Efficient Key Distribution for
Secure Multicast

Richard Ladner
Justin Goshi

Trustworthy Computing Seminar
Autumn 2004

Multicast Security

* Multicast is broadcast to a group, not to
everyone.
¢ Multicast group — group of members who
have a right (have paid) to be in the group.
« Applications
— Pay-per-view live broadcast
— Video-on-demand for a fee
— Software update group
— Authorized for database access
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Key Distribution Problem

« Group key to secure content

— Change (re-key) on membership change
« ADD(u) - u does not have access to data prior to
operaton, but does after operation
* DELETE(u) - u does not have access to data after
operation
— Distribute group key to current members
< Additional keys needed to secure group key
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Logical Key Trees
(Wong et al., 1998)
(Wallner et al., 1998)

* Shows keys held by each member
— Nodes represent keys
— Leaf nodes represent members

— Members hold all keys on path to root
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Encryption

« Each member i has a private key u; which is
distributed using public key encryption.

* Each key k, encrypts data multicast to the leaves of
the tree rooted at g.

« Member i holds all the keys on it path to the root.
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Group keys

Needed for multicast
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Re-keying Messages

* E(kykg) is @a message to the group rooted at g
that is encrypted using k, and contains a new
key k, for some ancestor a of g.

* Goal is to minimize the number of these re-
keying messages.
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Re-keying (ADD)

* 2level tree
* ADD(u) requires 2 messages per key
» Example: ADD(u,g)
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Re-keying (ADD)

e 2level tree
« ADD(u) requires 2 messages per key
* Example: ADD(u,)
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Re-keying (ADD)

* 2level tree
* ADD(u) requires 2 messages per key
» Example: ADD(u,g)
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Re-keying (ADD)

» Example: ADD(u,)
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Re-keying (ADD)

» Example: ADD(u,g)
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Re-keying (ADD)

» Example: ADD(u,)

Re-keying (ADD)

» Example: ADD(u,g)
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Re-keying (ADD)

 Define d, to be the depth of u.
* ADD(u) cost is 2d, messages
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Re-keying (DELETE)

e DELETE(u) requires a linear number of
messages, each of the form E(K'g,u;)
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Re-keying (DELETE)

o Example: DELETE(ug)
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Re-keying (DELETE)

» Example: DELETE(ug)
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Re-keying (DELETE)

* Example: DELETE(ug)
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Re-keying (DELETE)

» Example: DELETE(ug)

Trustworthy Computing Seminar

Re-keying (DELETE)

» Define ancestor weight w, to be sum of
degrees on path from u to root

e DELETE(u) costis w, - 1 messages
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Asymetry

* ADD and DELETE have different costs
— ADD 2d,

— DELETEw, -1

¢ ADD has more freedom than DELETE

— ADD can go anywhere in the tree
— DELETE is where it happens
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Fundamental Problem

¢ What is the best key tree for a given mix of
ADDs and DELETES?

« Our approach is to use balanced trees.

¢ Evaluation of the approach

— Theoretical worst case analysis
— Simulation studies
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Previous Results

(Poovendran and Baras, 2001)
(Snoeyink et al., 2001)

* Amortized worst-case cost lower bound is
log n) per operation.

» Constructed static multiway trees that are
optimal for ancestor weight.
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Cost Components
for On-line Algorithms

» Tree structure cost due to w,
« Restructuring cost to maintain structure
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Algorithms

* K-ary trees

* B-trees

o 2-k trees (like AVL trees)
* Weight balanced trees
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K-ary Trees
(Wong et al, 2000)

* ADD(u) - insert into the tree to keep w, as
small as possible.

e DELETE(u) - simple remove it at cost w,,
— If only one child, then collapse
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B-Tree Algorithm

 All leaves have same depth

 All internal nodes (except the root) have
degree in the interval [ [/2], t], where t is the
order of the B-tree.

« Use existing algorithms for maintaining B-
Tree property
— John Hopcroft, 2-3 trees, 1970
— Bayer and McCreight, 1972.
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Height-Balanced 2-k Algorithm

 All nodes are balanced
— Height of children differ by at most

< All internal nodes have degree in the interval
[2K

« Extension of the AVL tree algorithm of Rodeh
et al. (2001)
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Weight-balanced Algorithm

* Node weight of u = max w; over all leaf nodes
i in sub-tree rooted at u

* Node u is weight-balanced if its children differ
in node weight by at most 1
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Weight-balanced Algorithm

« DELETE(u) costs proportional to ancestor
weight w,,

* How about balancing by w,?
— Can be done for 2-3 and 2-3-4 trees
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Weight-balanced Algorithm

« Defined restructuring rules to maintain
balance

* Apply to key tree bottom up
« Example for 2-3 trees

w+2 w+1

/\ restructure
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Worst-case
Tree Structure Cost Analysis

« Optimal worst-case bound is f3|og3n1
« Derived worst-case bounds for our algorithms

Algorithm w, Algorithm Bound
Optimal Bound
Height-balanced 2-4 4 logn ~3.04
¢=1.618
B-tree of order 4 4 log, n =211
Weight-balanced 2-3-4 log, n ~1.30
b =1.325%
*b®=b+l
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Simulation Results

« Does good tree structure help performance?

— We do not have a way to analyze restructuring
cost

— Trace data for multicast is problematic
» Simulation may yield insights
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Random Re-keying
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Pathological Deletions
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Summary: Online
Key Tree Algorithms

Algorithms to maintain balanced trees
Identified 2 cost components
Derived worst-cast tree weight bounds

Good performance, especially when tree
becomes highly unbalanced
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Future Potential

e Crypto technology is probably adequate for
deployment

» Future depends on popularity of multicast

* May be other distributed applications that
need secure group management
— Access control in databases
— Access control in file systems
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