

Loukas Lazos Advisor: Radha Poovendran Network Security Lab University of Washington

Outline

- Motivation
- Secure Localization Problem
- SeRLoc
- Threats and defenses
- Performance Evaluation
- Conclusions

Localization Problem

Localization: Sensor Location Estimation

- How do sensors become aware of their position when they are randomly deployed or mobile?
- Algorithm Design considerations
- What type of localization is required? • Coarse or Fine Grain?
- Where is the WSN deployed? • Indoors or Outdoors
- What are the capabilities of the sensors?
 - Hardware and Power Constraints

Classification of Loc. Schemes

- Indoors vs. Outdoors:
 - GPS, VOR, Centroid (outdoors),
 - RADAR, Active Bat, AhLos, (indoors).
- Infrastructureless (I-L) vs. Infrastructure based (I-B):
 - AhLos, Amorphous, DV-Hop (I-L),
 - RADAR, Active Bat, AVL (I-B).
- Range-based (R-B) vs. Range-Independent (R-I):
 - Radar, Ahlos, GPS, Active Bat, VOR (R-B),
 - APIT, DV-Hop, Amorphous, Centroid (R-I).

Localization in un-trusted environment

• Previous schemes assumed trusted nodes and no external attacks, but

• WSN may be deployed in hostile environments

• Several threats in WSN localization:

- Replay attacks,Node Impersonation attacks,
- Compromise of network entities.

Secure Localization Problem

- Secure Localization: Ensure robust location estimation even in the presence of adversaries.
- Related work:
 - An Asymmetric Security Mechanism for navigation signals [Kuhn 2004].
 - Secure Positioning of Wireless Devices with Application to Sensor Networks (SPINE) [Capkun et al, Infocom 2004].

Outline

- Motivation
- Problem Description
- SeRLoc
- Threats and defense
- Performance
- Conclusions

Our Approach: SeRLoc

- SeRLoc: SEcure Range-independent LOCalization
- SeRLoc features
 - Passive Localization,
 - Robust against sources of error,
 - Decentralized Implementation, Scalable.
 - Robust against attacks Lightweight security.

Network Model Assumptions (2)

- Locator deployment: Homogeneous Poisson point process of rate $\rho_L \rightarrow$ Random spatial distribution.
- Sensor deployment: Poisson point process of rate ρ_s independent of locator deployment
- Or can be seen as Random sampling with rate $\rho_{\rm s}$.

 $P(LH_s = k) = \frac{\left(\rho_L \pi R^2\right)^k}{k!} e^{-\rho_L \pi R^2}$

LH_s: Locators heard at a sensor s

SeRLoc – Step 4: ROI computation	
	GRID Score Table (GST)
E Sensor Search Area	000000000000000000
	00000000000000000000000
ROI	$ \begin{array}{c} \cdots \\ 1 & 1 & 1 & 2 & 3 & 3 & 3 & 4 & 4 & 4 & 3 & 3 & 3 & 3$
•Majority vote: Points with highest score define the ROI.	
•Error introduction due to discrete computation.	
 Accuracy vs. Complexity tradeoff. 	

Outline

- Motivation
- Problem
- SeRLoc
- Threats and defense
- Performance
- High resolution localization: HiRLoc
- Conclusions

Attacker Model

- Attacker aims at displacing the sensors.
- Attacker must remain undetected.
- No DoS attacks.
- No jamming of the communication medium.

SeRLoc - Compromised entities

THREAT MODEL

- Compromised network entities: Attacker gains: 1. Knowledge of all cryptographic quantities
 - 2. Full control over the behavior of the entity.
- Compromise of a sensor \rightarrow reveals the globally shared key K_0 .
- Compromise of a locator \rightarrow reveals K_0 , master key K_{Li} , and the hash chain of the locator.
- Impersonate the Closest Locator → Compromise the ACLA algorithm → Displace any sensor

Outline

- Motivation
- Secure Localization Problem
- SeRLoc
- Threats and defenses
- Performance Evaluation
- Conclusions

Performance Evaluation

- Simulation setup:
 - Random locator distribution with density $\rho_{\rm L}.$
 - Random sensor distribution with density 0.5.
- Performance evaluation metric:

$$\overline{LE} = \frac{1}{|S|} \sum_{i=1}^{|S|} \frac{\left\| s_i^{est} - s_i \right\|}{r}$$

- S_i^{est} : Sensor location estimation.
- s_i : Sensor actual location.
- r : Sensor-to-sensor communication range.
- |S| : Number of sensors.

Performance Summary

- Increasing number of sectors
 - Reduction in error and power needed but increased complexity
- > Sensitivity to GPSE error
 - > GPSE=1.8r; Avg. LE=1.1r; requires
 - > SeRLoc needs LH=3;
 - > Dv-Hop needs LH=5, no GPSE;
 - > APIT needs LH=12, no GPSE;
- Communication cost;
 - > APIT requires |S|+|L|
 - > SeRLoc requires |L|*M
- S: Set of sensors, L: Set of locators, M: # of antennas

Conclusions

- > We need to secure location estimation to claim secure location-dependent functions/apps.
- SeRLoc: SEcure Range-independent LOCalization
 Robustly computes the location even in the
 - presence of attacks
 - Better performance than up-to-date range independent localization schemes
 - Decentralized implementation, resilient to sources of error
- Current developments
 - Resistance to jamming attacks
 - > Analytical evaluation of error bounds

