
Program Auralization: Author’s comments on Vickers
and Alty, ICAD 2000

PAUL VICKERS
Northumbria University

In this paper, we reflect upon the investigations into external auditory representations of programs (program auralization)
reported by Vickers and Alty at ICAD 2000. First, we place the work in its historical and thematic context and explore the
motivation that lay behind it. We then outline the process by which we got to the stage of being able to report empirical results
in 2000 and compare the work with that done by other researchers in the field. Finally, we assess the major contribution that
this work made to the field of auditory display and look to the future outlining the work still to be done since the paper was first
published (we also look at work done by others in this area since 2000).

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User Interfaces—Auditory (non-
speech) feedback; H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems—Audio input/output;
H.5.5 [Information Interfaces and Presentation]: Sound and Music Computing—Methodologies and techniques

General Terms: Human factors, Languages

Additional Key Words and Phrases: Music, auralization, debugging, Pascal

1. HISTORICAL CONTEXT AND PROVENANCE

Program auralization is the mapping of events and objects in the program domain to the auditory
domain. The results presented at ICAD were the outcome of the CAITLIN (see www.auralisation.org)
research project into program auralization that James Alty and I started in late 1994. The motivation
was to explore ways of combining our mutual interests of music composition, programming, computer
music, and HCI in interesting ways that would lead to better interfaces and tools. The domain of
computer programming was particularly interesting to us both as teachers and as practitioners. The use
of sound in the debugging of programs is not new and dates back to 1950s and 1960s when programmers
would tune AM radios to pick up the interference put out by the computer—they learned to monitor
program behavior by listening to the radio [Vickers and Alty 2003]. James Alty had experimented
informally with auralizations of the bubble-sort algorithm [Alty 1995] and it had become apparent that
there was much scope for exploration.

The embryonic CAITLIN system was first presented at ICAD in 1996 [Vickers and Alty 1996] but
there were some notable program auralization projects prior to this, viz., InfoSound [Sonnenwald et al.
1990], LogoMedia [DiGiano and Baecker 1992], Sonnet [Jameson 1994], Auditory Domain Specification
Language [Bock 1994], and the LISTEN Specification Language (LSL) [Mathur et al. 1994]. Space does
not permit a thorough comparison, but Table I highlights the main similarities and differences.

Author’s address: Northumbria University, School of Computing, Engineering, and Information Sciences, Pandon Building, Cam-
den Street, Newcastle upon Tyne, NE2 1XE, UK +44 (0)191 243 7614; email: paul.vickers@unn.ac.uk
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice on the first
page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists,
or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
c© 2005 ACM 1544-3558/05/1000-0490 $5.00

ACM Transactions on Applied Perception, Vol. 2, No. 4, October 2005, Pages 490–494.

Program Auralization: Author’s comments on Vickers and Alty • 491

Table I. Comparison of Program Auralization Systems
InfoSound LogoMedia Sonnet ADSL LISTEN CAITLIN

Domain of use IC* Languages Logo Any
language

C Any
language

Pascal

Type of
auralizations
employed

Music
sequences
and sound
effects

Music pitches
and sound
effects

Music
pitches
and modu-
lations

Music pitches
and sound
effects

Music pitches Hierarchic
musical
motifs

Suitable for the
novice
programmer

No No No No No Yes

Specialist
knowledge
required to
define
auralizations

Music
composition

Some music and
familiarity
with MIDI

Some music
and
familiarity
with MIDI

Some music and
familiarity
with MIDI

Some music
and
familiarity
with MIDI

None

Extensible:
auralizations
can be
programmed

Yes Yes Yes Yes Yes No

Monomorphic:
host language
used in
definition of
auralizations

No No No No No No

Uninvasive:
source code left
unchanged by
auralizations

? Yes Yes Yes Yes Yes

Employs
preprocessing
phase

No N/A No Yes Yes Yes

2. RESEARCH PROCESS

When James Alty and I began the work there had been no formal or empirical study of program
auralization. Researchers had focused on the technical novelty of mapping program data to sound [e.g.,
see Sonnenwald et al. 1990; DiGiano and Baecker 1992; Francioni et al. 1991; Jackson and Francioni
1994; Jameson 1994; Mathur et al. 1994] without formally evaluating its efficacy. In 1995 Bock [1995]
reported a debugging experiment with his Auditory Domain Specification Language. However, the
results were ambiguous (no control group) and equivocal (having only a 68% success rate). The earlier
systems also relied on the user to define the required auditory mappings. A motivation behind our
work was to see how auralization could support program comprehension and debugging for the general
programmer population in which it is not reasonable to assume musical composition ability. The ICAD
’96 paper presented results from a pilot study with a rough prototype of the CAITLIN system in which the
auditory mappings were somewhat arbitrary. The structure of the auditory mappings was subsequently
strengthened to follow a hierarchic organization with a formal tonal framework and was described in
our ICAD ’97 and ICAD ’98 papers [Alty and Vickers 1997; Vickers and Alty 1998]. In those papers we
made the case for using music as a communication medium.1

1Briefly, the reason is that the æsthetic forms of music (I do not just mean western tonal forms here either) have been developed
over hundreds of years resulting in organizational schemes that are very effective for communicating ideas in multiple parallel
streams. It seemed to us that the highly structured syntax of programming languages might map well onto a music syntax to
give an effective auditory display.

ACM Transactions on Applied Perception, Vol. 2, No. 4, October 2005.

492 • P. Vickers

Previous researchers demonstrated the technical feasibility of mappings from the programming do-
main to the auditory domain, but did not carry out any formal evaluation. Furthermore, the early
systems tended to rely upon sound effects (auditory icons) and adhoc musical mappings—that is, the
musicality of the auralizations depended on the ability of the programmer/user to specify mappings that
adhered to conventions of music form and syntax. We recognised that whilst the ability to recognise a
melody is innate2 the ability to compose a melody (and especially the multiple melodies needed for a
program auralization) requires training (and some innate skill too) and cannot be assumed. Therefore,
an aim of the CAITLIN project was to design an auralization system with predefined mappings (motifs)
that were organized around a common tonal framework, thereby enhancing the auditory ecology of the
system. This, in turn, leads to greater potential for an effective and unambiguous auditory display in
which the different musical streams complement rather than clash with each other. What the ICAD
2000 paper presented for the first time was empirical evidence in support of auditory displays for pro-
gram comprehension and debugging tasks. Such evidence was lacking prior to this point, which is why
we see the ICAD 2000 paper as an important milestone.

3. THE FUTURE

The ICAD proceedings series provides an historical account of the development and evaluation of the
CAITLIN auralization system [also see Vickers and Alty 2002a; 2002b; 2003]. Having shown that musical
program auralizations can be used in bug location and detection tasks, what remains to be done? The
next developments in this field, as far as we see it, lie in three main areas: æsthetic issues of external
auditory representations, their real-world usefulness, and how auditory representations can work with,
support, complement, replace, and enhance visual representations.

3.1 Aesthetic Issues

The CAITLIN system reported in the ICAD 2000 paper used motifs structured according to principles
of music grammar and cognition. As such, they had an æsthetic of western tonal music. The role of
æsthetics in the design of computer artefacts and interfaces has recently begun to attract attention. At
ICAD ’04 in Sydney, Vickers [2004] discussed the role of æsthetics in the design of external auditory
representations of programs (a more thorough treatment can be found in Vickers and Alty [2006]).
The advantage of CAITLIN’s fixed mappings is that they provide a coherent and self-consistent tonal
framework. This ensures that the system’s aural ecology is healthy and avoids the cacophony of other
systems. The disadvantage is that a fixed æsthetic cannot be configured to suit different preferences
and emotional or cultural needs. The next generation of auralization systems must take the issue of
æsthetics seriously. Such a development could be considered to be extending the principles of literate
programming [Knuth 1984]. Where literate programming tools of the past concentrated on typography
and external visual representations to enhance presentation and comprehension of programs, the tools
of the future can make use of auditory and musical æsthetics to extend the programmer’s toolbox and
visualization set.

3.2 Real-World Usefulness

To date, our experiments have been in the laboratory with undergraduate and postgraduate students.
We need to go from the lab to the real programming world. To this end we have begun development of

2This observation is well supported by the music cognition literature.

ACM Transactions on Applied Perception, Vol. 2, No. 4, October 2005.

Program Auralization: Author’s comments on Vickers and Alty • 493

Gamelan3, a system for the auralization of object-oriented Java programs.4 We will use Gamelan to explore
the benefits of auralization in comprehending and debugging real-world object-oriented programs and
their associated difficulties (e.g., locking in a multithreading environment).

3.3 External Auditory and Visual Representations

In addition to exploring the æsthetic, cultural, and real-world usefulness aspects of auralization it
remains to see how auditory and visual mappings work together. We envisage that the temporal/spatial
communication space provided by an audiovisual auralization system will provide a powerful set of tools
to help programmers with writing, comprehending, and debugging their code. To take a simple example,
we can imagine reading the source code or looking at a visualization of a data structure at the same
time as listening to a number of threads passing messages and operating upon that data structure.
This would be next to impossible with visual representations alone, as much switching of visual focus
would be required [see Romero et al. 2002].

4. CONCLUDING REMARKS

The ease with which music and nonspeech audio can now be incorporated into programming environ-
ments (especially the Java platform) means that sophisticated spatial audio/visual tools are now even
easier to build than when we began with CAITLIN project. Thus, we hope that more researchers will
begin to explore this very interesting and rich avenue of enquiry.

REFERENCES

ALTY, J. L. 1995. Can we use music in computer-human communication? In People and Computers X: Proceedings of HCI ’95,
M. A. R. Kirby, A. J. Dix, and J. E. Finlay, Eds. Cambridge University Press, Cambridge. 409–423.

ALTY, J. L. AND VICKERS, P. 1997. The CAITLIN auralization system: Hierarchical leitmotif design as a clue to program
comprehension. In Proceedings of the International Conference on Auditory Display (ICAD ’97). Xerox PARC, Palo Alto, CA.
89–96.

BOCK, D. S. 1994. ADSL: An auditory domain specification language for program auralization. In Proceedings of the Interna-
tional Conference on Auditory Display (ICAD ’94), G. Kramer and S. Smith, Eds. Santa Fe Institute, Santa Fe, NM. 251–256.

BOCK, D. S. 1995. Auditory software fault diagnosis using a sound domain specification language. Ph.D. thesis, Syracuse
University.

DIGIANO, C. J. AND BAECKER, R. M. 1992. Program auralization: Sound enhancements to the programming environment. In
Graphics Interface ’92. 44–52.

FRANCIONI, J. M., ALBRIGHT, L., AND JACKSON, J. A. 1991. Debugging parallel programs using sound. SIGPLAN Notices 26, 12,
68–75.

JACKSON, J. A. AND FRANCIONI, J. M. 1994. Synchronization of visual and aural parallel program performance data. In Auditory
Display, G. Kramer, Ed. Vol. XVIII. Santa Fe Institute, Studies in the Sciences of Complexity Proceedings, Addison-Wesley,
Reading, MA. 291–306.

JAMESON, D. H. 1994. Sonnet: Audio-enhanced monitoring and debugging. In Auditory Display, G. Kramer, Ed. Vol. XVIII.
Santa Fe Institute, Studies in the Sciences of Complexity Proceedings. Addison-Wesley, Reading, MA. 253–265.

KNUTH, D. E. 1984. Literate programming. Comput. J. 27, 2 (May), 97–111.
MATHUR, A. P., BOARDMAN, D. B., AND KHANDELWAL, V. 1994. LSL: A specification language for program auralization. In Proceed-

ings of the International Conference on Auditory Display (ICAD ’94), G. Kramer and S. Smith, Eds. Santa Fe Institute, Santa
Fe, NM. 257–264.

ROMERO, P., COX, R., DU BOULAY, B., AND LUTZ, R. 2002. Visual attention and representation switching during java program
debugging: A study using the restricted focus viewer. Lecture Notes in Computer Science 2317, 221–235.

3Why, the native music of Java, of course!
4We note that Aditya Mathur has begun to develop his LSL system into this arena too, though he has yet to publish any results–see
http://www.cs.purdue.edu/homes/apm/listen.html

ACM Transactions on Applied Perception, Vol. 2, No. 4, October 2005.

494 • P. Vickers

SONNENWALD, D. H., GOPINATH, B., HABERMAN, G. O., KEESE, WILLIAM M, I., AND MYERS, J. S. 1990. Infosound: An audio aid to
program comprehension. In 23rd Hawaii International Conference on System Sciences. Vol. 11. IEEE Computer Society Press,
541–546.

VICKERS, P. 2004. External auditory representations of programs: Past, present, and future—an aesthetic perspective. In
Proceedings of the International Conference on Auditory Display (ICAD 2004), S. Barrass and P. Vickers, Eds. ICAD, Sydney.

VICKERS, P. AND ALTY, J. L. 1996. CAITLIN: A musical program auralization tool to assist novice programmers with debugging.
In Proceedings of the International Conference on Auditory Display (ICAD ’96), S. P. Frysinger and G. Kramer, Eds. Xerox
PARC, Palo Alto, CA. 17–24.

VICKERS, P. AND ALTY, J. L. 1998. Towards some organising principles for musical program auralization. In Proceedings of the
International Conference on Auditory Display (ICAD ’98), S. A. Brewster and A. D. N. Edwards, Eds. Electronic Workshops in
Computing. British Computer Society, Glasgow.

VICKERS, P. AND ALTY, J. L. 2002a. Using music to communicate computing information. Interacting with Computers 14, 5,
435–456.

VICKERS, P. AND ALTY, J. L. 2002b. When bugs sing. Interacting with Computers 14, 6, 793–819.
VICKERS, P. AND ALTY, J. L. 2003. Siren songs and swan songs: Debugging with music. Commun. ACM 46, 7, 86–92.
VICKERS, P. AND ALTY, J. L. 2006. The well-tempered compiler: The aesthetics of program auralization. In Aesthetic Computing,

P. Fishwick, Ed. MIT Press, Boston, MA. Chapter 11, in press.

Received February 2005; revised June 2005; accepted July 2005

ACM Transactions on Applied Perception, Vol. 2, No. 4, October 2005.

