
1

Overview of Language-Based Security

Dan Grossman
590NL

13 October 2004

Note: There is an accompanying bibliography for this presentation.

13 October 2004 Grossman: Language-Based Security 2

Why PL?

To the extent security is a software problem, PL has a
powerful tool set (among several)

• Much progress in last few years
• Practical applications

• Plenty of open and fun core-CS research

(But security is not just a software problem:
encryption, tamper-proof hardware, policy design,
social factors, …)

13 October 2004 Grossman: Language-Based Security 3

The plan

• 1st things 1st : the case for strong languages

• Overview of the language-based approach to security
(as opposed to software quality)

• Many examples and pointers

Next week:
UW projects and their connection to security

13 October 2004 Grossman: Language-Based Security 4

Just imagine…

• Tossing together 20000000 lines of code

• From 1000s of people at 100s of places

• And running 10000000s of computers holding data of
value to someone

• And any 1 line could have arbitrary effect

All while espousing the principle of least privilege?!

13 October 2004 Grossman: Language-Based Security 5

Least Privilege

“Give each entity the least authority necessary to
accomplish each task”

versus

• Buffer overruns (read/write any memory)
• Code injection (execute any memory)
• Coarse library access (syst emavailable by default)

Secure software in unsafe languages may be possible,
but it ain’t because of least privilege

13 October 2004 Grossman: Language-Based Security 6

The old argument

• Better languages à better programs à better security
– Technically: strong abstractions isolate errors

(next slide)

• “But safe languages are slow, impractical, imbractical”

– So work optimized safe, high-level languages
– Other work built safe C-like languages (me,…)
– Other work built safe systems (SPIN,…)
– (and Java started bractical and slow)

• Meanwhile, seminar on TC, not performance

2

13 October 2004 Grossman: Language-Based Security 7

Abstraction for Security

Memory safety isolates modules, making strong
interfaces (restricted clients) enough:

Example: Safer C-style file I/O (simplified)

st r uct FI LE;
FI LE* f open(const char * , const char *) ;
i nt f get c(FI LE*) ;
i nt f put c(i nt , FI LE*)
i nt f c l ose(FI LE*) ;

No NULL, no bad modes, no r/w on w/r, no use-after-
close, else “anything might happen”

13 October 2004 Grossman: Language-Based Security 8

File Example

Non-NULL (Cyclone)

st r uct FI LE;
FI LE* f open(const char @, const char @) ;
i nt f get c(FI LE@) ;
i nt f put c(i nt , FI LE@)
i nt f c l ose(FI LE@) ;

Client must check f open result before use

More efficient than library-side checking

13 October 2004 Grossman: Language-Based Security 9

File Example

No bad modes (library design)

st r uct FI LE;
FI LE* f open_r (const char @) ;
FI LE* f open_w(const char @) ;
i nt f get c(FI LE@) ;
i nt f put c(i nt , FI LE@)
i nt f c l ose(FI LE@) ;

13 October 2004 Grossman: Language-Based Security 10

File Example

No reading files opened for writing and vice-versa

Repetitive version:

st r uct FI LE_R;
st r uct FI LE_W;
FI LE_R* f open_r (const char @) ;
FI LE_W* f open_w(const char @) ;
i nt f get c(FI LE_R@) ;
i nt f put c(i nt , FI LE_W@)
i nt f c l ose_r (FI LE_R@) ;
i nt f c l ose_w(FI LE_W@) ;

13 October 2004 Grossman: Language-Based Security 11

File Example

No reading files opened for writing and vice-versa

Phantom-type version (PL folklore):

st r uct FI LE<‘ T>;
st r uct R; st r uct W;
FI LE<R>* f open_r (const char @) ;
FI LE<W>* f open_w(const char @) ;
i nt f get c(FI LE<R>@) ;
i nt f put c(i nt , FI LE<W>@)
i nt f cl ose(FI LE<‘ T>@) ;

13 October 2004 Grossman: Language-Based Security 12

File Example

No using files after they’re closed

Unique pointers (Vault, ArchJava, Cyclone 0.8)

st r uct FI LE<‘ T>;
st r uct R; st r uct W;
uni que FI LE<R>* f open_r (const char @) ;
uni que FI LE<W>* f open_w(const char @) ;
i nt f get c(FI LE<R>@) ;
i nt f put c(i nt , FI LE<W>@)
i nt f cl ose(uni que use FI LE<‘ T>@) ;

3

13 October 2004 Grossman: Language-Based Security 13

Moral

• Language for stricter interfaces:
– Pushes checks to compile-time / clients

(faster and earlier defect detection)
– Can specify sophisticated idioms
– Incremental adoption possible

• Memory safety a precondition to any guarantee

• But getting security right this way is still hard, and
hard to verify
– “Does this huge app send data from home

directories over the network?”

13 October 2004 Grossman: Language-Based Security 14

The plan

• 1st things 1st : the case for good languages
– Some more on Cyclone next week (array lengths)

• Overview of the language-based approach to security
(as opposed to software quality)

• Many examples and pointers

Language-based security is more than good code:

Using PL techniques to enforce a security policy

13 October 2004 Grossman: Language-Based Security 15

Summary of dimensions

1. How is a policy expressed?
2. What policies are expressible?

3. What is guaranteed?
4. What is trusted (the TCB) ?
5. How is the policy enforced?

Grain of salt: This list is in alpha-test.

But it should help us talk about lots of good work.

13 October 2004 Grossman: Language-Based Security 16

Dimensions of L.B. Security

1. How is a policy expressed?
code:

voi d saf esend() { i f (di sk_r ead) di e() ; …}

automata:

logic:

∀∀∀∀ states s. read(s) à (forever(not(send)))(s)

informally: “no send after read”
implicitly: % Communi cat i onGuar d –f f oo. c

S X

send
sendread

read

13 October 2004 Grossman: Language-Based Security 17

Dimensions of L.B. Security

2. What policies are expressible?

safety properties: “bad thing never happens”
send-after-read, lock reacquire, exceed resource limit

liveness properties: “good thing eventually happens”
lock released, starvation-freedom, termination

– often over-approximated with safety property

information flow
(cf. mandatory/discretionary access control)

confidentiality vs. integrity
(cf. read/write)

13 October 2004 Grossman: Language-Based Security 18

Dimensions of L.B. Security

3. What is guaranteed?

Enforcement:
sound: no policy-violation occurs
complete: no policy-follower is accused
both
neither

Execution:
meaning preserving: programs unchanged
“IRM” guarantee: policy-followers unchanged

4

13 October 2004 Grossman: Language-Based Security 19

Dimensions of L.B. Security

4. What is trusted (the TCB) ?

Hardware, network, operating system, type-checker,
code-generator, proof-checker, web browser, …

programmers, sys admins, end-users, …

crypto, logic, …

(less is good)

13 October 2004 Grossman: Language-Based Security 20

Dimensions of L.B. Security

5. How is the policy enforced?

static analysis: before program runs
often more conservative, efficient
“in theory, more powerful than dynamic analysis”

dynamic/post-mortem analysis: while/after program runs
“in theory, more powerful than static analysis”

code generation: how code is compiled

environment: libraries, hardware

13 October 2004 Grossman: Language-Based Security 21

Summary of dimensions

1. How is a policy expressed?
2. What policies are expressible?

3. What is guaranteed?
4. What is trusted (the TCB) ?
5. How is the policy enforced?

Grain of salt: This list is in alpha-test.

13 October 2004 Grossman: Language-Based Security 22

The plan

• 1st things 1st : the case for good languages

• Overview of the language-based approach to security
(as opposed to software quality)

• Many examples and pointers

See accompanying bibliography for proper attribution

13 October 2004 Grossman: Language-Based Security 23

Proof-Carrying Code

• Motivation: Smaller TCB, especially network
• How expressed: logic

• How enforced: proof-checker

������
�����

��	
��
�	��

 ��	
�������

���
�

�
����
�
�

���

�
����
��
��

���
�������

���
�

��

�����
�

��	

�
���

��

Picture
adapted from

Peter Lee

13 October 2004 Grossman: Language-Based Security 24

PCC in hindsight (personal view)

• “if you can prove it, you can do it”
– dodges undecidability

• key contributions:
– proof-checking easier than proof-finding
– security without authentication

• works well for many compiler optimizations
• but in practice, policies weak & over-approximated

– e.g., is it exactly the Java metadata for a class
– e.g., does it use standard calling convention

5

13 October 2004 Grossman: Language-Based Security 25

Other PCC instances

• Typed Assembly Language (TAL)
– As in file-example, types let you encode many

policies (in theory, any safety property!)
– Proof-checker now type-checker, vcgen more

implicit
– In practice, more flexible data-rep and calling-

convention, worse arithmetic and flow-sensitivity

• Foundational PCC (FPCC)
– Don’t trust vcgen, only semantics of machine and

security policy encoded in logic
– Impressive TCB, > 20 grad-student years

13 October 2004 Grossman: Language-Based Security 26

Verified compilers?

• A verified compiler is a decades-old dream
– I don’t think we’re close
– Tony Hoare’s recent “grand challenge”

• Why is PCC-style easier?
– Judges compiler on one program at a time
– Judges compiler on a security policy, not

correctness
• This is little consolation to programmers hitting

compiler bugs
• Next week: UW work on optimizations that are

provably correct for all source programs

13 October 2004 Grossman: Language-Based Security 27

Inline-Reference Monitors

• Rules of the game:
– Executing P goes through states s1, s2, …
– A safety policy S is a set of “bad states” (easily

summarized with an automata)
– For all P, the IRM must produce a P’ that:

• obeys S
• if P obeys S, then P’ is equivalent to P

• Amazing: An IRM can be sound and complete for any
(non-trivial) safety property S
– Proof: Before going from s to s’, halt iff s’ is bad
– For many S, there are more efficient IRMs

13 October 2004 Grossman: Language-Based Security 28

(Revisionist) Example

• In 1993, SFI:
– Without hardware support, ensure code accesses

only addresses in some aligned 2n range
– IRM: change every load/store to mask the address

– Sound (with reserved registers and special care to
restrict jump targets)

– Complete (if original program obeyed the policy,
every mask is a no-op)

st o r 1- >r 2 and 0x000FFFFF, r 2- >r 3
or 0x2a300000, r 3- >r 3
st o r 1- >r 3

13 October 2004 Grossman: Language-Based Security 29

Dodging undecidability

How can an IRM enforce safety policies soundly and
completely:

• It rewrites P to P’ such that:
– P’ obeys S

– If P obeys S, then P’ is equivalent to P

• It does not decide if P satisfies the policy

13 October 2004 Grossman: Language-Based Security 30

Static analysis for information flow

Information-flow properties include:
• Confidentiality (secrets kept)

• Integrity (data not corrupted)

(too strong but useful) confidentiality: non-interference
• “High-security input never affects low-security output”

(Generalizes to arbitrary lattice of security levels)

P
H

L

H’

L’

∀∀∀∀ H1,H2,L
if P(H1,L) = (H1’,L’)
then ∃∃∃∃H2’

P(H2,L) = (H2’,L’)

6

13 October 2004 Grossman: Language-Based Security 31

Non-interference

• Non-interference is about P, not an execution of P
– not a safety (liveness) property; can’t be monitored

• Robust definition depending on “low outputs”
– I/O, memory, termination, timing, TLB, …
– Extends to probabilistic view (cf. DB full disclosure)

• Enforceable via sound (incomplete) dataflow analysis
– L

�
H, assign each variable a level sec(x)

e1 + e2
max(sec(e1) ,

sec(e2))

x : = e
sec(e) i f
sec(e) � sec(x)

i f (x) e;
sec(x) i f
sec(x) � sec(e)

13 October 2004 Grossman: Language-Based Security 32

Information-flow continued

• Implicit flow prevented, e.g., i f (h) l : =3

• Conservative, e.g.,
l : =h* 0; i f (h) l : =3 el se l : =3

• Integrity: exact same rules, except H
�

L !
• One way to “relax noninterference with care” (e.g., JIF)

– decl assi f y(e) : L e.g., average
– endor se(e) : H e.g., confirmed by > k sources

e1 + e2
max(sec(e1) ,

sec(e2))

x : = e
sec(e) i f
sec(e) � sec(x)

i f (x) e;
sec(x) i f
sec(x) � sec(e)

13 October 2004 Grossman: Language-Based Security 33

Software model checking

ü

����������	����������	����������	����������	

�������	�
�	����
�������	�
�	����
�������	�
�	����
�������	�
�	����

����������������

����������
����������
����������
����������

����������������������������

����������

��
��������

�	�����������������

���������

���	���������������

��
�	���	��

����������

ß
��	������

���	���������������

Predicate-refinement approach (SLAM, Blast)

Picture adapted from Tom Ball

13 October 2004 Grossman: Language-Based Security 34

Software model checking

• Sound, complete, and static?!

– (That picture has a loop)
– In practice, the static pointer analysis gives out

first with a “don’t know”

– For model-checking C, typically make weak-but-
unsound memory-safety assumptions

• Predicate-refinement just one approach (see
bibliography for others)

13 October 2004 Grossman: Language-Based Security 35

Metacompilation

Write application-specific checkers in terms of code
patterns and automata

+ Define checkers without being a compiler writer
− Unsound (aliasing, memory safety, …)
− Syntactic patterns ensure incompleteness w.r.t. the

semantic policy you care about
+ Well-designed to reduce false positives and rank

potential violations
+ Bugs get found and fixed (1000s in Linux)

Well-designed extensible bug-finders are great,
but they never ensure a policy is obeyed

13 October 2004 Grossman: Language-Based Security 36

So far: more general approaches

• PCC
• IRM

• Information Flow
• (Refinement-Based) Model Checking
• Extensible Bug-Finding

Many other tools/techniques have narrower goals
and are correspondingly easier to use…

lint-like tools, confinement, stack inspection,
type qualifiers, …

7

13 October 2004 Grossman: Language-Based Security 37

Push-button bug-finding

• Prefix, Splint (LCLint), MS Office annotations, etc.
• Does nothing for malice

• Extensibility less important than turning off features,
minimizing false positives (ideally complete), and
prioritizing results
– Typically based on “smelly syntactic patterns”

• Dynamic counterparts: Purify, etc.

13 October 2004 Grossman: Language-Based Security 38

Confinement

Stronger than private fields, weaker than confidential
• Captures a useful idiom (copy to improve integrity)

• Shows private describes a field, not a value
• Backwards-compatible, easy to use

pr i vat e I dent i t y[]
s i gner s;
…
publ i c I dent i t y []
get Si gner s() {
/ / br each: shoul d copy

r et ur n s i gner s;
}

conf i ned cl ass
Conf I dent { … }

Conf I dent [] s i gner s;
…
publ i c I dent i t y []
get Si gner s() {

/ / must copy
}

13 October 2004 Grossman: Language-Based Security 39

Java Stack Inspection

• Methods have principals (e.g., code source)
• Principals have privileges (e.g., file-delete)
• Operations:

– Begi nPr i vi l ege() ; // use “my” privileges
(set a bit in the call frame)

– CheckPr i vi l ege(P) ; // check for privilege P
(start at current stack pointer, find first frame with
bit set; check the frame’s method’s principal’s
privileges)

+ principle of least privilege (default is less enabled)
− unclear what the policy is

13 October 2004 Grossman: Language-Based Security 40

Stack Inspection Examples

del et e_f i l e(St r i ng s) {
CheckPr i vi l ege(f i l e_del et e) ;
…

}

ut i l (Obj ect evi l) {
… do not cal l Begi nPr i v i l ege() …
evi l . m() ; / / saf e, unknown cal l back

}

del et e_t mp_a() {
Begi nPr i vi l ege() ;
del et e_f i l e(“ / t mp/ a”) ;

}

13 October 2004 Grossman: Language-Based Security 41

Type Qualifiers

• Programmer defines qualifiers…
– e.g., locked/unlocked

• and how “key functions” affect them
– e.g., l ocked mt x acqui r e(unl ocked mt x) ;

• A scalable flow-sensitive analysis ensures the
qualifiers are obeyed
– e.g., acqui r e never passed a l ocked mt x

• Precision typically limited by aliasing
• Other published uses:

– const-inference, tainted-strings, …

13 October 2004 Grossman: Language-Based Security 42

Take-Away Messages

• PL has great tools for software security; good
languages are just a start

• Many approaches to what to enforce and how
• A hot area, with aesthetically pleasing results and

practical applications
• As always, learning related work is crucial

• This was 100 hours of material in 45(?!) minutes:

– see the bibliography and come talk to me

