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Multicast Security

• Multicast is broadcast to a group, not to 
everyone.

• Multicast group – group of members who 
have a right (have paid) to be in the group.

• Applications
– Pay-per-view live broadcast
– Video-on-demand for a fee
– Software update group
– Authorized for database access
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Key Distribution Problem

• Group key to secure content
– Change (re-key) on membership change

• ADD(u) - u does not have access to data prior to
operaton, but does after operation

• DELETE(u) - u does not have access to data after 
operation

– Distribute group key to current members
• Additional keys needed to secure group key
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Logical Key Trees
(Wong et al., 1998)

(Wallner et al., 1998)

• Shows keys held by each member
– Nodes represent keys
– Leaf nodes represent members
– Members hold all keys on path to root
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Encryption

• Each member i has a private key ui which is 
distributed using public key encryption.

• Each key kg encrypts data multicast to the leaves of 
the tree rooted at g.

• Member i holds all the keys on it path to the root.
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Group keys
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Re-keying Messages

• E(ka,kg) is a message to the group rooted at g 
that is encrypted using kg and contains a new 
key ka for some ancestor a of g.

• Goal is to minimize the number of these re-
keying messages.
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Re-keying (ADD)

• 2 level tree

• ADD(u) requires 2 messages per key
• Example: ADD(u10)
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Re-keying (ADD)

• 2 level tree

• ADD(u) requires 2 messages per key
• Example: ADD(u10)

u2u1 u3 u5u4 u6 u8u7 u9 u10

E(k’ G,kG) kG
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Re-keying (ADD)

• 2 level tree

• ADD(u) requires 2 messages per key
• Example: ADD(u10)

u2u1 u3 u5u4 u6 u8u7 u9 u10

E(k’ G,kG) kG

u2u1 u3 u5u4 u6 u8u7 u9u2u1 u3 u5u4 u6 u8u7 u9 u10u10

k’G E(k’ G,u10)
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Re-keying (ADD)

• Example: ADD(u10)
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Re-keying (ADD)

• Example: ADD(u10)
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Re-keying (ADD)

• Example: ADD(u10)
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Re-keying (ADD)

• Example: ADD(u10)
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Re-keying (ADD)

• Define du to be the depth of u. 

• ADD(u) cost is 2du messages

u10
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Re-keying (DELETE)

• DELETE(u) requires a linear number of 
messages, each of the form E(k’G,ui)
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• Example: DELETE(u9)

Re-keying (DELETE)
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• Example: DELETE(u9)

Re-keying (DELETE)
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• Example: DELETE(u9)

Re-keying (DELETE)
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• Example: DELETE(u9)

Re-keying (DELETE)
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Re-keying (DELETE)

• Define ancestor weight wu to be sum of 
degrees on path from u to root

• DELETE(u) cost is wu - 1 messages
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Asymetry

• ADD and DELETE have different costs
– ADD 2du

– DELETE wu - 1

• ADD has more freedom than DELETE
– ADD can go anywhere in the tree
– DELETE is where it happens
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Fundamental Problem

• What is the best key tree for a given mix of
ADDs and DELETEs?

• Our approach is to use balanced trees.
• Evaluation of the approach

– Theoretical worst case analysis
– Simulation studies
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Previous Results
(Poovendran and Baras, 2001)

(Snoeyink et al., 2001)

• Amortized worst-case cost lower bound is 
Ω(log n) per operation.

• Constructed static multiway trees that are 
optimal for ancestor weight.



5

Trustworthy Computing Seminar 
Autumn 2004

25

Cost Components
for On-line Algorithms

• Tree structure cost due to wu

• Restructuring cost to maintain structure
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Algorithms

• K-ary trees

• B-trees
• 2-k trees (like AVL trees)

• Weight balanced trees
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K-ary Trees
(Wong et al, 2000)

• ADD(u) - insert into the tree to keep wu as 
small as possible.

• DELETE(u) - simple remove it at cost wu

– If only one child, then collapse

ADD
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B-Tree Algorithm

• All leaves have same depth

• All internal nodes (except the root) have 
degree in the interval [ �t/2�, t], where t is the 
order of the B-tree.

• Use existing algorithms for maintaining B-
Tree property
– John Hopcroft, 2-3 trees, 1970
– Bayer and McCreight, 1972.
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Height-Balanced 2-k Algorithm

• All nodes are balanced
– Height of children differ by at most 

• All internal nodes have degree in the interval 
[2,k]

• Extension of the AVL tree algorithm of Rodeh
et al. (2001)
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Weight-balanced Algorithm
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• Node weight of u = max wi over all leaf nodes 
i in sub-tree rooted at u

• Node u is weight-balanced if its children differ 
in node weight by at most 1
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• DELETE(u) costs proportional to ancestor 
weight wu

• How about balancing by wu?
– Can be done for 2-3 and 2-3-4 trees

Weight-balanced Algorithm
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Weight-balanced Algorithm

• Defined restructuring rules to maintain 
balance

• Apply to key tree bottom up 
• Example for 2-3 trees

w+2

w-2w

w-4 w-4w-3

w-2

w+1

w-4 w-4

w-3 w-2
restructure

Trustworthy Computing Seminar 
Autumn 2004

33

� 1.30

� 2.11

� 3.04

Algorithm Bound

Optimal Bound

Weight-balanced 2-3-4

B-tree of order 4

Height-balanced 2-4

Algorithm

logb n

b ≈ 1.325*

4 log2 n

4 logφn

φ ≈ 1.618

wu

Worst-case 
Tree Structure Cost Analysis

• Optimal worst-case bound is �3log3n�
• Derived worst-case bounds for our algorithms

* b3 = b+1
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Simulation Results

• Does good tree structure help performance?
– We do not have a way to analyze restructuring 

cost
– Trace data for multicast is problematic

• Simulation may yield insights
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Random Re-keying

Each point represents 1,000 
consecutive operations
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Pathological Deletions
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Summary: Online 
Key Tree Algorithms

• Algorithms to maintain balanced trees

• Identified 2 cost components
• Derived worst-cast tree weight bounds

• Good performance, especially when tree 
becomes highly unbalanced
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Future Potential

• Crypto technology is probably adequate for 
deployment

• Future depends on popularity of multicast
• May be other distributed applications that 

need secure group management
– Access control in databases
– Access control in file systems 


