
1

Trustworthy Computing Seminar
Autumn 2004

1

Efficient Key Distribution for
Secure Multicast

Richard Ladner

Justin Goshi

Trustworthy Computing Seminar
Autumn 2004

2

Multicast Security

• Multicast is broadcast to a group, not to
everyone.

• Multicast group – group of members who
have a right (have paid) to be in the group.

• Applications
– Pay-per-view live broadcast
– Video-on-demand for a fee
– Software update group
– Authorized for database access

Trustworthy Computing Seminar
Autumn 2004

3

Key Distribution Problem

• Group key to secure content
– Change (re-key) on membership change

• ADD(u) - u does not have access to data prior to
operaton, but does after operation

• DELETE(u) - u does not have access to data after
operation

– Distribute group key to current members
• Additional keys needed to secure group key

Trustworthy Computing Seminar
Autumn 2004

4

Logical Key Trees
(Wong et al., 1998)

(Wallner et al., 1998)

• Shows keys held by each member
– Nodes represent keys
– Leaf nodes represent members
– Members hold all keys on path to root

kG

k1

u2u1 u3

k2

u5u4 u6

k3

u8u7 u9

Trustworthy Computing Seminar
Autumn 2004

5

Encryption

• Each member i has a private key ui which is
distributed using public key encryption.

• Each key kg encrypts data multicast to the leaves of
the tree rooted at g.

• Member i holds all the keys on it path to the root.

kG

k1

u2u1 u3

k2

u5u4 u6

k3

u8u7 u9

Trustworthy Computing Seminar
Autumn 2004

6

Group keys

kG

k1

u2u1 u3

k2

u5u4 u6

k3

u8u7 u9

kG

k1

u2u1 u3

k2

u5u4 u6

k3

u8u7 u9

Needed for multicast

Needed for re-keying

2

Trustworthy Computing Seminar
Autumn 2004

7

Re-keying Messages

• E(ka,kg) is a message to the group rooted at g
that is encrypted using kg and contains a new
key ka for some ancestor a of g.

• Goal is to minimize the number of these re-
keying messages.

Trustworthy Computing Seminar
Autumn 2004

8

Re-keying (ADD)

• 2 level tree

• ADD(u) requires 2 messages per key
• Example: ADD(u10)

kG

u2u1 u3 u5u4 u6 u8u7 u9 u10u2u1 u3 u5u4 u6 u8u7 u9u2u1 u3 u5u4 u6 u8u7 u9 u10u10

Trustworthy Computing Seminar
Autumn 2004

9

Re-keying (ADD)

• 2 level tree

• ADD(u) requires 2 messages per key
• Example: ADD(u10)

u2u1 u3 u5u4 u6 u8u7 u9 u10

E(k’ G,kG) kG

u2u1 u3 u5u4 u6 u8u7 u9u2u1 u3 u5u4 u6 u8u7 u9 u10u10

k’G

Trustworthy Computing Seminar
Autumn 2004

10

Re-keying (ADD)

• 2 level tree

• ADD(u) requires 2 messages per key
• Example: ADD(u10)

u2u1 u3 u5u4 u6 u8u7 u9 u10

E(k’ G,kG) kG

u2u1 u3 u5u4 u6 u8u7 u9u2u1 u3 u5u4 u6 u8u7 u9 u10u10

k’G E(k’ G,u10)

Trustworthy Computing Seminar
Autumn 2004

11

Re-keying (ADD)

• Example: ADD(u10)

kG

k1 k2 k3

u9u8u7u2u1 u3 u5u4 u6 u10

Trustworthy Computing Seminar
Autumn 2004

12

Re-keying (ADD)

• Example: ADD(u10)

kG

k1 k2 k3

u9u8u7u2u1 u3 u5u4 u6 u10

k’3

E(k’ 3,k3)

3

Trustworthy Computing Seminar
Autumn 2004

13

Re-keying (ADD)

• Example: ADD(u10)

kG

k1 k2 k3

u9u8u7u2u1 u3 u5u4 u6 u10

k’3

E(k’ 3,k3)
k’G

E(k’ G,kG)

Trustworthy Computing Seminar
Autumn 2004

14

Re-keying (ADD)

• Example: ADD(u10)

kG

k1 k2 k3

u9u8u7u2u1 u3 u5u4 u6 u10

k’3

E(k’ 3,k3)
k’G

E(k’ G,kG)

E(k’ 3,u10)
E(k’ G,u10)

Trustworthy Computing Seminar
Autumn 2004

15

Re-keying (ADD)

• Define du to be the depth of u.

• ADD(u) cost is 2du messages

u10

kG

k1 k2 k3

u9u8u7u2u1 u3 u5u4 u6

Trustworthy Computing Seminar
Autumn 2004

16

Re-keying (DELETE)

• DELETE(u) requires a linear number of
messages, each of the form E(k’G,ui)

kG

u2u1 u3 u5u4 u6 u8u7 u9

Trustworthy Computing Seminar
Autumn 2004

17

• Example: DELETE(u9)

Re-keying (DELETE)

kG

k1 k2 k3

u9u8u7u2u1 u3 u5u4 u6

Trustworthy Computing Seminar
Autumn 2004

18

• Example: DELETE(u9)

Re-keying (DELETE)

kG

k1 k2 k3

u9u8u7u2u1 u3 u5u4 u6

E(k’ 3,u7)
E(k’ 3,u8)

k’3

4

Trustworthy Computing Seminar
Autumn 2004

19

• Example: DELETE(u9)

Re-keying (DELETE)

kG

k1 k2 k3

u9u8u7u2u1 u3 u5u4 u6

k’3

E(k’ G,k’ 3)k’G

E(k’ 3,u7)
E(k’ 3,u8)

Trustworthy Computing Seminar
Autumn 2004

20

• Example: DELETE(u9)

Re-keying (DELETE)

kG

k1 k2 k3

u9u8u7u2u1 u3 u5u4 u6

k’3

E(k’ G,k’ 3)k’G

E(k’ G,k2)E(k’ G,k1) E(k’ 3,u7)
E(k’ 3,u8)

Trustworthy Computing Seminar
Autumn 2004

21

Re-keying (DELETE)

• Define ancestor weight wu to be sum of
degrees on path from u to root

• DELETE(u) cost is wu - 1 messages

kG

k1 k2 k3

u9u8u7u2u1 u3 u5u4 u6

Trustworthy Computing Seminar
Autumn 2004

22

Asymetry

• ADD and DELETE have different costs
– ADD 2du

– DELETE wu - 1

• ADD has more freedom than DELETE
– ADD can go anywhere in the tree
– DELETE is where it happens

Trustworthy Computing Seminar
Autumn 2004

23

Fundamental Problem

• What is the best key tree for a given mix of
ADDs and DELETEs?

• Our approach is to use balanced trees.
• Evaluation of the approach

– Theoretical worst case analysis
– Simulation studies

Trustworthy Computing Seminar
Autumn 2004

24

Previous Results
(Poovendran and Baras, 2001)

(Snoeyink et al., 2001)

• Amortized worst-case cost lower bound is
Ω(log n) per operation.

• Constructed static multiway trees that are
optimal for ancestor weight.

5

Trustworthy Computing Seminar
Autumn 2004

25

Cost Components
for On-line Algorithms

• Tree structure cost due to wu

• Restructuring cost to maintain structure

Trustworthy Computing Seminar
Autumn 2004

26

Algorithms

• K-ary trees

• B-trees
• 2-k trees (like AVL trees)

• Weight balanced trees

Trustworthy Computing Seminar
Autumn 2004

27

K-ary Trees
(Wong et al, 2000)

• ADD(u) - insert into the tree to keep wu as
small as possible.

• DELETE(u) - simple remove it at cost wu

– If only one child, then collapse

ADD

Trustworthy Computing Seminar
Autumn 2004

28

B-Tree Algorithm

• All leaves have same depth

• All internal nodes (except the root) have
degree in the interval [�t/2�, t], where t is the
order of the B-tree.

• Use existing algorithms for maintaining B-
Tree property
– John Hopcroft, 2-3 trees, 1970
– Bayer and McCreight, 1972.

Trustworthy Computing Seminar
Autumn 2004

29

Height-Balanced 2-k Algorithm

• All nodes are balanced
– Height of children differ by at most

• All internal nodes have degree in the interval
[2,k]

• Extension of the AVL tree algorithm of Rodeh
et al. (2001)

Trustworthy Computing Seminar
Autumn 2004

30

Weight-balanced Algorithm

5

03

0 00

• Node weight of u = max wi over all leaf nodes
i in sub-tree rooted at u

• Node u is weight-balanced if its children differ
in node weight by at most 1

5

0

3

0 00

2

0

Weight balanced Not weight balanced

6

Trustworthy Computing Seminar
Autumn 2004

31

• DELETE(u) costs proportional to ancestor
weight wu

• How about balancing by wu?
– Can be done for 2-3 and 2-3-4 trees

Weight-balanced Algorithm

Trustworthy Computing Seminar
Autumn 2004

32

Weight-balanced Algorithm

• Defined restructuring rules to maintain
balance

• Apply to key tree bottom up
• Example for 2-3 trees

w+2

w-2w

w-4 w-4w-3

w-2

w+1

w-4 w-4

w-3 w-2
restructure

Trustworthy Computing Seminar
Autumn 2004

33

� 1.30

� 2.11

� 3.04

Algorithm Bound

Optimal Bound

Weight-balanced 2-3-4

B-tree of order 4

Height-balanced 2-4

Algorithm

logb n

b ≈ 1.325*

4 log2 n

4 logφn

φ ≈ 1.618

wu

Worst-case
Tree Structure Cost Analysis

• Optimal worst-case bound is �3log3n�
• Derived worst-case bounds for our algorithms

* b3 = b+1
Trustworthy Computing Seminar

Autumn 2004
34

Simulation Results

• Does good tree structure help performance?
– We do not have a way to analyze restructuring

cost
– Trace data for multicast is problematic

• Simulation may yield insights

Trustworthy Computing Seminar
Autumn 2004

35

Random Re-keying

Each point represents 1,000
consecutive operations

0 100
23

Average #
messages per re-

key operations

B-tree
Height-balanced
Weight-balanced
Degree-k

10 20 30 40 50 60 70 80 90

24

25

26

27

28

Trustworthy Computing Seminar
Autumn 2004

36

Pathological Deletions
32

14
0 100

B-tree
Height-balanced
Weight-balanced
Degree-k

10 20 30 40 50 60 70 80 90

16

18

20

22

24

26

28

30

Each point represents 1,000
consecutive operations

Average #
messages per re-

key operations

7

Trustworthy Computing Seminar
Autumn 2004

37

Summary: Online
Key Tree Algorithms

• Algorithms to maintain balanced trees

• Identified 2 cost components
• Derived worst-cast tree weight bounds

• Good performance, especially when tree
becomes highly unbalanced

Trustworthy Computing Seminar
Autumn 2004

38

Future Potential

• Crypto technology is probably adequate for
deployment

• Future depends on popularity of multicast
• May be other distributed applications that

need secure group management
– Access control in databases
– Access control in file systems

