
1

UW PL Security Research
(And Research Ideas)

Dan Grossman
(then Sorin Lerner)

(includes work by Michael Ringenburg)

20 October 2004 590nl 2

A scatter-plot…

Goal: Tell you about
• Neat stuff we’re doing
• Neat stuff we want to do ASAP

Grossman:
• Cyclone for memory-safe systems software
• Clamp for modular & portable systems software
• Error-message search for more reliable compilers
• Atomic for more secure concurrent programming

Lerner: Rhodium for provably correct compiler
optimizations

20 October 2004 590nl 3

Cyclone: what

A safe C-like language
• Implemented like C (pointers are addresses)
• Memory management: stack pointers, arenas, unique

pointers, garbage collection
• Array bounds: static analysis, known bounds, bounds

in variables, bounds in struct fields, Java-style arrays
• Parametric polymorphism for generics:

` a instead of voi d* , no code duplication

• Interoperability with C (same calling convention and
data rep, can give C code Cyclone types)

20 October 2004 590nl 4

Cyclone: how

Enforce known idioms with known approaches:
• Intra-procedural static analysis:

char buf [10] ;
f or (i nt i =0; i <10; ++i) buf [i] = f () ;

• Types for inter-procedural invariants:

voi d g(t ag_t n, char buf [n]) ;

• Explicit dynamic checks if appropriate:
voi d h(char * @f at buf) { buf [e] ; }

• Synergy: h can do g(numel t s(buf) , buf) and
analysis of g knows n is a constant

20 October 2004 590nl 5

Cyclone: where

• The Cyclone compiler and libraries (100K lines)
• STP (extensible transport protocols)
• MediaNet (multimedia overlay network)
• OKE (extensible kernel)
• RBClick (extensible router with resource bounds)
• Windows device driver (can still crash kernel though)

And fairly portable because compile to gcc:
• Linux, OS/X, Cygwin, Lego Mindstorm, …
• Current implementation assumes 32-bit words

20 October 2004 590nl 6

Just a start

Last week I argued memory safety is necessary but
insufficient for secure systems

So Cyclone brings something necessary to the C-
level, but we still need:

• Strong and correct interfaces
• A reliable compiler

2

20 October 2004 590nl 7

Clamp

Clamp is a C-like Language for Abstraction, Modularity,
and Portability (and it holds things together)

In part, go beyond Cyclone by using a module system
to encapsulate low-level assumptions, e.g.,:

• Module X assumes big-endian 32-bit words
• Module Y uses module X
• Do I need to change Y when I port?

(Similar ideas in Modula-3 and Knit, but no direct
support for the data-rep levels of C code.)

Clamp does not exist (help! Or share your woes!)

20 October 2004 590nl 8

Error Messages

Here’s what happens:
1. A researcher implements an elegant new analysis in

a compiler that is great for correct programs.
2. But the error messages are inscrutable, so the

compiler gets hacked up:
• Pass around more state
• Sprinkle special cases and strings everywhere
• Slow down compilation
• Introduce bugs

Yesterday, I fixed a dangerous bug in Cyclone resulting
from not type-checking e- >f as (* e) . f

20 October 2004 590nl 9

A new approach

• One solution: write 2 checkers, trust the elegant one,
use the slow one for messages
– Hard to keep in sync; slow one no easier to write

• My plan: use fast one as a subroutine for search:
– Human speed can be really slow (1-2 secs)
– Find a similar term (with holes) that type-checks!

• Easier to read than types anyway
• Can offer different ones and rank them

• Example: “f (e1, e2, e3) doesn’t type-check, but
f (e1, _, e3) does and f (e1, e2- >f oo, e3) does”

• Help! (PL, compilers, AI, HCI, …)

20 October 2004 590nl 10

Atomic – what

An easier-to-use and harder-to-implement
synchronization primitive:

voi d deposi t (i nt x) {
synchr oni zed(t hi s) {

bal ance += x;
} }

voi d deposi t (i nt x) {
at omi c {

bal ance += x;
} }

semantics:
lock acquire/release

semantics:
(behave as if)
no interleaved execution

No fancy hardware, disabling interrupts, or code
restrictions (there is a catch…)

20 October 2004 590nl 11

Atomic – how

Elegant, efficient solution for this special case:
No threads sharing memory run at truly the same

time (on separate processors). E.g.,:
– Every uniprocessor
– MSR’s Singularity, OCaml, DrScheme, Cecil, …
– Concurrency for I/O masking and GUIs

• Bag of tricks (see Mike for details)
1. Atomic code logs writes and buffers sends
2. Two versions of functions (atomic & non-atomic)
3. Scheduler rolls-back unfinished atomic blocks
4. No blocking for receives

20 October 2004 590nl 12

Atomic – why

• Often what you want conceptually
• Can implement locks & co-exist with locking code
• Efficient: − Non-atomic code unchanged

− Reads in atomic code unchanged
• Atomic code never starved or corrupted by bad code!
voi d deposi t (i nt x) {
at omi c {

i nt t mp = bal ance;
t mp += x;
bal ance = t mp;

} }

voi d bad1() {
i nt t mp = bal ance;
bal ance = t mp* 1. 01;

}
voi d bad2() {

at omi c { bad2() ; }
}

3

20 October 2004 590nl 13

A scatter-plot…

Goal: Tell you about
• Neat stuff we’re doing
• Neat stuff we wish we want to do ASAP

Grossman:
• Cyclone for memory-safe systems software
• Clamp for modular & portable systems software
• Error-message search for more reliable compilers
• Atomic for more secure concurrent programming

Lerner: Rhodium for provably correct compiler optimizations

