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1    Introduction 

Early in the preliminary design of the GENI backbone, our working group informally split into 
two sub-groups focusing on hardware and software issues, respectively. While the hardware 
group designs the network elements in each Point-of-Presence (PoP) in the GENI backbone, the 
software group is identifying the software that should run on these components to enable 
researchers to conduct experiments over the nodes and links. This document describes our 
current thinking about the software components. 

 

1.1   Physical Infrastructure 

To set the stage for the discussion, we start with a high-level description of the physical 
infrastructure. The GENI backbone will consist of around twenty-five PoPs distributed across 
the United States. A fiber facility with high-speed (e.g., 10 Gbps) links will interconnect these 
PoPs. In addition, GENI PoPs will connect to the legacy Internet to reach existing Internet 
services and end users. Tail circuits will connect GENI PoPs to edge sites that host 
wireless/sensor subnets or PC clusters, or provide end users with direct access to GENI. At 
each edge site, an edge device will multiplex and demultiplex traffic over the tail circuit, and 
perhaps provide direct connectivity from the edge site to the legacy Internet and local users. 

    Within the PoPs, we envision an incremental deployment of equipment with the goal of 
providing ever more bandwidth and flexibility to researchers, as well as improved isolation 
between experiments. The PoP deployment will start with a programmable hardware router 
that consists of processors (including both general-purpose compute blades and network 
processors or FPGAs), line cards, and a switching fabric. Next, the PoPs can include a cross-
connect (such as a SONET cross-connect) that provides virtual circuits with dedicated 
bandwidth between PoPs, and the ability for traffic to “cut through” a PoP without imparting 
load on the programmable router. Then, the PoP can incorporate a ROADM (Reconfigurable 
Add-Drop Multiplexer) to provide researchers with more flexible and dynamic control over 
bandwidth allocation at the optical level. 

 

1.2   Software Architecture 

In addition to the hardware in the PoPs, the GENI backbone design must consider the software 
that runs on these network elements. The software architecture must address several key 
requirements: 

• Virtualization layer: The hardware in the GENI backbone is meant to be shared across 
multiple experiments through the use of virtualization. For example, a general-purpose 
compute blade in the programmable router would need to run an operating system that 
supports multiple “slivers” (the portion of a slice running on one component), each with 
a portion of the processing resources. As another example, a slice may need its own IP 
address blocks that it can advertise via BGP sessions to the external Internet. In both 
cases, the virtualization layer must provide an experiment the illusion it is running on its 
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own dedicated infrastructure. 

• Component manager: Each network element needs to run a component manager that 
can communicate with the GENI Management Core (GMC), either via the legacy 
Internet or over the GENI facility itself. The component managers are necessary to allow 
the GMC to instantiate the individual slivers in a slice, and for the network elements to 
provide measurement data to the GMC. For example, the programmable router would 
need to be able to communicate with GMC to instantiate a sliver that needs (say) 10% of 
the processing resources on a general-purpose compute blade and 10 Mbps of 
bandwidth on a line card connecting to a neighboring PoP. 

• Communicating with the legacy Internet: The PoPs need to be able to send and receive 
IP packets with edge sites and the legacy Internet. The PoPs must also support other 
functionality such as address translation, firewalls, tunneling, and routing. For example, 
tunneling is necessary to allow an end host to connect to a GENI PoP via the legacy 
Internet, and routing is necessary to allow the GENI PoPs to learn how to reach external 
destinations and to advertise reachability to the addresses of GENI nodes and services 
(including the addresses corresponding to experimental services that researchers have 
deployed on GENI). 

• Libraries to support experiments: Although researchers could conceivably write their 
own software from scratch, we envision that GENI should provide a number of software 
libraries to lower the barrier to constructing experiments. For example, researchers 
experimenting with a new control plane (e.g., a new routing or signaling protocol) may 
want to use a conventional IPv4 data plane for forwarding data packets. Rather than 
requiring researchers to write their own data-plane software (e.g., to run on a network 
processor), GENI could include a library that implements this function. 

The remainder of this document describes the software architecture in more detail. First, we 
present an overview of three broad classes of network experiments that we use to identify 
requirements. Next, we enumerate a set of principles that drive our design, and discuss the 
software components that we are considering as a consequence of these principles. Then, we 
discuss some specific questions and issues we are exploring, with the goal of highlight areas 
that may require coordination across groups or broader discussion. 

 

2    GENI Backbone Architecture 

 

2.1   Physical Infrastructure 

In this section we will describe the physical infrastructure of the backbone network and the 
software architecture in more detail. As described in the last section, the GENI physical 
backbone infrastructure would consist of GENI PoPs connected through a GENI optical 
backbone through a SONET cross-connect as well as a ROADM. We will refer to the optical 
backbone as the Core Backbone. Within each PoP, there will be one or more Programmable 
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Routers. We will refer to these routers as the Programmable Core Routers (PCR). 

 

 

 

Figure 2.1: GENI PoP and Edge Network Architecture 
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may reside at edge sites (eg. university campuses) that are part of the GENI infrastructure. 
Standard agreements have to be put in place to connect the GENI POP to the Internet through a 
service provider PoP. In the rest of the section, we will focus on the second type of 
interconnection, which is the interconnection to the edge networks through tail circuits. These 
tail circuits could be provided through the use metro optical rings and we will refer to these as 
the Metro Backbone. The architecture from the perspective of a GENI PoP and an Edge 
Network is shown in Figure 2.1. The figure shows an edge network connecting to a GENI PoP 
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through a Metro Backbone and multiple GENI PoPs being connected through a Core Backbone. 

 

2.1.1 Tail Circuit Termination - Edge Networks 

We envision that there could be two types of edge networks: a) existing experimental networks 
such as PlanetLab, Emulab and ORBIT that are federated into the GENI infrastructure by 
making them GENI compliant, and b) purpose built edge networks that are specifically built as 
part of the GENI effort. For each of these, the characteristics of the tail circuits and how they 
provide connectivity to a GENI PoP could be different, as described below. There are two end-
points to a tail circuit that traverses a metro backbone, one on the GENI PoP and the other on 
the edge site. 

    At the edge site, we envision a Campus Edge Router (CER) that provides connectivity to the 
metro backbone by terminating the access links such as T1, T3 etc. There could be two types of 
CERs. If a tail circuit connects an edge network that is federated into the GENI infrastructure, it 
appears that it is almost always the case that the CER would be the campus edge router which 
is now configured to provide a tail circuit into the GENI PoP (in addition to whatever PoP it 
might be connected to, to provide Internet connectivity to the campus). In this case, we do not 
anticipate that an experimenter would be able to get a sliver of this router and this router would 
only provide basic connectivity to the GENI PoP. If a tail circuit connects a purpose built GENI 
edge network to the GENI PoP, then the CER would be deployed as part of the GENI 
infrastructure. Even in this case we envision that the CER would be a commercial router on 
which an experimenter would be able to provision a network sliver (to the extent of receiving a 
bandwidth guaranteed MPLS tunnel to the GENI PoP) but nothing more in terms of 
provisioning a sliver with CPU and memory guarantees (Note: This requires further discussion; 
if the CER will be a custom built GENI device, then the CER and the PER, described below, can 
be combined into one device). Behind the CER would be an Edge Programmable Router (PER) 
that would be built as part of the GENI infrastructure and this is the router that is expected to 
provide GENI type programmability. This router is expected to be built out of off-the-shelf 
components (for eg. a PC running Linux) and would provide the capability for an experimenter 
to obtain slivers that could become part of an experiment slice. 

    It is envisioned that there will be a PER per edge network (be it federated or purpose built) 
and there are two ways in which a PER can connect to the GENI PoP. One way would be for the 
PER to connect to a CER which is connected to the GENI PoP through the metro backbone as 
described above. For this type of connectivity, we anticipate that the PER has to be close enough 
to the CER to connect directly using ethernet. The other way would be for the PER to connect to 
the CER through another PER that has direct connectivity to the CER. We envision that such 
type of connectivity would require a tunneling mechanism between the two PERs over the 
public Internet. For example, there will be a CER and one or more PERs at Princeton and an 
PER at NJIT would tunnel packets to the CER (to be sent to the GENI PoP) through a PER at 
Princeton. An example experiment that uses this type of connectivity would require the 
experimenter to get a sliver at the PERs at NJIT and Princeton as well as configure the CER to 
obtain bandwidth guarantees. 
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2.1.2 Tail Circuit Termination - GENI PoP 

At the GENI POP, the tail circuit traversing the metro backbone would be terminated (after 
going over the SONET cross-connect or ROADM) at the PCR. We envision that before the PCR, 
there may be another commercial core router on which the tail circuit is terminated before 
traffic is forwarded to the PCR. A use case of this would be one where a federated edge network 
that connects to the GENI PoP through a campus edge router. Although, no Internet traffic is 
carried on this circuit out of the campus, it is possible that the campus network administrators 
feel comfortable terminating the circuit on a commercial router, as shown in Figure 2.1, rather 
than on an experimental router. Also, the presence of a commercial router would enable some 
of the standard functions (such as different types of tunnel termination capabilities) to be 
enabled at this router rather than requiring these functions to be implemented at the PCR. The 
figure also shows a dotted line from the SONET X-connect to the PCR indicating that such 
direct connectivity is possible. It is anticipated that the connection between the SONET X-
connect and the PCR would be over multiple 10 GigE links. 

   The PCR would consist of one or more chassis with each chassis hosting multiple line cards, 
one or more control cards and a switch fabric. The control cards would host general purpose 
processors whereas the line cards may be built using network processors and/or general 
purpose processors. In addition to the router chasses, it is anticipated that there will be a blade-
server chassis that consist of general purpose processors that is an adjunct to the PCR and will 
provide slow-path packet processing. The blade-server will be programmable and an 
experimenter would be able to obtain a sliver of the compute and communication capabilities. 
To make virtualization easier, we recommend that a CER consist of one chassis exclusively 
hosting control cards and multiple other chasses exclusively hosting line cards and a switch 
fabric card to connect the line cards within the chassis. A metarouter will be made up of a sliver 
on one control card from the “control chassis” and slivers on one or more line cards from a 
”line-card chassis”. The communication between the control card and the line-cards would be 
over ethernet. A metarouter may consist of line cards from different line-card chassis although 
it is recommended that as a first step, a metarouter be limited to slivers on line-cards within the 
same chassis. As a first-step, it is also recommended that a sliver consist of whole line cards; 
that is, no sharing of line cards between different slivers. 

    More than one PCR at a PoP is envisioned mainly for redundancy reasons, though the level of 
redundancy that can be provided is unclear. For example, if one of the PCRs is not accessible, a 
checkpointed state of all slivers at that PCR may have to be moved to the backup PCR. We 
could require that if PCR fails, it is restarted and the experimenters need to restart their 
experiment again. If one of the line cards on the PCR fail, redundant line cards should be able to 
take over without the need for the experimenters to restart their experiment. 

 

2.2   Edge Site Configuration 

To reiterate, the tail circuit at the edge site can be terminated at either the CER or the PER 
(Programmable edge router). In addition, the edge site would consist of a few other components 
which could be connected in various configurations. In this section, we look at these 
components and there possible interconnections. The various components (including the CER 
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and PER are): Campus Edge Router (CER): The campus edge router connects the GENI Edge-
Site (GES) to the GENI PoP using a tail circuit. It can also connect the GENI Edge-Site to the 
general Internet as it will anyway be providing connectivity to the Internet for other campus 
traffic. This element is not programmable in the typical GENI sense. 

     One of the issues to consider is the following. Any traffic destined from one GES to another 
would be routed by the CER through one or more GENI PoPs. What about traffic from a GES to 
the Internet? What if some experimenters require their traffic destined to the general Internet to 
first go through a GENI PoP (for example, the experimenter is using a Programmable Core 
Router (PCR)) and would like traffic to go through the PCR) and some others would like traffic 
to be directly routed to the Internet?  

Programmable Edge Router (PER): These routers at the edge sites connect to the CER and are 
programmable. Through the CER, they connect to the GENI PoP via a tail circuit, or possibly an 
IP tunnel. They are also connected to one or more access networks within the edge site. 

Flexible Edge Device (FED): These devices reside within the access networks and are 
programmable. They typically host distributed services that live at the edge of the network. 
(The architecture of the FEDs and the services they run are within the scope of the Distributed 
Services Working Group). 

Programmable Access Point (PAP): In addition, depending on the type of access network, there 
could be programmable devices that are network specific. For example, if the access network is 
a 802.11 network, there could be Access Points which are programmable and if the network is a 
sensor network network, there could be sensor gateways that are programmable. We refer to 
these types of elements which may include RF interfaces as Programmable Access Points (PAP). 

    The above elements within the edge site could be combined and configured in different ways. 
The CER would be a separate entity, but the PER and FED could be separate entities or could be 
combined together. The PAP, when it is required, could be a separate element or could be one 
incarnation of an FED. We look at the different configurations and their implications, below. 

 

2.2.1 Configuration 1 

 

Figure 2.2  illustrates a 802.11 network access network which consists of a 802.11 access network 
which connects wireless devices to the PER together with another access network which hosts 
an FED cluster. The FED cluster is connected to the PER through a switch. In this configuration, 
an experimenter who proposes to run wireless experiments would program PAP and PER (if 
necessary, otherwise, the PER could be a pass through that forwards IP traKc) whereas an 
experimenter who plans to run distributed services experiments would program the FEDs and 
the PER, if ncecessary. 
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Figure 2.2: Edge Site Configuration 1 
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device to get a sliver of this device. This may be a preferred configuration in some cases but 
may not provide the capability to run experiments within distributed service device clusters. 
We believe that the FEDs and the PERs should be separate components to provide this added 
flexibility. 
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Figure 2.3: Edge Site Configuration 2 
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Figure 2.4: Edge Site Configuration 3 
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• BGP4 (I-BGP) to exchange routes with other PCRs at other GENI PoPs). 

• One of OSPFv2, IS-IS, RIPv2 (for IPv4) to perform routing between the GENI PoPs and 
within the PoP. It is possible that all these protocols may have to be implemented for 
experimentation purposes. 

• Multicast routing protocols such as PIM-SM, PIM-DM, DVMRP, Single Source Multicast  
(SSM) etc. These protocols are purely for experimentation purposes and the need for 
these is up for discussion. 

Other protocol and basic packet processing support to be provided by the GENI substrate at the 
PCR are listed below. 

• A protocol for the control plane to communicate control information to the forwarding 
plane.  We advocate this protocol be standards based such as ForCES which is currently 
being  standardized within the IETF. There are other well-known but non-standard 
protocol such as the Forward Element Abstraction API proposed by the Click modular 
router. 

• To provide bandwidth guarantees and QoS for both packets routed within the GENI AS 
and between the GENI PoP and a GENI edge network, we expect that the PCR support 
MPLS  and this would require LDP and RSVP-TE to be supported. 

• DiffServ support for labeling packets into diKerent equivalence classes and priority 
based forwarding. 

• It is possible that the PERs connect to the PCR using layer-2 tunnels as well as encrypted 
layer-3 site-to-site tunnels. This would require support for L2TP, PPP and IPSec 
termination at the PCR. 

• NAT, stateless and stateful firewall capabilities (these requirements need more 
discussion -  it appears that functionality such as NAT and stateful firewall would be 
needed only for  experimental purposes and may be left to the experimenter to 
implement). 

• DHCP server, relay capability (as required) to provide IP addresses to end-points of 
layer-2 tunnels that may be terminated on the PCR. 

• VRRP if two PCRs are used in redundant configuration. 

In addition to this, basic operating system support and other platform software such as IPC, 
timers and memory management software needs to be provided on the control card general 
purpose processors, the line-card network processor host CPUs (for example, Embedded Linux 
on the Xscale processor on Intel IXP2800) and on the blade-server processors. 

   In the next section, we enumerate the reasons for our recommendation to support a to-be-
standards based API such as ForCES by providing an overview and arguing for its applicability 
within the PCR. 
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2.3.2 The ForCES protocol 

 

 

 

Figure 2.5: ForCES Protocol Architecture 
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they use is confined to one chassis or spans multiple chasses. A high-level ForCES architecture 
diagram is shown in Figure 2.5. 

    Conceptually, an FE consists of a group of Logical Function Blocks (or LFBs). Each LFB 
provides a specific function. For example, an LPM (longest-prefix-match) LFB takes an IP 
address as input and generates an index to the next-hop table. Each LFB has attributes that can 
be manipulated by a CE. For example, an LPM LFB may have a table of IP prefixes and next-
hop indices. CE controls the behavior of an FE by manipulating the attributes of the LFBs in the 
FE. For example, CE adds or deletes a prefix table entry of the LPM LFB. We envision that 
within the context of the PCR, the GENI substrate would provide standard software CE 
functions such as BGP, MPLS etc. and standard LFBs such as IPv4 packet forwarding, NAT, 
stateful and stateless firewall (some of these are up for discussion as mentioned earlier). Both 
the CE functions and the LFBs provided by GENI would be ForCES compliant. Software 
support would be provided so that the experimenters could load their own CE functions on the 
GENI control cards and own LFBs. within the line cards and experiment with combinations of 
standard GENI CEs and LFBs with those provided by the experimenters. 

    There are only a small set of control op-codes that are specified by ForCES and the data 
naming convention is very similar to that of SNMP MIB. With ForCES, each API call to be 
performed on an FE can be modeled as one or more basic operations. Each basic operation can 
be specified as: <op-code, data-id, data>  and the op-code is set is limited to create, add, delete, 
set/replace, get/query. ForCES categorizes all the configurable and accessible data into LFB 
classes. Each LFB class can have one or more instances. Each data within an LFB instance is 
assigned a path ID. So, a data-id can be viewed as the concatenation of an LFB instance ID and a 
path-ID: For example: <5.1.1.2.3> denotes data 1.2.3 of LFB instance 5.1. Using this example, 
<SET, 5.1.1.2.3, 192.168.1.1> would mean set data 1.2.3 of LFB 5.1 to IP address 192.1681.l.1 and 
<GET, 5.1.1.2.3, NULL> would read the value of data 1.2.3 of LFB 5.1. This illustrates the fact 
that the naming convention is very similar to SNMP which is well understood in general; we 
believe that this makes the addition of new LFB and naming and accessing the different 
parameters within the LFB very easy. 

 

2.3.3 Programmable Edge Router 

Compared to the PCR, we expect the PER to provide support for a more limited set of routing 
protocols. As the PER is not expected to connect directly to either the GENI PoP or to the PoP of 
another service provider (this is the function of the CER) BGP support would not be needed. To 
support routing within the edge network, PER is expected to support one or more of OSPFv2, 
RIP and IS-IS (depending on the requirements). We do not anticipate multicast support either 
(do we?). 

    We expect the CER to support MPLS/DiffServ but the PER should be able to support tagged 
VLANs, so that traffic can be differentiated at the PER with VLAN tags which will then be used 
by the PCR to use the appropriate MPLS tunnels and tag the packet with the appropriate 
DiffServ FEC bits. 

    We expect the PER to support IPSec, PPP and L2TP termination so that PERs that do not have 
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direct access to a CER can connect to the GENI PoP by tunneling packets through another PER, 
as described earlier. Of course, PPP, L2TP and IPSec client support would be needed as well so 
that site-to-site tunnels between a PER and a PCR can be established if required. 

    Platform support including timers and RPC as well as virtual machine support (as described 
in the previous section) would be needed as well. Redundant configuration of PERs is a 
question that has similar implications and challenges as we discussed earlier and is left for 
further discussion. 

2.3.4 Flexible Edge Device 

FEDs would enable experimenters to run distributed services on a sliver. Experimenters should 
also be able to cluster FEDs and provide load-balancing capabilities. For this to work, one of the 
FEDs could be used as a load-balancing switch which front-ends a cluster of other FEDs. The 
software support provided at the FEDs is to be determined by the Distributed Services Working 
Group. 

2.3.5 Programmable Access Point 

The PAP is wireless specific and should be programmable. The PAP should provide software 
support to tune radio parameters as well as support for other capabilities similar to that 
provided by a WLAN switch. These may include support for L2TP tunnel termination, user 
authentication capabilities, IAP (Inter-Access Point Protocol) support etc. In addition software 
support should be provided so that experimenters can run mobility experiments including 
micro-mobility and macro-mobility functionality (for example, by running a FA on the PAP). 
The software support on the PAP is to be determined by the Wireless Working Group. 

2.3.6 Machine and Network Virtualization Support 

Within the PCR and PER, we recommend that support for virtual machines (VM) be provided 
so that each experimenter receives a VM both on the control plane and on the forwarding plane. 
A VM will allow for resource isolation within the programmable routers. Experimenters can 
run their own versions of routing protocols on the control plane and implement their own LFBs 
without adversely affecting other slivers within the same processor/card. The support for VMs 
will also enable experimenters to modify/load their own kernel with their version of the 
network stack on the control plane. Similarly, we believe that the adjunct blade-server which 
will be used for higher layer processing (for example. XML based routing) should also provide 
VM support. In addition to resource isolation, network level isolation between simultaneous 
experiments needs to provided. 

    We envision an implementation similar to VINI implemented on the PlanetLab virtual 
infrastructure (PL-VINI). There are multiple design requirements that are specified and 
implemented within PL-VINI. Not all of the support provided by PL-VINI may be necessary 
but at the same time some additional support may be needed. The requirements put forth by 
VINI include a) ability to configure flexible network topologies, b) support for flexible 
forwarding and routing, c) support to connect to external networks (outside of the VINI nodes), 
and d) support for simultaneous experiments. 

    Within the context of being able to configure flexible network topologies, there are three main 
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issues. The first one is the provision of a large number of multiple virtual interfaces for an 
experiment although the physical infrastructure may support only a few. This may not be a 
concern within the PCRs at the GENI PoPs as the current thinking is to allow experimenters to 
configure a metarouter that may consist of multiple line cards with as many physical interfaces 
as the experiment needs. This would be a requirement within the PERs at the edge networks as 
the PERs would have very limited number of physical interfaces and may require a larger 
number of virtual interfaces to be provided for user experiments. The second issue is in 
providing virtual point-to-point connectivity between nodes. Within GENI, emulation of point-
to-point connectivity may be required (depending on the experimental network topology) 
between the different physical interfaces on the PCRs on the GENI PoP and also between the 
physical interfaces on the GENI PoP and virtual interfaces on the PERs at the edge networks. 
Emulation of point-to-point connectivity between PCRs may be through MPLS tunnels between 
the PCRs to emulate multiple virtual links over the same physical links and provide bandwidth 
guarantees for each virtual link. Between a PCR and an PER, emulation of multiple virtual links 
could be through MPLS tunnels between the PCR and the nearest CER and the use of VLAN 
tags between the CER and the PER (this was discussed earlier and is based on the idea that 
CERs, which are anticipated to be commercial routers, would terminate MPLS tunnels). The 
third issue is with regard to manifesting the failure of physical links as failures in virtual links. 
This support would definitely be needed as part of the virtual link emulation within the GENI 
infrastructure. Note that virtual links may have to be emulated between PERs as well. We 
anticipate that this level of emulation could be supported through layer-2 tunnels as we expect 
PERs to support layer-2 tunneling mechanisms (as indicated earlier). 

    To provide flexible forwarding and routing VINI considers two issues. Firstly, experimenters 
should be allowed to load their own routing process (which could potentially run proprietary 
routing protocols) within their VM on the control plane. This support is definitely needed 
within GENI. These routing protocols need to able to find destination routes to machines within 
the GENI infrastructure and also to outside hosts. The issue could be complicated as the routing 
within GENI could be used on proprietary addressing whereas routing to external hosts would 
be based on IP. We envision that routing within GENI be handled by the experimenter using 
their routing protocols (which will then be carried over the virtual links that makeup the 
topology specified by the experimenter). The experimenters may experiment with standard 
routing protocols such as BGP and may want to establish adjacency with BGP peers on the 
Internet to route packets outside of GENI. This needs to be supported by the GENI substrate. 
Routing could be destination IP address based or any other scheme based on other parameters 
(including proprietary addressing mechanisms used by the experimenters). We envision that a 
Forwarding function would be only one of many other LFBs within the forwarding plane. 
Expanding on this concept, the experimenters should be able to load different types of LFBs 
within their own VMs on the line card processors to process their packets in diKerent ways 
before forwarding them over their virtual links. As previously indicated, ForCES seems to be an 
ideal protocol to provide the communication abstraction between the control plane and the 
forwarding plane to configure and monitor various LFBs of an experiment. 

    Another important design requirement as indicated by VINI and is important to GENI is the 
ability to forward packets to external hosts from GENI nodes. There are two issues that should 
be considered. Firstly, end hosts within GENI should be able to route their packets through the 
GENI infrastructure. This involves first sending packets from the end hosts through the edge 
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network to an PER. The mechanisms for this requires more discussion and will depend on the 
configuration. For example, if the experimenter uses IP forwarding and if the PER is one hop 
away, it could be configured as the default router. Otherwise, tunneling mechanisms may have 
to be supported between the end-hosts and the PER. Then, these packets need to be forwarded 
from the PER to a PCR over a virtual link (which, as indicated earlier, could be over MPLS 
tunnels). Finally, the PCR needs to forward the packets to the external hosts (which has to be IP 
communication). Note that the above discussion assumes that there is no direct exit point to the 
Internet from the PER other than going through the PCR. Secondly, return traKc needs to be 
directed back to the PCR and this could be achieved through a NATing mechanism as in VINI. 

    The last design requirement posed by VINI and is applicable to GENI is isolation of multiple 
simultaneous experiments on the GENI nodes. VINI partly achieves this by using mechanisms 
provided in PlanetLab for resource isolation and also by adding PlanetLab extensions for VINI. 
Similar support is needed within GENI and again we stress that VM support should be 
provided for each experiment to support resource isolation and virtual link support to provide 
network isolation as discussed above. Within PL-VINI resource isolation is supported using 
UML (user mode Linux). It appears that there are other VM implementations such as Xen which 
claims better performance than the likes of UML, VMware etc. Further study is required to 
decide on a specific VM implementation for use within GENI. 

    In the next section, possible experimental network architectures are considered that would 
make use of the capabilities of the GENI software substrate. 

 

3 Classes of Experiments 

 

To help identify the key software components for the GENI backbone, our working group 
focused on three broad classes of experimental network architectures. First, we considered 
novel architectures that are not backwards compatible with the Internet. Second, we explored 
how GENI can support research in new control planes or distributed services, while exchanging 
conventional IP packets with Internet hosts. Third, we investigated architectures that 
dynamically establish virtual circuits at the optical layer. To make the discussion concrete, we 
focus on existing architectural proposals in each category, rather than trying to conceive of 
novel architectures. 

3.1 End-to-End Architectures 

A major goal of the GENI facility is to support experiments with “clean slate” network 
architectures that might not be backwards compatible with the legacy Internet. For example, 

• Wide-area Ethernet: A network could consist entirely of “layer 2” devices such as 
Ethernet switches that forward frames based on MAC addresses. 

• Capability-based systems: In a capability-based system, a data packet carries a 
capability that determines whether and where a router chooses to forward the traffic. 
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• Internet indirection infrastructure: In the i3 system, senders deposit packets at 
intermediate points in the network, and receivers install triggers that enable them to 
receive the traffic. 

• XML routers: In an XML router, the data packets carry messages in XML format, with 
tags  and attributes that determine how the packets are forwarded and processed at each 
hop. 

Although these experimental architectures do not have an IPv4 data plane, they need to be able 
to reach end hosts via the Internet. As such, the GENI backbone needs to be able to maintain 
tunnels with end hosts to send and receive non-IP traffic over an Internet path, and use 
Network Address Translation (NAT) to ensure that return traffic goes through the GENI 
backbone. Inside the GENI backbone, these non-IP packets should be forwarded based on the 
experimental architecture. For high speed, packet forwarding may be done by software running 
on a network processor or FPGA. To support researchers in exploring new data planes, GENI 
could conceivably include software libraries for high-speed forwarding based on flat addresses 
(as specified by bit masks on the packet); in addition, a library could support experimenters in 
collecting packet traces that log certain sets of bits in each packet. 

 

3.2 Alternate Control and Management Architectures 

GENI is likely to be used to evaluate novel control and management planes, under conventional 
IPv4 packet forwarding. For example, 

• Routing control platform: An RCP is a distributed service that monitors the network 
topology and exchanges reachability information with neighboring Autonomous 
Systems (ASes), and uses this information to compute forwarding-table entries on behalf 
of the routers. 

• Multicast overlay: A multicast overlay supports on-demand streaming of audio and 
video content to many clients simultaneously. Servers running in the backbone can serve 
as relayant nodes in the multicast tree. 

These experiments view the GENI nodes as a programmable ISP backbone that can run new 
control-plane software, while still forwarding IP data packets. Experiments involving routing 
may need to participate in the Border Gateway Protocol (BGP) with neighboring ASes in the 
legacy Internet, and advertise their own address blocks. Since many experiments may rely on 
IPv4 packet forwarding, the GENI backbone could include a software library for a high-speed 
IPv4 data plane running on network processors. To multiple experiments to share a single 
network processor, the NP may have separate forwarding tables (and other forwarding state, 
such as access-control lists) on a shared network processor. 
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3.3 Virtual Circuits 

Another major goal of GENI is to enable experiments with network architectures that exploit 
the ability to establish virtual circuits. For example, 

• Valiant Load Balancing: A VLB network forms a full mesh of virtual circuits between 
the routers. Data packets are forwarded through an intermediate node to distributed the 
load evenly over the backbone. 

• TCP flow switching: Under TCP flow switching, a TCP SYN packet triggers the creation 
of a virtual circuit for carrying the data packets through the network. After an idle 
period, the network can tear down the circuit to free resources for future data transfers. 

These experiments require researchers to have the ability to establish virtual circuits through 
the underlying network. In the VLB example, the circuits may be statically established as part of 
instantiating the experiment. However, an experiment with TCP flow switching requires a way 
for the experiment itself to trigger the set-up and tear down of virtual circuits on a relatively 
small time scale. 

 

4 Principles for the GENI Backbone Design 

 

This section discusses the guiding principles for the design of software for the GENI backbone. 
Some of these principles are motivated by the example experiments, and others translate 
general requirements for the GENI facility into specific guidelines for the backbone software. In 
addition to outlining the principles, we also discuss the kinds of software components necessary 
to realize these goals. 

4.1 Robustness to Misbehaving Experiments 

A cornerstone of the GENI facility is the ability to provide isolation between multiple 
independent experiments running on the same physical components. A buggy or malicious 
experiment should not be able to compromise the resource guarantees for other experiments. In 
some cases, existing techniques for providing isolation are sufficient. For example, a general-
purpose compute blade could provide guaranteed CPU resources to each sliver by running an 
operating system with a CPU scheduler. Similarly, a SONET cross-connect can provide virtual 
circuits with guaranteed bandwidth. Components that are hard to share (such as network 
processors) can be allocated in their entirety to a single slice. However, the design of the GENI 
backbone may have points of contention that are difficult to prevent, forcing a careful balance of 
proactive enforcement (where possible) and reactive detection (where necessary). 

    For example, consider a slice that has been allocated a network processor and a certain 
fraction of the bandwidth on a particular line card. If the experimenter programs the network 
processor to send traffic in excess of the bandwidth allocation, the extra traffic may introduce 
contention in the switching fabric that affects other slices. GENI can reduce the likelihood of 
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contention by providing software libraries that shape traffic as it leaves the network process to 
enter the switch fabric. Still, an experimenter may accidentally or intentionally install its own 
software on the network process to send at a higher rate. We envision that GENI would need to 
monitor the network traffic to detect and report such violations, rather than relying solely on 
explicit enforcement of the sending rate. When violations occur, the researchers running 
experiments in other slices must be notified that isolation was compromised. 

4.2 Multiplexing Access to Logical Resources 

Some resources, such as CPU and bandwidth, are easily shared by multiple slices by applying 
conventional scheduling techniques. However, some logical resources are not easily shared in 
time, requiring the GENI backbone to provide gateway software that serializes the access to the 
resource and enforces isolation across experiments. We envision that the gateway software 
could run on the programmable router and communicate with the slices that need to employ 
the gateway service. Thus far, we have identified two such logical resources: the BGP sessions 
with neighboring ASes and the signaling interface to the optical switch. 

   Experiments with new control planes may need to exchange BGP messages with neighboring 
ASes in the legacy Internet. However, neighboring ASes may not be willing to have separate 
BGP sessions with each slice. Instead, we envision that the programmable router would run a 
BGP gateway that has BGP sessions with neighboring ASes, as well as separate BGP sessions to  
individual slices. The BGP gateway would combine the BGP update messages sent by the slices 
into a single stream of messages to each neighboring AS, and relay the neighbor’s update 
messages to each slice. The gateway ensures that an experiment that sends malformed messages 
or crashes frequently does not crash the real BGP sessions to the neighboring ASes. The 
gateway can also filter BGP update messages to ensure that a slice does not send 
announcements for address blocks it does not own or send update messages at an excessive 
rate. The gateway can also apply policies that provide a slice with a customized view of its BGP 
connectivity. For example, one slice might want to connect to AS A, while another experiment 
might want to connect to both AS A and B. 

    Another class of experiments need the ability to dynamically set up and tear down virtual 
circuits. Yet, an experiment should not be permitted to set up and tear down circuits at an 
excessive rate, or to create a circuit that violates the resources limits for that slice. However, 
existing optical components, such as SONET cross-connects, do not support virtualization of the 
command-line interface or signaling plane. Instead, we envision having a gateway that lies 
between the slices and the optical component to provide the illusion of a separate virtual switch 
for experiments that require this functionality. The gateway interacts with the underlying 
optical component (perhaps via a vendor-specific command-line interface, or via a signaling 
protocol such as GMPLS)  and also performs the necessary book-keeping and admission control 
to ensure isolation between slices. [Note: The backbone group needs to dig into the optical 
control issues in more detail to understand the kinds of signaling interfaces supported by 
existing commercial devices. Also, we may need to take special care to retain control over the 
routing of virtual circuits, and to prevent automatic rerouting after a failure, should an 
experiment want to handle these failures directly.] 
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4.3 Software to Lower Barrier to Experimentation 

In addition to supporting virtualization, isolation, and programmability, GENI could provide 
software libraries to lower the barrier to experimentation. For example, the distributed services 
working group is defining a variety of basic services, such as distributed storage and topology 
discovery. The GENI backbone can also provide software libraries that provide basic 
functionality that would be useful for a wide class of experiments and needs to run at a high 
speed. Many of these functions relate to how the data plane forwards packets: 

• Shared IPv4 data plane for distributed services: Many slices will be running 
experiments with new distributed services that carry conventional IPv4 data packets 
across the GENI backbone to other hosts. Devoting a separate network processor to each 
(low-bandwidth) slice would be very wasteful. Instead, we envision that a single 
network processor could forward IPv4 data packets across the backbone on behalf of 
multiple slices, while enforcing the necessary bandwidth limits on each slice. The 
forwarding-table entries may be created by conventional IP routing protocols running 
on the GENI backbone. 

• Shared IPv4 data plane for alternate control planes: Other slices will be running 
experiments with new control planes that need to generate their own data-plane state 
(such as  forwarding-table entries and access-control lists). Still, many of these 
experiments may assume conventional IPv4 packet forwarding, allowing them to share 
a single network processor that implements IPv4 packet forwarding and filtering. As 
such, we envision that the programmable router would have software that would allow 
a single network processor to perform IPv4 packet forwarding with separate forwarding 
tables and access-control lists for the participating slices. 

• Forwarding based on flat addresses: Another common class of network architectures 
rely on flat addresses, such as MAC addresses. The GENI backbone could conceivably 
provide software libraries that support packet forwarding based on flat addresses, by 
exploiting the  content-addressable memory (CAM) functionality on the network 
processors. On one extreme, the library could support a single packet format (such as 
Ethernet frames); on the other extreme, the library could allow the researcher to specify 
a bit mask for the fields in the packet that are used to index the CAM. 

• Packet sampling: Many researchers may want to collect measurements of the packets in  
their slice that flow between components inside of GENI. (Note: This is distinct from the 
monitoring of IP packets that enter and leave GENI, as needed for accountability and 
security.)  Providing libraries for packet sampling, either for IPv4 packets or 
configurable packet formats, would lower the barrier for researchers to collect detailed 
traces at high speeds. 

Of these four scenarios, the first item (on shared IPv4 data planes for distributed services) is the 

most important, since this is necessary to make efficient use of the network processors to 
support the large number of experiments with new distributed services. We could arguably 
forego providing libraries for the other three items, since researchers could write these modules 
themselves, and presumably share them with others who need similar functionality. Still, there 
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is value in providing hardened, optimized, and well-supported software that would run on the 
network processors, to lower the barrier to evaluating new network architectures. Also, having 
these libraries written, debugged, and supported in a professional manner may be preferable to 
having many researchers depend on “research code” that is not as well written or debugged. In 
the end, the decision of which libraries to support (if any) may depend on the available 
resources and the likelihood that such functionality would be likely to emerge from the research 
community anyway. 

    In supporting these functions, we advocate applying existing APIs wherever possible, to 
obviate the need for a substantial design activity to define new APIs. In addition, using existing 
APIs may enable the use of existing software implementations, and would allow researchers to 
design their experiments based on the APIs described in existing documents. Examples of such 
APIs for IPv4 packet forwarding include the ForCES interface (defined by the IETF to enable a 
separation of data and control planes in IP routers) and the Forwarding Element Abstraction 
(defined by the Click open-source forwarding engine and used by the XORP open-source 
router). Another example in the context of packet monitoring is the psamp (packet sampling) 
activity at the IETF. 

4.4 Capitalizing on Open-Source Software Whenever Possible 

Much of the key software functionality required for the backbone is already available, at least in 
part, in open-source software. For example, GENI can support communication with the legacy 
Internet by exploiting 

• data-plane functionality in Click (e.g., packet forwarding and NAT). 

• routing-protocol implementations in XORP, Quagga, or OpenBGPd (e.g., for 
experimenters to evaluate and extend routing protocols, and for use in building the BGP 
gateway). 

• tunneling using OpenVPN. 

These issues are discussed in more detail in the VINI paper “In VINI Veritas: Realistic and 
Controlled Network Experimentation” at SIGCOMM’06. We may also be able to exploit open-
source software for other purposes, such as packet monitoring (e.g., tcpdump) and tools for 
developing code for network processors and FPGAs. 

4.5 Separate Identifier Spaces for Different Functions 

Each component needs an id – a control id. Each sliver—an instantiation of a slice on a single 
physical resource—needs an id. Each slice has an id. Between GENI nodes, include the slice id 
in the packets. Should this be an MPLS label or VLAN tag, possibly stacked? [Note that stacking 
may be a very nice way to support federation, where some experiments may span multiple 
infrastructures.] Should these labels/tags be globally unique to make trace-back and 
troubleshooting easier, or swapped at each hop to preserve ID space? [Side question: does LDP 
allow globally unique labels?] What about limitations on ID space, e.g., just 4K VLANs? How 
do end users identify the slices they want to ”opt in” to? [Some DNS support? Is Distributed 
Services already looking at this problem?] Other question: should GENI provide some support 
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for helping slices manage their IP address space?) 

 

5 Topics for Discussion 

 

This is a laundry list of issues that need to be investigated and discussed. Many of these issues 
span multiple working groups. 

5.1 Edge Device at Local Sites 

The tail circuits need a device on the remote end at the local edge sites. We have identified a set 
of elements at the edge sites to be provided by the GENI infrastructure (PER, FED, PAP). We 
have identified some of the required functionality of these devices but we still need to debate 

these features as well as the different combinations and configurations of these devices. For 
each of these devices, we need to identify the hardware platform. Can the PER be a scaled down 
version of the PCR? How many ports do we need to support? What technologies and speeds? 

For the FEDs and PAPs, will PC platform be sufficient. Can we assume that the FED clusters 

and the PAPS will have already shaped/scheduled the traffic, obviating the need for the PER to 
have QoS functionality? [Note: E-mail discussion has already ensured on this topic across the 
backbone, wireless, and distributed-services groups, but we have not yet reached a common 
understanding]. We have also identified the CER as the point of entry to the edge site. In this 
case, do we expect the tail circuit (for example, an MPLS tunnel) to be terminated at this CER or 
would it be terminated at the PER. If it is terminated at the CER, how would QoS be enforced 

on the traffic between the CER and the PER (can we use VLAN tags?). Also, what type of 
configuration is required at the CER and how would this be enabled? 

5.2 Configuration of a slice 

The issue pertains to the GMC (GENI Management Core). How would an experimenter 

configure the different elements within the GENI PoP and the Edge Sites to makeup a slice? 

This requires different components in the experiment to be identified, slivers in each of these 
components be reserved with the required capabilities (CPU, memory, network bandwidth etc.) 
and the slices be glued together and made consistent. There are two ways to approach this 
problem. One is through direct configuration of each of the elements using the GMC (which 
could consist of management components that are hierarchically organized). The other 
approach is using signaling where all the elements in the path (or a set of paths which could 
form a tree) that an experimenters expects packets to flow within the experiment are signaled 
from a root node using some variant of RSVP (extended to include support for CPU and 
memory allocation within the components, as well as allocating any other resources). This 
configuration versus signaling issue needs further discussion. 

5.3 Constructing End-to-End Experiments 

How do we construct end-to-end experiments, in terms of gluing all the pieces of a slice 
together. What does the end host need to be running? Might we want to virtualize the end host 
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itself for certain classes of experiments (e.g., experiments with new end-to-end architectures)? 

5.4 Monitoring 

Monitoring is important for (i) determining if GENI itself is buggy (e.g., not providing 
isolation), (ii) providing measurements for experimenters to evaluate their ideas, (iii) detecting 

attacks launched from within GENI and tracing them back to the offending slice, and (iv) 
detecting attacks on GENI from the external Internet. 

    Paul Barford has been thinking about these issues in general. We have some questions about 
the monitoring capabilities required for the backbone links—both the intra-GENI links (for the 

benefit of experimenters, and for trace-back within a slice) and edge links (as traffic goes 
to/from the legacy Internet). The high speed of some of the links may be a constraint we need 
to consider, especially for full-packet capture. Also, will the programmable router need a disk to 
(temporarily) store the traces, or will a separate monitor store this? We may also need to log 
NAT state to be able to interpret data collected before/after address translation has been 
applied. 

5.5 Inter-Slice Communication 

How do we envision inter-slice communication taking place? This issue must also come up in 
the distributed services working group. 

5.6 Bootstrapping and Configuration 

How should we boot-strap and manage the individual nodes (e.g., the various blades in the 
programmable router)? 

    What about discovery and dissemination within the GENI backbone, to allow the backbone to 
“boot” and for researchers to communicate with the slivers in their slices. Initially, we could 
assume that all of the backbone components are accessible via the legacy Internet, but we may 
want a more auto-configuring and secure solution for the long-term. Hui Zhang will be 
thinking about these issues, drawing on his work on the 4D architecture. 

    Are there challenges with auto-configuring legacy commercial devices that were not designed 
with that in mind? Perhaps the auto-configuration and discovery functionality could be built in 
the gateways that we already need for adding virtualization (e.g., of the signaling/command-
line interface to the optical components). 

5.7 Alarm Propagation 

When equipment fails, virtual components fail, too. Some experiments will need to be notified 
that their virtual components have failed, whereas others may really run on an overlay that 
hides these kinds of annoyances. For the “raw” experiments that want to see the details, we 

need to produce an “up call” of sorts to let the each affected sliver know that its (say) virtual 
link has failed. This might involve supporting certain SNMP MIBs that are (relatively) device 
independent. This general problem of alarm propagation seems to be a general GENI-wide 
issue, and not unique to the backbone group, though the backbone group may need to take 
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special care to make sure GENI had visibility into layer-2 equipment failures. 

5.8 NAT/Firewall Per Slice 

We probably need NAT and firewall state per slice in communicating with the external Internet. 

What about the difficulties of supporting P2P applications in the presence of NATs and 
firewalls? (Think, for example, of the challenges conventional P2P applications like Skype face 
when both end points are running NATs and firewalls. Sometimes it is unavoidable to have to 

direct traffic through a third party that each of the other two nodes can contact. Will GENI need 
to do this, too, for cases where two end users are NATted addresses? 

5.9 Tunneling Over the GENI Backbone 

What if an end user is on a campus with a tail circuit to GENI and wants to connect to a 

network architecture that is not running on the nearby PoP? Should the traffic be routed via 
GENI itself to the nearest PoP that is part of that slice? How? Do we need the ability to tunnel 
through the GENI backbone to reach a slice? That is, does the GENI backbone need to provide a 
general reacahbility service. 

5.10 Dynamic Circuit Set-Up 

What kinds of set-up speeds are feasible with today’s hardware and software? If the hardware 
can support fast set-up, but the software interfaces don’t (as seems to be the case), how much 
are we willing to pay to have more flexible software with faster set-up? Is circuit set-up on 
packet time scales a requirement for GENI? If so, why? If so, how far is existing signaling 
software from achieving these goals, and how much would it cost to get new software that is 
better? 

    How do we support policies on a per-slice basis (this relates to the gateway/mux function)? 
Do we want to allow slices to do explicit routing or actually have the illusion of running their 
own signaling and path-selection software at each hop? 

 

 

 


