A Graph Theoretic Framework for Preventing the Wormhole Attack in Wireless Sensor Networks

> Radha Poovendran Network Security Lab University of Washington

Wormholes – Hope for time travel Wormhole: A space-time distortion that links two points in the Universe via a shorter path in distance/duration than the direct path.

Can be a problem in wrong hands!

Outline

- The Wormhole threat in Wireless Sensor Networks (WSN)
- Graph Theoretic Formulation
- Related Work
- Our Approach: Local broadcast Keys
- Security Analysis
- Conclusions

Impact of the Wormhole Threat

- WSN Applications
 - Monitoring
 - Access Control
 - Localization
- Network Protocols
 - Routing
 - Neighbor discovery

Wormhole Attack Properties

- Type: Replay attack
 - The integrity and authenticity of the communication is not compromised
 - The success of the attack is independent of the strength of cryptographic primitives.
 - Freshness can be guaranteed by a speedy direct link.

Outline

- The Wormhole threat in Wireless Sensor Networks (WSN)
- Graph Theoretic Formulation
- Related Work
- Our Approach: Local broadcast Keys
- Security Analysis
- Conclusions

Outline

- The Wormhole threat in Wireless Sensor Networks (WSN)
- Graph Theoretic Formulation
- Related Work
- Our Approach: Local broadcast Keys
- Security Analysis
- Conclusions

Packet Leashes – Hu et al.

- Packets Leashes can detect (and remove) wormholes if:
 - Geographical leashes: $r \le (t_r t_s + \delta)c$ Sensor communication range Temporal leashes: $t_e t_s = + r/c \delta$

 - Requires tight synchronization Eg: For $t_e > t_s$ if $\delta = 0.5 \text{msec} \rightarrow r > 150 \text{m}$

Visualization of Wormholes – Wang

- Central Authority (CA) collects distance measurements of each sensor to its neighbors.
- Using Multi Dimensional Scaling (MDS), CA computes the relative position of each sensor.

Outline

- The Wormhole threat in Wireless Sensor Networks (WSN)
- Graph Theoretic Formulation
- Related Work
- Our Approach: Local broadcast Keys
- Security Analysis
- Conclusions

Correctness of the LBK Solution • Imposing LBKs to the "wormhole infected" logical graph G'(V,E_G), $e(i,j) = \begin{cases} 1, & if \ j \text{ holds } Ks_i \\ 0, & otherwise \end{cases}$ • Since j holds Ks_i iff j in in the neighborhood of i, $e(i,j) = \begin{cases} 1, & if \ \|i-j\| \le r \\ 0, & if \ \|i-j\| > r \end{cases}$ Geometric graph model is satisfied

Secure Neighbor Discovery

- 1. Perform distance bounding with neighbors – Requires:
 - time measurements with nanosecond accuracy
 - Nanosecond processing capable hardware
- 2. Perform Secure Localization (SeRLoc)
- 3. Use Power Proximity to infer distance
- 4. Proposed Approach: Use special nodes we call GUARDS.

Conclusions

- > We showed: Any candidate solution eliminates wormholes if the communication graph produced satisfies the geometric graph constraints
- > We proposed: A scheme for eliminating wormholes when sensors have unknown location and are not time synchronized

Main idea behind the solution: If broadcasted information is encrypted at each neighborhood with a different Local Broadcast Key, it cannot be decrypted at some other neighborhood