Trustworthy compilation

Sorin Lerner
University of Washington

(work with Todd Millstein, Erika Rice and
Craig Chambers)

Trustworthy software

» Various guarantees that we may want a software

system to have:
— reliability (does not crash)
— safety (cannot be hijacked to do “bad” things)

— secure (does not divulge private information)
— obeys certain policies

How can we guarantee that a software system
has these properties?

Trustworthy software

ralme

Trust developers want s?ufrce to Trust compiler want bti_n?ry to
i i satisfy satisfy
to write code with properties: to preserve various

the wanted P1,P2,P3, ... meaning properties:
properties & checkers to P1,P2,P3, ..
be correct

Trustworthy software

smlme

Trustworthy software

TONTAHENE 1 2 66Ma SPECTIE

called Rhieiunm
(ORCONMESE

aUieImatcally;

Static analysis for information flow

« “High-security input never affects low-security output”

« Enforceable via sound (incomplete) dataflow analysis
— L < H, assign each variable a level sec(x)

el + e2 X = e if(x) e;

max(sec(el), sec(e).i_f sec(x) if
sec(e2)) sec(e)s<sec(x) sec(x)ssec(e)

*X 1= e
sec(e) if 2?2?22

Pointer analysis

[must Poi nt To(pa, a) >
nust Poi nt To(pb, b)] - R

c 1= &pa
S [eRRE
}
[nust Poi nt To(pa, a) el se { -
must Poi nt To(pb, b)
nmayPoi nt To(¢, pa) L Ab/
mayPoi nt To(c, pb)] c =&

* [nust Poi nt To(pa, a)
c nust Poi nt To(pb, b)

d:=
-) nust Poi nt To(c, pb)]

Pointer analysis in Rhodium

define fact mustPointTo(X, Y)
with meaning “ X ==&Y”

if currSmt==[X:= &Y]
then mustPointTo(X,Y) after currSmt

if (mustPointTo(X,Y) before currSmt) and
(doesNotModify(X) at currSmt)
then mustPointTo(X,Y) after currStmt

Trustworthy software

=l Rigelitig

Trustworthy software

OUI ZRPIeEG:

66 (U

Optimizations in Rhodium

if (currSmt==[*X:=2])and
(mustPointTo(X,Y) before currSmt

then transform currSmtto [Y:= Z]

Current status and future work

e Current status of Rhodium

— alanguage for writing analyses and optimizations
over a realistic C-like language

— automated correctness checker

— implemented and checked a variety of analyses and
optimizations in Rhodium

* Future work

— add support to Rhodium for writing checkers

— increase expressiveness

— efficient execution engine

— infer rules automatically

