Secure Data Management at UW

Gerome Miklau and Dan Suciu

Trustworthy computing seminar Autumn 2004

Today's talk

Controlled data publishing

secrecy: crypto + XML

[VLDB 2003]

2 Analyzing information disclosure secrecy: theory + relations [SIGMOD 2004]

Tamper-resistant databases integrity: crypto + relations [Current work]

Ingredients for data sharing

- File formats and tools
 - XML, XML query languages
- Distributed processing

Networked data sources

Mediator systems, distributed systems

Access control

controlled distribution of data

XML data and access rights

Access Function

Given a set of keys K, **access**(K) computes the accessible nodes in a tree protection.

 $access(\{ k_1 \}) is:$

9

Normalization Rules

- a tree protection is normalized if every formula is atomic
- soundness: access function invariant under rewritings

Benaloh and Leichter. CRYPTO 1988

11

Implementing a Protection

</CipherValue>

</CipherData>

</EncryptedData>

Leaf node

Encrypted leaf node, following XML Encryption Recommendation

13

13

Security

Security Property

given document D, set of keys K:

- \forall if node x ∈ access(K) then x is efficiently computable from D.
- if node x ∉ access(K) then the best algorithm for finding x requires guessing keys.

Additional disclosure:

number of children of a node size of ciphertext, duplicate subtrees, policy information.

14

14

Today's talk

- 1 Controlled data publishing secrecy: crypto + XML
- 2 Analyzing information disclosure secrecy: theory + relations
- 3 Tamper-resistant databases integrity: crypto + relations

15

Protecting data using views

16

Problem statement

Query - View security

- a published view V
- a sensitive query S
- <u>Does V reveal anything about S</u>?

Spectrum of disclosure

Employee (name, dept, phone)

Published View Sensitive Query Disclosure?

V₁(name, phone) S₁(name) total

Table 18

Existing techniques

- Logical inference
- Answering queries using views
- Statistical databases

exact disclosure

aggregation of numerical attributes

19

Our basic strategy

Compare Mallory's knowledge about sensitive query S:

Knowledge about S, a priori = Knowledge about S, given V

When these are equal, V provides *no information* about S

20

The adversary's knowledge

Knowledge about S, ? ?

• Schema

+ V

Domain

- + V(1) = ans
- Probability of each database
- Probability of each answer to S
- Probability of each answer to S

21

Probabilities of databases

- Fix schema R, and domain.
- For each tuple t: $0 \le Pr[t] \le 1$
- The probability of a database instance I is:

$$\Pr[I] = \prod_{t \in I} \Pr[t] \times \prod_{t \notin I} (1 - \Pr[t])$$

assumption: tuple-independence

22

00

Definition: query-view security

S and V are secure (denoted S|V) if:

$$Pr[S(I)=x] = Pr[S(I)=x | V(I)=y] \forall x \forall y$$

a priori knowledge knowledge given V

must hold for all answers

- independence of probabilistic events
- inspired by Shannon's perfect secrecy [1949]

Concrete example

- relation Edge(X,Y)
- nodes={a,b}
- tuple probability = 1/2
- possible graphs:

		_	
1			
2	(a,a))
3	(a,b)	0	
4	(b,a))
5	(a,a) (a,b)		
6	(a,a) (b,a)		\mathcal{C}
15	(a,a) (a,b) (b,a)		
16	(a,a) (a,b) (b,a) (b,b)		

Sensitive query:

S(x) := Edge(x,y)

for $S(I)=\{(a)\},\$

 $Pr[S(I)={(a)}] = 3/16$

Published view:

V(y) := Edge(x,y)

for $V(D) = \{ (a) \},$

 $Pr[S(I)={ (a) } | V(I)={ (a) }]$ = 1/3

24

23

23

Goal: logical criterion

Brute force → Logical criterion

For each
answer to S
answer to V
Compare probabilities

Analyze the <u>view</u> <u>expressions</u> S and V

depends on domain & probability distribution

Deciding query-view security

Theorem

Given query S and view V, deciding whether $S \mid V$ is \square_{S}^{P} -complete

when S and V secure, then they are secure:

- for any (sufficiently large) domain
- for any probability distribution

26

26

Other consequences

25

Supplemental knowledge

- security standard easily extended
- compare

Encrypted view

• no sensitive query is secure

Supplemental info: cardinality

• no sensitive query is secure

Measuring disclosure

When query-view security fails:

for some x,y: $Pr[S(I)=x] \neq Pr[S(I)=x \mid V(I)=y]$ how do we evaluate the difference?

- magnitude, or closeness to 1?
- aggregate over many answers
- see paper for limited case.

28

.7

Partial disclosure

- Intuition
 - domains are large
 - databases are small (and of known size)
- New probabilistic model
 - each tuple t equally-likely...
 - prob[t] s.t. database size constant
- Practical security
 - $\lim \Pr(S \mid V) = 0$ as domain $\rightarrow \infty$

[Dalvi, Miklau, Suciu. ICDT 2005 (to appear)]

29

Today's talk

- 1 Controlled data publishing secrecy: crypto + XML
- 2 Analyzing information disclosure secrecy: theory + relations
- 3 Tamper-resistant databases integrity: crypto + relations

30

30

Integrity

Data integrity

an assurance that data has not been modified by an unauthorized party.

Consistency

an assurance that the items in a collection are "fresh".

Query integrity

an assurance that a query answer is correct and complete.

Tampering threats to DB systems

- DB access control vulnerabilities
 - specification failure
 - enforcement failure
 - subversion (e.g. sql injection, weak authentication)
- DB extensions user defined functions
- general OS and network threats
- privileged parties: OS admin, DB admin
- service provider model

32

3

Data integrity with hashing Client Server (untrusted) compute y=hash(F) send F to server retrieve F' from server

CLIENT: Move Peter from department HR to MGMT

-- verify peter's record --

CLIENT: compute new h_{100} , h_{10} , h_{1} , h_{ϵ} send to server

37

37

Implementing a tamperresistant database

<u>Client</u> <u>Server</u>

DBMS

- Smart client, oblivious server
- Relational representation of hash tree
- Query definition
- Index selection

38

38

Cost of integrity

- Reasonable communication overhead
- Reasonable client computation
- Modest storage overhead
- Good scalability
- Throughput:

preliminary results

	integrity	no integrity	multiple
Query	2.0 ms	.4 ms	5.0
Range query	6.1 ms	1.3 ms	4.7
Insert	8.3 ms	.8 ms	10

39

Multiple clients Alice Bob Carol How do we manage integrity with multiple users?

