneously, and
humans can understand and sep-
arate out a series of simultaneous
auditory sequences (music is an
obvious example). Filmmakers
use auditory sequences to carry
the audience through major
visual scene shifts.
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There are disadvantages, too. By their nature,
auditory interruptions are intrusive, and precise
quantitative information is difficult to represent son-
ically. However, the capacity of our auditory memory
is great and can be very precise. After only a few hear-
ings, an experienced listener can memorize a whole
symphony (typically containing more than 20,000
notes), recognize subtle differences between perfor-
mances, and certainly tell if a performer plays a
wrong note. Since a compact disc stores up to
650MB, this is quite a feat. Moreover, there is no
visual equivalent; we do not remember pictures in so
much detail. 

Surprisingly, audio has received little attention in
human-computer interaction in recent decades, with
applications restricted mostly to limited speech or
trivial sounds. This was certainly not the case in the
early days of computing. Many researchers and engi-
neers in the 1950s and 1960s cite examples of audi-
tory output. An oft-repeated anecdote is that of the
early programmers who tuned AM radios to pick up
the interference produced by their computers. Listen-
ing to the patterns of sounds, they learned to moni-
tor CPU activity and even to identify aberrant
program behavior. Why were these lessons forgotten?
While graphical capability has been available for
years, inexpensive audio facilities are more recent. By
the time affordable audio was available to the average
computer user the study of the visual medium was
well advanced despite audio storage requirements
being much less demanding than video storage
requirements.

Visual interfaces do offer significant advantages.
First, they can be browsed, whereas auditory inter-
faces are heard through a narrow continuously mov-
ing aperture. Second, they can be quantitative,
whereas audio is mainly qualitative. Above all, visual
interfaces are not intrusive. 

However, reliance on visually oriented interfaces
produces its own stresses. Screens become cluttered

with multiple windows, and information in one win-
dow is routinely hidden by subsequent windows. We
cannot attend to the entire screen, especially in the
case of multi-window graphical user interfaces (GUIs).
Good design approaches ameliorate some of these
problems, but video alone still creates problems for the
visually impaired. These users, reliant on screen read-
ers (and in some cases Braille) cannot use graphical
programming and debugging tools. Use of screen
readers is made more difficult by the multi-window
implementations of modern program development
environments.

The past decade or so has been characterized by
renewed interest in auditory interfaces through the
efforts of researchers worldwide. One important
motivation is the provision of interfaces for visually
impaired computer users for whom development of

PROGRAM Demo;

USES
   Miditoo1,
   Mididecs,
   Mmessage,
   M_voices,
   CGadgets,   
   Crt ;

VAR
   cntr1,��
   cntr2����� : Integer ;
   pitch_1,��
   pitch_2���� : Integer ;
   pitch_cntr_1,��
   pitch_cntr_2��� : Integer ;
   effect_1,��
   effect_2���� : Integer ;
   flag_1,��
   flag_2����� : Boolean ;

BEGIN { Demo }
   IF ResetDSP = o THEN
      midiSendGSMessage (GSReset) ;
   SetOptions ;
   Delay (750) ;
� ProgramChange (channel_16, Organ_1) ;
   cntr2 := 1 ;
   SoundMetronome ;
   pitch_1 := caitlin_C + 24 ;
   pitch_cntr_1 := 0 ;
   FOR_signature (1, True) ;
   FOR cntr1 := 1 TO 7 DO
�� BEGIN
�� IF cntr1 = 7 THEN ;
��    SoundNote (channel_10, sleigh_bell,
������  FOR_Data.velocity, 1) ;
�� NoteOn (channel_12, pitch_1, FOR_Data.velocity) ;
 �� pitch_2 := caitlin_C + 24 ;
�� WHILE_Signature (2, True) ;
�� WHILE cntr2 <= 4 DO
��� BEGIN
��� WHILE_POI2 (2, True) ;
��� Writeln (cntr1, ':' cntr2) ;
��� SoundMetronome ;
��� cntr2 := cntr2 + 1 ;
��� SoundMetronome ;
��� END ;
�� WHILE_POI2 (2, False) ;
�� WHILE_Signature (2, False) ;
�� Wait (durationtable [FOR_Data.duration] DIV 2) ;
�� NoteOff (channel_12, pitch_1, FOR_Data.velocity) ;
�� Inc (pitch_1, GetInterval (FOR_Data.scale,
���   pitch_cntr_1, True)) ;
�� Inc (pitch_cntr_1) ;
�� END ;�
� Wait (durationtable [FOR_Data.duration]) ;
� ChangeVolume (FOR_Data.channel, FOR_Data.velocity) ;
� FOR_Signature_end (1, True) ;
END { Demo }.

(b) Auralized Program(a) Original Program
PROGRAM Demo;

VAR
   � cntr1, 
� cntr2���     : Integer ;

BEGIN { Demo }
� cntr2 := 1 ;
� FOR cntr1 := 1 TO 7 DO
�� WHILE cntr2 <= 4 DO
��� BEGIN
��� Writeln (cntr1, ':' cntr2) ;
��� cntr2 := cntr2 + 1 ;
��� END ;
END { Demo }.

(a) Listing of a Pascal program and (b) shows the source as
amended by CAITLIN. In normal operation the user would not
see the auralized source. In the same way intermediate object
code is generated by compilers as input to the linker prior
to generation of an executable image, the auralized code is an
intermediary between CAITLIN and the language compiler.

Figure 1. 
Original source
and auralized
source: (a) list
of a Pascal
program and
(b) the source
as amended
by CAITLIN. In
normal opera-
tion, the user
does not see
the auralized
source. In the
same way
intermediate
object code is generated by compilers as input to the linker prior
to generation of an executable image, the auralized code is an
intermediary between CAITLIN and the language compiler.
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GUIs is problematical; examples include the Sonic
Finder [5] and the Soundtrack system [4]. Another
motivation is the increasingly crowded nature of
visual interfaces attempting to exploit the multimedia
capabilities of sound and vision. In 1995 Alty [1] sug-
gested that interface designers move beyond simple
sounds and speech to exploit the rich potential offered
by music, illustrating this idea with a graphical inter-
face for blind users using only music.

The Debugging Problem
Observing that program debugging is often a “strug-
gle against complexity,” Lieberman [8] advocated
using computers to help programmers visualize pro-
gram behavior and relate the static information con-
tained in the source code to the dynamic runtime
activity.

The richness of musical representation offers fairly
precise bug location possibilities (whether in isolation
or in conjunction with visual representations). One
possible representation is to map the tracing of the exe-
cution path through different modules to different
instruments. This is not handled well by visual media
that cause frequent screen shifts. Using timbre (the
quality given to a sound by its overtones), allows us to
easily follow switches between modules, letting our
eyes concentrate on program detail. Indeed, in very
large programs, visual debugging methods are not only
tedious, they can be misleading in pointing to the real
problem source; giving sound to a running program
gives a broader picture of what is happening [6]. 

Program events take place in the time domain,
whereas visual mappings are mostly spatial. Graphics
provide good descriptions of spatial relations and
structural details (as Fourier analysis does for sound
waves) but do not naturally represent temporal
details. Using sound presents us with a complemen-
tary modality that increases the number and type of
diagnostic tools available to us by providing a tempo-
ral view of software (as the wave-form plot does for a
sound wave).

Program auralization—the mapping of program
data to sound—has attracted research interest in
recent years. Using sound to aid the visualization of
software was suggested in [3, 9]. The idea was further
explored through a visual programming language to
add audio capabilities to a debugger [7] and the Audi-
tory Domain Specification Language [2]. Although
these systems demonstrated technical feasibility, little
formal evaluation of program auralization was ulti-
mately done. 

Auralization for Debugging
We built the CAITLIN system to allow the system-

atic study of musical program auralizations in
debugging tasks. Our starting point was the fact that
music perception is primarily temporal, that is, peo-
ple more readily perceive those features in music that
are in temporal relationships. When we listen to
music we perceive them not as an arbitrary sequence
of note durations but as a temporal structure in
which notes are grouped. In particular, two features
of temporal musical structure—succession and over-
lap—have analogs in the program domain (sequence
and construct nesting). Also, as the structure of
music (like that of programs) has multiple levels and
given that the events of an executing program occur
in a time-ordered framework, it seems worthwhile to
attempt to map program events to musical events. 

The CAITLIN preprocessor auralizes programs at

the construct level (iterations and selections). That is,
a WHILE loop is auralized in one way, and REPEAT,
FOR, CASE, and IF constructs in other ways.
CAITLIN recognizes the constructs in a source pro-
gram and creates subroutine calls to stored musical
sequences that are subsequently sent by the program
to a MIDI (musical instrument digital interface) syn-
thesizer (see Figure 1). The user can change various
aspects of each construct’s auralization, including
instrument, note length, MIDI channel, and volume.
The auralized program executes in the normal way
(though it has to be slowed down for comprehension);
and the musical sequences are heard (via the synthe-
sizer) as the constructs are executed. The system works
for Pascal, though its principles can be applied to
other languages, including C and Java. 

The CAITLIN auralization approach is based on
the notion of a point-of-interest (POI), or “a feature
of a construct, the details of which are of interest to
the programmer during execution” [11]. Pascal’s IF ,
FOR, CASE, WHILE, and REPEATconstructs each
contain a number of POIs (such as entry to the loop

NOW that we have shown 
that musical auralizations can
be used by programmers, 
the next step is to see how
auralizations compare with
visualizations. 



and evaluation of a
Boolean expression). Each
construct is represented by
a musical motif, or a short

recurring theme associated with a particular thought
or character; well-known examples are the themes
given to the principal characters in Sergei Prokofiev’s
Peter and the Wolf (1936). 

Motif Design
In the first prototype, the motifs were arbitrary in
their design, the only consideration being to make
each one distinct from the others to avoid ambigu-
ity. In the second version, we tried to relate the
motifs musically, hoping to aid memorization and
recognition. Thus the two basic types of construct—
selection and iteration—are based on different
motifs; lower-level ones are related to the ones
higher in the tree (see Figure 2). Each motif was
played on a different timbre (musical instrument).

Common to all the constructs (with the exception
of the FORloop) is the idea of success or failure (more
correctly, the evaluation of Boolean expressions that
yield values of true or false). An IF statement either
succeeds (and executes its statement block) or fails
(and executes the next program statement); in the
IF...ELSE , failure results in the ELSEpart being
executed. WHILEiterates until failure; REPEATiter-
ates until success. We mapped this with the metaphor
of a major chord for success (true) and a minor chord
for failure (false). Although most users would not be
able to define these chords, they could still easily rec-
ognize them.

We also decided that a construct should have an
opening sound and a mirroring closing sound (usu-
ally an inversion of the opening). This is analogous to
HTML tags and the IF..FI , DO..OD pairings
often used in pseudocode. We used it because listen-
ers need to identify when constructs terminate, possi-
bly at a time much later than the onset. 

A third important feature we wanted to capture
was that a construct persists over time. Subordinate

statement blocks (which could themselves contain
constructs) are often carried out within the body of a
construct. Therefore, we added a drone (a continu-
ously held note) between the opening and closing
audio signatures to remind listeners that the con-
struct is still active and that what is being executed is
happening within a construct block. Nested con-
structs have differently pitched drones, so the multi-
ple nesting can still be heard (as a chord); Figure 3
includes an example of two constructs.

Our hypothesis was that the musical program
auralizations generated by CAITLIN could assist
novice programmers in locating bugs that manifest
themselves either directly or indirectly in terms of
program flow.

A concern in this work is whether musical ability
or experience is needed to use such a system. We are
encouraged by other work [11] showing that while
musical ability certainly aids recognition, the differ-
ences between musicians and non-musicians are not
as great as one might expect, particularly for simple
melodies. Most people are good at recognizing and
memorizing music; the international success of the
popular music industry supports this view. Cultural
differences are another important issue, but again the
evidence is that these differences become important
only in complex musical structures; for example, most
of the world’s music systems are based on the same
chromatic, or 12-tone, scale (or a subset of it). We
have found that subjects’ differing musical experience
does not affect their ability to use auralizations.

Evaluation
We conducted two studies to explore the usefulness
of musical auralizations. In the first [10], 22 second-
year computer science undergraduates at Loughbor-
ough University in the U.K. were asked to identify
the Pascal constructs represented by 60 auraliza-
tions. We presented 40 single-construct auraliza-
tions followed by 10 construct-pair auralizations. Of
the paired auralizations, 50% were of sequential
constructs (such as a WHILE followed by an IF )
and the other 50% of nested constructs (such as an
IF within a WHILE). Because the motif design is
hierarchical (see Figure 2) each construct could be
identified at any of three levels: class (iteration or
selection), subclass (such as IF s and CASEs), and
specific identity (such as IF , CASE...ELSE ). 

The table here cites the average scores for the two
sets of auralizations. If a construct is recognized cor-
rectly, then a Specific Identity score is given. If a mis-
take is made at this level (such as confusing an IF
with an IF...ELSE ) or a subject simply described
the construct as one of the IF s, then a subclass score
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Construct type

Selection

Abstract auralization
Entry/Body/Exit motifs

Generic
selection motif

Generic
CASE motif

Generic
Iteration motif

Generic
IF motif IFs

IF... IF...
ELSE CASE CASE...

ELSE FOR WHILE REPEAT

CASEs Determ-
inate

Indeterm-
inate

Iteration

Figure 2. Program constructs in
Pascal and their relationships
with musical motifs.



is given. A class score meant a construct was identified
correctly as either a selection or an iteration. While
construct-specific recognition was not high (46% and
49%), subjects were good at recognizing construct
subclasses (76% and 84%, respectively). We were
pleased to find almost no confusion between nested

and sequential constructs (recognition rate 97.5%). 
The information presented to these subjects was

without context; that is, they had no domain informa-
tion to help them understand the problem. In a real
debugging situation subjects would be listening to
auralizations at the same time they would be looking
at the program source (even blind programmers would
have some textual/verbal representation of the code).
The extra context provided by the presence of other
constructs and understanding the aims and structure
of the program would aid the recognition process. The
programmer already knows from the source code

which constructs have been
used and whether or not the
selections have ELSEbranches.
Therefore, the low specific iden-
tity scores do not worry us, as
we would expect the added con-
text of the program source to fill
in the gaps. Given that the sub-
jects had only half an hour to
become familiar with the system
prior to the study, more expo-
sure might be expected to make
the motifs more recognizable.

One feature of the hierarchic
design is that a programmer
should be able to listen to an
auralization at varying levels of
abstraction. To understand pro-
gram flow it might be enough
simply to hear that there is some
form of selection here and some
form of unbounded loop there;
exact details can be gleaned
from the listing. With training
and continued use, program-
mers might become adept at
distinguishing between all the
construct auralizations even
without contextual clues. 

Therefore, to explore the role
of the auralizations in bug loca-
tion tasks we conducted a

debugging test comprising eight different debugging
exercises, numbered A1 to A8 [12]. For each, another
22 subjects were given a program specification, a
pseudocode program design, sample input data, the
expected output data, and the actual output data.
Each program was syntactically correct and contained
a single logical error (bug). Subjects were allowed as
much time as they wanted to read the documentation.
When ready to proceed they were given the program
source code and had 10 minutes in which to locate
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(a) Source Program
PROGRAM EXemplar ;

VAR

    counter : Integer ;

BEGIN

counter := 1 ;

WHILE counter <= 2 DO

  BEGIN

� IF counter MOD 2 = 0 THEN

�     BEGIN

�     Writeln ('Counter is even') ;

�     END ;

   counter := counter + 1 ;

   END ;

END.

Figure 3. A program and its corresponding auralization: (a) IF
statement within a WHILE statement and (b) auralization of the
program as annotated musical notation revealing points of interest,
success/failure signals, and drones.

Auralization score of a
program. Notice that 
the drones for each 
construct appear
together on the staff
labeled 'Drones.' 
Likewise, all 
percussive events for
each construct appear
on the 'Drums' staff.
Shifts between major
and minor are shown 
by changes in key 
signature.



the bug. The eight tasks were performed in order,
beginning with A1. Half the subjects had auraliza-
tions for tasks A1, A3,
A5, and A7; the other
half had the auralizations
for tasks A2, A4, A6, and
A8. Thus, each program
was tested in both the
auralized and the nonau-
ralized states. As the 22
subjects were asked to locate one bug in each of the
eight programs (four in the auralized state, four in the
normal state) there were a possible 88 auralized bugs
and 88 normal bugs. The subjects found a total of 60
auralized bugs, compared with 46 in the nonauralized
state. 

Conclusion
This research indicates that music can communicate
information about program flow and assist with bug
identification and eradication. The results highlight
two areas where music seems particularly useful:
where the program’s output contains no clues as to
the bug’s location and where programs contain com-
plex Boolean expressions. Otherwise, when the out-
put gives clues (when, say, a loop displays only three
lines of output instead of an expected 10), then a
bug’s location is relatively easy to deduce. However,
when the program gives no such clue, it is more dif-
ficult to hypothesize about the bug’s location. The
auralization quickly shows it is the loop that is at
fault. In the case of multiple complex Boolean
expressions, the auralization made it easy to hear
which ones were at fault; without auralization, sub-
jects had to evaluate the expressions by hand.

Now that we have shown that musical auralizations
can be used by programmers, the next step is to see
how auralizations compare with visualizations. We
have looked at program flow, but what about data
flow and data structure? How might sound assist our
understanding of these features? 

Rather than replacing visual displays (though it
would be useful for the visually impaired) we antici-
pate that combination audio/visual displays will be
the most effective; for example, an animation of a
data structure could be monitored while listening to
an execution trace. Meanwhile, the message passing
between objects in different threads of a Java program
could be heard while inspecting the values of variables
on the screen. We are conducting further research to
explore these issues.

Whether program auralization really is the swan
song of debugging problems remains to be seen. But
we have strong hopes that combining auditory and

visual external representations of programs will lead
to new and improved ways of understanding and

manipulating code.
Ultimately, we hope the
sound and light displays
of multimodal program-
ming systems will be
standard items in the

programmer’s toolbox. More information and
audio examples are at www.paulvickers.com/aural-
ization.
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Auralization recognition scores.

Set
Specific 
Identity Subclass Class Total

Nested/
Sequential

Set 1

Set 2

46%

49%

30%

35%

21%

14%

97%

98%

NA

97.5%


