Current Research Topics in Data Security

Dan Suciu

Seminar on Trustworthy Computing 9/29/2004

1

Data Security

Dorothy Denning, 1982:

• Data Security is the science and study of methods of protecting data (...) from unauthorized disclosure and modification

- Access control
- Security in statistical databases

Access Control

2

4

Discretionary Access Control

- The System R authorization model [Griffith and Wade'76], [Fagin'78]
- Became the SQL security model
- Extended, generalized to OO data

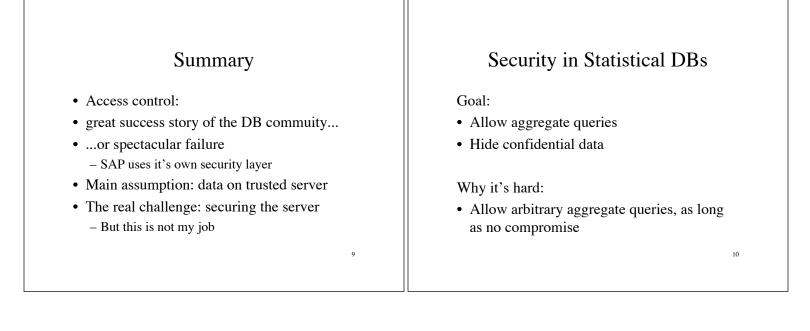
Mandatory Access Control

• Has been tried, but semantics becomes too complex

Access Control in SQL	Examples
GRANT privileges ON object TO users [WITH GRANT OPTIONS]	GRANT INSERT, DELETE ON Reserves TO Yuppy WITH GRANT OPTIONS
privileges = SELECT INSERT(column-name) DELETE REFERENCES(column-name) object = table attribute	GRANT SELECT ON Reserves TO Michael GRANT SELECT ON Sailors TO Michael WITH GRANT OPTIONS GRANT UPDATE (rating) ON Sailors TO Leah GRANT REFERENCES (bid) ON Boats TO Bill
5	6

Views and Security

- David has SELECT rights on table Students
- Creates a VIEW BrightStudents
- Grants SELECT rights on BrightStudents to Dan

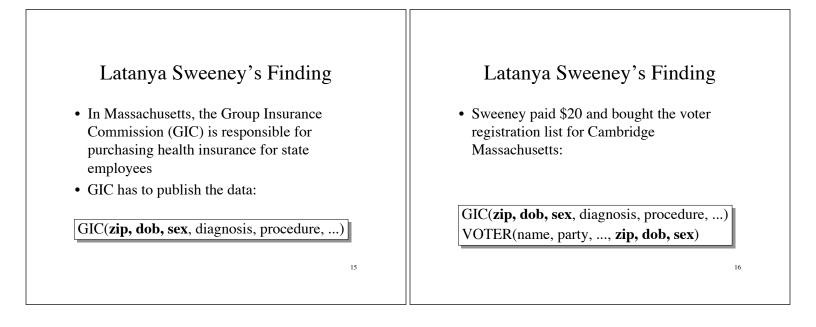

Revokation

REVOKE [GRANT OPTION FOR] privileges ON object FROM users { RESTRICT | CASCADE }

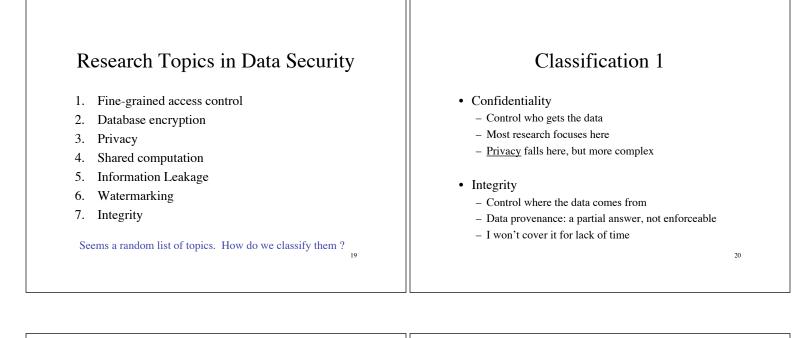
Administrator says:

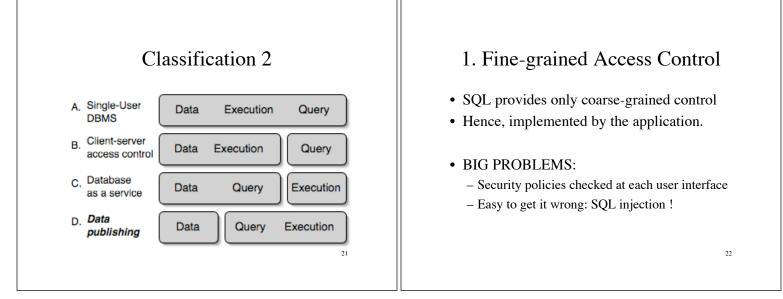
REVOKE SELECT ON Students FROM David CASCADE

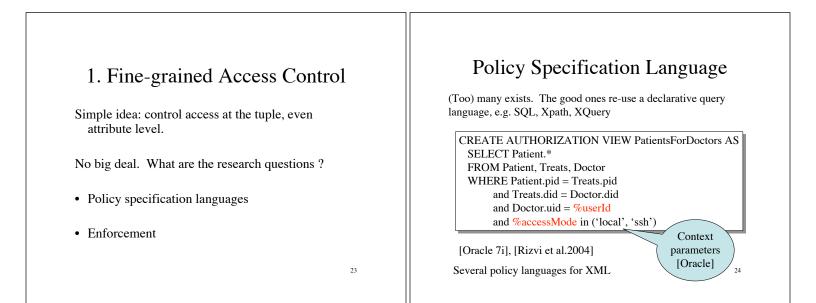
Dan loses SELECT privileges on BrightStudents

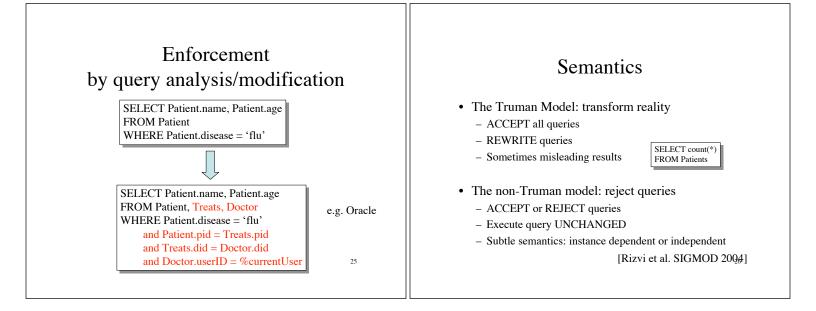

7

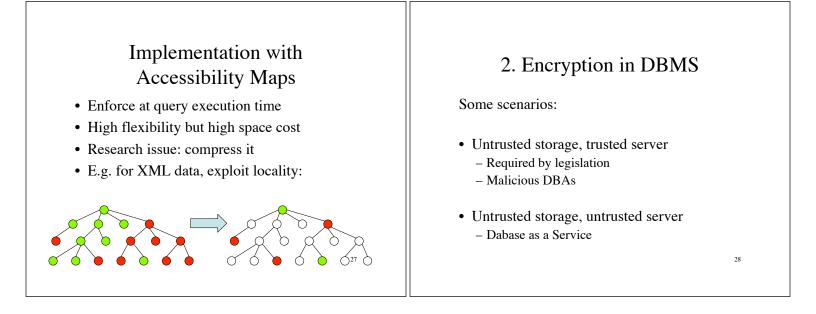
New Challenges in Data Security	Two Famous Attacks
• Traditional security: limited to client-server	SQL injection
 New Challenges: complex data management scenarios Global sharing of data and services 	Chris Anley, Advanced SQL Injection In SQL Server Applications, www.ngssoftware.com
	Latanya Sweeney's finding

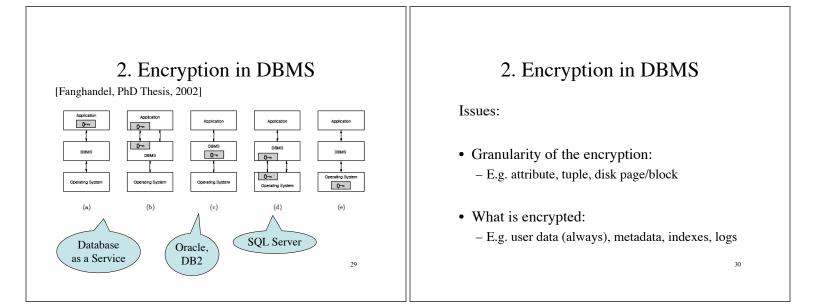

11


٦Г

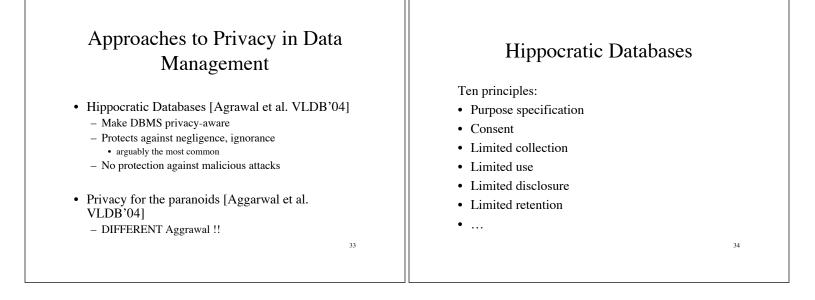

SQL Injection Go to your favorite shopping Website and login:	SQL Injection
Search order by date:	• The DBMS works perfectly. So why is SQL injection possible so often ?
Now this:	
Search order by date: 9/15/04'; drop table user;	14




Latanya Sweeney's Finding	Latanya Sweeney's Finding
zip, dob, sexWilliam Weld (former governor) lives in Combridge honos is in VOTER	• All systems worked as specified, yet an important data has leaked
 Cambridge, hence is in VOTER 6 people in VOTER share his dob only 3 of them were man (same sex) 	• How do we protect against that ?
 Weld was the only one in that zip Sweeney learned Weld's medical records ! 	Some of today's research in data security address breaches that happen even if all systems work correctly
17	18

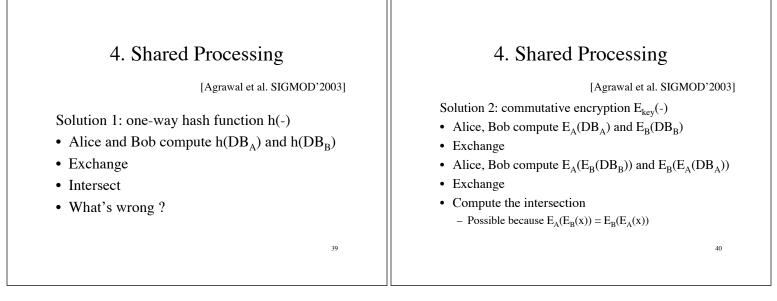


[Fanghandel, PhD Thesis, 2002]


Approach	Application- Integrated	DBMS- DBMS-Integrated Based		ed	OS-Based	OS- Integrated	
			data system	access system	storage system		
Physical Unit	t of Encryption	ı		-,			
	Attribute Value	Field	Field	Record	Page	Block	Block/File
Logical Unit	of Encryption						
Attribute	1	1	1	×	×	×	×
Column	×	(√)	√	×	×	×	×
Tuple	×	×	√	1	×	×	×
Table	×	×	√	√	√	1	1
Database	×	×	√	✓	√	1	1
Type of Prot	ectable Inform	ation					
User Data	1	1	1	1	1	1	1
System Data	×	×	1	1	1	1	1
Metadata	×	×	1	1	1	1	1
Index Data	×	×	×	(√)	1	1	1
Logs	×	×	×	(v)	1	1	1

3. Privacy

• "Is the right of individuals to determine for themselves when, how and to what extend information about them is communicated to others" [Agrawal, VLDB'03]


32

• More complex than confidentiality

Hippocratic Databases	Privacy for Paranoids
 Example: [LeFevrey et al. <i>Limiting Disclosure in Hippocratic Databases</i>, VLDB'04] adds the following Policy definitions Much like in fine-grained access control Privacy metadata What data owners opt Purpose From P3P and EPAL Summary: a refinement and extension of fine-grained access control 	 [G. Aggarwal et al., VLDB'2004] not Agrawal Idea: rely on trust agents to control private data Example 1 Replace email alice@aliceHost.com with aly1@agentHost.com Example 2 Replace a credit card number with a one-time use number: pseudonum

4. Shared Processing	 4. Shared Processing Alice: I am teaching Databases, and I suspect I 		
 Alice has a database DB_A Bob has a database DB_B 	 Bob: I am teaching Security, and I also suspect r cheaters ! 		
• How can they compute Q(DB _A , DB _B), without revealing their data ?	 Alice: Tell me your suspects' names ! I will let you know if we have common suspects Bob: No. I'm not sure if my suspects are cheating. Tell me your suspects' names first, and I will let you know who's in the interesection Alice: No. 		
37	38		
Γ			

5. Watermarking	6. Information Leakage
 Want to sell a database instance But want to be able to trace the source Watermark: small, hidden perturbations in the database that prove its origin How can one do that ? Possible for numeric values that tolerate some loss in 	 Single source: Alice publishes two views: V1(PatientName, BuildingNumber) - for guests V2(BuildingNumber, Disease) - for CDC control Malory wants to know if 'Joe Doe' has 'measles' Is there a leakage ?
 Variation: fingerprinting 	Approach: using information theory [Miklau, S 2004], [Miklau, Dalvi, S 2005] [Yang and Li 2004]
[Agrawal, Kiernan VLDB'2002] 41	42

6. Information Leakage	7. Integrity
Multiple sources Latanya Sweeney's example 	• Next week; Come to Gerome's talk.
 Approach: k-anonymity Replace values with NULL until every tuple appears at least k times in the table NP-hard to anonymize optimally [Meyerson, Williams, PODS'2004] 	44
43	

Summary

- Traditional data security
 - Access control in SQL
 - Statistical databases
- Current research in data security
 - Very varied
 - Reflects the varied data management tasks we face
 - Database researchers are *consumers* of both cryptography and systems security

45