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Trustworthy software

» Various guarantees that we may want a software

system to have:
— reliability (does not crash)
— safety (cannot be hijacked to do “bad” things)

— secure (does not divulge private information)
— obeys certain policies

How can we guarantee that a software system
has these properties?
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Static analysis for information flow

« “High-security input never affects low-security output”

« Enforceable via sound (incomplete) dataflow analysis
— L < H, assign each variable a level sec( x)

el + e2 X = e if(x) e;

max(sec(el), sec(e).i_f sec(x) if
sec(e2)) sec(e)s<sec(x) sec(x)ssec(e)

*X 1= e
sec(e) if 2?2?22




Pointer analysis
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Pointer analysis in Rhodium

define fact mustPointTo(X, Y)
with meaning “ X ==&Y”

if currSmt==[X:= &Y]
then mustPointTo(X,Y) after currSmt

if ( mustPointTo(X,Y) before currSmt) and
( doesNotModify(X) at currSmt )
then mustPointTo(X,Y) after currStmt
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Optimizations in Rhodium

if (currSmt==[*X:=2])and
( mustPointTo(X,Y) before currSmt

then transform currSmtto [Y:= Z]

Current status and future work

e Current status of Rhodium

— alanguage for writing analyses and optimizations
over a realistic C-like language

— automated correctness checker

— implemented and checked a variety of analyses and
optimizations in Rhodium

* Future work

— add support to Rhodium for writing checkers

— increase expressiveness

— efficient execution engine

— infer rules automatically




