Seminar on Trustworthy Computing

November 3, 2004

DOES PROVABLE SECURITY EXIST?

Neal Koblitz, Department of Mathematics
koblitz@math.washington.edu

This talk is based on joint work with Alfred
Menezes of the Centre for Applied Crypto-
graphic Research at Waterloo; see
http://eprint.iacr.org/2004/152.pdf
or
http://www.cacr.math.uwaterloo.ca



Suppose that someone is using public-key
cryptography to

e protect credit card numbers in e-commerce;
e maintain confidentiality of medical records;

¢ safeguard national security information.

How can she be sure that the system is secure?

Is there such a thing as a “proof” of security?



In 1994 Bellare and Rogaway “proved security”
for a version of RSA that they called “Optimal
Asymmetric Encryption Padding” (OAEP).

Soon after, MasterCard and Visa included
OAEP in their SET electronic payment stan-
dard.

In 2001, Victor Shoup examined the Bellare-
Rogaway “proof of security” and showed that
it was fallacious.

This type of thing causes a credibility problem.



What might “provable security” mean?

Let’s start with the word “security”
(in encryption).

First answer:

Every public-key system is based on a one-way
function or construction.

Example:

In RSA, this is multiplying together two large
primes p and ¢ to form the “modulus” n:

n = pq.
The inverse process is factoring n, which is pre-
sumably impractical.

So a first attempt at a definition of “security”

1S:

being certain that the underlying one-way func-
tion cannot feasibly be inverted.

4



However, from the earliest days of public-key
cryptography (the late 1970s) it was realized
that the RSA encryption function

y = ¢ (mod n)

(where ¢ is a fixed exponent, z is the plaintext
and y is the ciphertext) could conceivably be
inverted even if the underlying one-way func-
tion

(p,q) = n=pg

cannot be, that is, even if n is not factored.
(No one has any idea how to do this.)

Thus, a second answer to what “security”
should mean is:

being certain that the encryption function can-
not feasibly be inverted.



Most mathematically oriented books on cryp-
tography don’t go any further than these two
answers.

For example, my two books on cryptography
have this defect.

This limited view fails to anticipate most of the
attacks on a cryptosystem that are likely to oc-
cur.



Example (Bleichenbacher 1998):

Suppose that Alice is receiving messages via
RSA.

The plaintext messages must adhere to a cer-
tain format. If a deciphered message is not in
that form, Alice’s computer transmits an error
message to the sender.

This seems innocuous.
But Bleichenbacher can (sometimes) use these
error messages to decipher an RSA ciphertext

WITHOUT knowing the deciphering key.

Outline of Bleichenbacher’s attack:



Let y be the target ciphertext.

He sends Alice some carefully selected ‘pertur-
bations’ y’ of y and keeps a record of which ones
are rejected because the decryption is not in the
proper format.

He is able to put this information together to

find the exact decryption of y.

Bleichenbacher’s attack is an example of a
“chosen-ciphertext” attack.



A full chosen-ciphertext attack means that the
adversary is able to get Alice to decrypt any
messages of his choice other than the target ci-
phertext y.

Bleichenbacher mounts a partial chosen-
ciphertext attack, in the sense that he gets Al-
ice to give him partial information about the de-
cryption of any message of his choice (namely,
whether or not it has the proper format).

In the 1980s — long before Bleichenbacher’s at-
tack — Goldwasser, Micali, Rivest and others
realized that “security” should include the abil-
ity to withstand a chosen-ciphertext attack.

This is a much stronger notion of security, be-
cause the adversary is assumed to have a lot
of power — namely, the ability to get a lot of
information out of Alice.



What does “proof” of security mean?
The standard answer:

A reduction argument.
The idea of “reducing one problem to another”
is common throughout mathematics and com-
puter science.

Math example:

Ribet’s Theorem (1985). Fermat’s Last Theo-
rem reduces to the Taniyama Conjecture.

That is, the Taniyama Conjecture is at least as
hard as FLT.

10



Computer science example:

The theory of NP-completeness

To show that a problem P is NP-complete, it
suffices to show that 3SAT reduces to it — in
other words, that any algorithm to solve P can
be used (with little additional effort) to solve
3SAT.

That implies that P is as hard as 3SAT — which
means that it’s NP-complete.

11



In cryptography, 3SAT is replaced by a math-
ematical problem that everyone believes to be
hard — for example, factoring large integers;
and P is the problem of breaking a given cryp-
tosystem.

“Provable security” results have the conditional
form:

If problem X is intractable, then the cryptosys-
tem Y is secure against attacks of type ~Z.

Notice that

e the intractability of the underlying mathemat-
ical problem is being assumed (it’s not being
proved); and

e there is no assurance that cryptosystem Y will
not succumb to an attack of type Z’, where Z’ #
Z.

12



First example of a “provable security” reduc-
tion:

Rabin encryption.

Recall the RSA encryption function

y = z° (mod n),

where e is a fixed exponent that is prime to
¢(n) =(p—1)(¢—1) (where the modulus n is the
product of the two very large primes p and g).

The message recipient Alice knows the factor-
ization of n and thus can easily determine a
decryption exponent d such that
_.d
z =y (mod n).
However, it’s conceivable that someone could

find the plaintext z without knowing the fac-
torization of n.

13



Rabin encryption (invented soon after RSA) is
a variant of RSA where e¢ = 2.

Since squaring is a 4-to-1 map on the integers
mod n, Rabin has to modify things a little.

First, he specifies that both p and ¢ be primes
of the form 4k + 3.

Second, he finds an easily identifiable set S con-
sisting of 1/4 of the residues mod n, such that
every square mod n has exactly one squareroot

in S.

A plaintext £ must be an element of S.

14



Alice decrypts by finding one of the squareroots
of y modulo n and then adjusting it if it’s not
the right one, that is, if it is not in S.

She can do this by multiplying by —1 (mod n)
or by +¢ (mod n), where ¢ is given by

e =1 (mod p),

e =—1 (mod q).

Since Alice knows the factorization of n, she has
no trouble computing z € S such that y = 22
(mod n).

Unlike RSA, Rabin encryption can be shown to
have the converse property:

Only someone who can factor n could perform
Rabin decryptions.

15



Unlike RSA, Rabin encryption has the feature
that breaking it is provably equivalent to factor-
ing n, in the following sense:

THEOREM. Factoring n reduces to the prob-
lem of finding the plaintext from the ciphertext
in Rabin encryption.

COROLLARY. If factoring is hard, then the
Rabin cryptosystem is secure against inverting
the encryption function.

PROOF OF THEOREM. Suppose that there’s
a computer program that, given the Rabin ci-
phertext y, finds the Rabin plaintext z.

You want to use this computer program to fac-
tor n.

16



Choose a random zy and set y = 22 (mod n).

Apply the computer program to y; it then gives
you z € S such that z? = y = 22 (mod n).

There’s a 50% chance that x # +z; (mod n), in
which case you can compute zy/x = +¢ and then

immediately factor n:

p=g.cd.(n,e —1).

Otherwise, try again with a new z;.

After k different random z’s, there’s only a 2~
chance that you’ve failed to factor n.

This is a probabilistic algorithm to factor n,

given a program to get plaintext from cipher-
text. QED

17



No such reduction is known for RSA.

In fact, in 1998 Boneh and Venkatesan showed
that it is highly unlikely that there is a reduc-
tion from factoring to inverting the RSA en-
cryption function.

More precisely, they showed that if e is small
and if there’s an ‘“algebraic” reduction from
factoring to inverting RSA, then the factoring
problem itself must be easy.

Thus, Rabin encryption has a fundamental
“provable security” property that RSA lacks.

18



Does that mean that Rabin encryption is
“provably secure”?

Not exactly.

The same reasoning used to prove the above
theorem also shows that Rabin encryption is
totally vulnerable to chosen-ciphertext attack.

If an adversary can get Alice to decrypt y = 22
(mod n) for k different zy that he chooses at
random, then with probability 1 — 2% he’ll be
able to factor n.

Depending on what definition of “security” we
use, the same argument can “prove” either
security... or insecurity!

NOTE: In 2001, Boneh showed how to modify
Rabin’s construction — with a “padding” and a
“Feistel round” — in order to get an encryption
system that is both efficient and arguably quite
secure.

19



Now let’s pass from encryption to signature.
Crucial ingredient: a “hash” function H(m).

In general, a hash function is a function from a
long string m (in cryptography, m is the mes-
sage) to a much shorter string H(m) that be-
haves like a “fingerprint” of the message.

H is a publicly known function that can be
quickly computed.

The hash function must satisfy certain proper-
ties. The most common assumption is that it is
“collision-resistant.”

This means that there is no feasible way to find

any pair of messages m, m’ with the same hash
value H(m') = H(m).

20



In reduction arguments it is often very helpful
to make a stronger assumption about H — that
it behaves as a random function.

In other words, instead of assuming that there’s
a (publicly available) deterministic algorithm to
compute H, one supposes that any time some-
one wants a hash value H(m) an “oracle” will
give her a random value to serve as H(m) —
with the only condition being that if the same
m is given to the oracle again, then the oracle
must answer with the same H(m).

If we adopt this assumption, we are said to be
working “in the random oracle model.”

21



The basic RSA signature:

We’ll suppose that the hash function H takes
(for all practical purposes random) values 0 <
H(m) < n, where n is Alice’s modulus.

Alice wants to sign a message m that she’s just
sent to Bob.

She finds H(m) and then exponentiates mod n
using her secret exponent d; that is, her signa-

ture is
s = H(m)? (mod n).

22



When Bob gets the message m and the signa-
ture s, he too computes H(m), and then he uses
the publicly known exponent e to verify that

H(m) = s® (mod n).

If this holds, then Bob is satisfied that

e Alice truly sent the message (because pre-
sumably only Alice knows the exponent d that
inverts the exponentiation s — s® mod n); and

e the message has not been tampered with (be-
cause no one would be able to come up with a
second message m’ for which H(m') = H(m)).

23



The signature analogy of
“secure against chosen-ciphertext attack”
is
“secure against chosen-message attack by
an existential forger.”

This means that the adversary can get Alice to
provide valid signatures s; for any messages m;
of his choosing.

He will be judged to have broken the system
(that is, successfully committed forgery) if he
produces a valid signature for a message m that
is different from all the m;.

24



THEOREM. If the problem of inverting x > x°
(mod n) is intractable, then the above RSA sig-
nature is secure (in the random oracle model)
from chosen-message attack by an existential
forger.

PROOF. We need to give a reduction argument
— a reduction from inverting the RSA map to
existential forgery. This means the following.

Suppose we have a computer program that
takes as input Alice’s public key (n,e). It is
allowed to make a series of at most ¢ queries
for H(m;) and later (in some but not all cases)
for the corresponding signature s; for messages
m; of its choice.

To say that the computer program is a chosen-
message existential forger means that it will
eventually output a valid signature for one of
the messages m for which it was given only the
hash value H(m) and not the signature.

25



We must show how such a computer program
can be used to solve the problem: Given
arbitrary y, find z such that y = z° (mod n).

So suppose we are given such a y.

We give the computer Alice’s (n,e) and wait for
its queries.

In all cases but one, we respond to the hash
query for m; by randomly selecting z; between
0 and n — 1 and setting H(m;) = z§ (mod n).

For just one value m;, we respond by setting
H(m;,) = y.

(Recall that y is the integer whose e-th root
modulo n we need to find.)

Here we choose iy at random and hope that m =

m;, just happens to be the message whose sig-
nature will be forged by the existential forger.

26



Any time the forger asks for the signature of
one of the m;, ¢ # iy, we send z; as its signature.

This will satisfy the forger, since z{ = H(m;)
(mod n).

If the forger ends up outputting a valid signa-
ture s;, for m = m;,, then we’re done: we have
a solution z = s;, to y = z° (mod n).

If we guessed wrong, which happens with prob-
ability at most 1 — 1/¢q, then we won’t get any-
thing useful out of this run of the forger; so we
run the program again.

If we go through the procedure k£ times, the

probability that every time we fail to solve our
congruence y = z°¢ (mod n) for z is at most

k
1
(-3)
q
For large k this rapidly — 0.

So with high probability we succeed. QED

27



Informal version (without extraneous features):

Because H is random, the messages m; are ir-
relevant.

What the forger has to work with:
a random sequence h;
along with the corresponding z;
(their e-th roots mod n)

To succeed, the forger must produce an e-th
root mod n of a certain random h, h ¢ {h;}.

The theorem says that this is no easier than
producing the e-th root mod n of a given ran-
dom A without having the sequence of pairs

(hi, CIIi).

The proof boils down to the following trivial
observation:

28



Since both the h; and the x; are randomly distributed
over the interval from 0 to n — 1, you can obtain an
equally good sequence of pairs (h;,z;) by starting with
the random x; and exponentiating with the publicly
known exponent e, i.e., h; = x¢ (mod n).

In other words, a sequence of random
(hs, h¢ mod n)

is indistinguishable from a sequence of random
(2§ mod n,x;);

it makes no difference whether you look at your
sequence of pairs left-to-right or right-to-left.

The above proof is really just the following tau-
tology:

The problem of solving an equation is equivalent to the
problem of solving the equation in the presence of some
additional data (h;,z;) that are irrelevant to the prob-
lem and that anyone can easily generate using publicly
available information.

29



But there is one subtlety that must be
discussed.

In the above reduction proof the forgery-
program must be run O(g) times in order to
be almost certain to find the desired e-th root
of y modulo n:

1\ *
(1 — —> <1 for k= O(q).
q

What are the practical implications (in the
sense of Bellare-Rogaway’s term “practice-
oriented provable security”)?

30



Suppose that you’re using a large enough n so
that you’re confident that e-th roots mod n can-
not be found in fewer than 230 operations.

Suppose that you anticipate a chosen-message
attack where the adversary will be able to make
a million (= 22?°) signature queries.

The above reduction means that you can be
sure only that the forger will require time at

least
280/220 — 260.

On the other hand, the informal version says
that the forger will need the same amount of
time — namely, 230 — as anyone else who has
to produce an e-th root modulo n.

Which is right,

(1) the reduction proof?

(2) common sense?

31



Equivalent question: Are the following two
problems equivalent?

The RSA-problem:

Given n,e, y,
find the e-th root of y mod n.

The RSA1(g)-problem:

Given n,e and a finite set of random
Y;» you are permitted to select up to

q of those y;, for each of which you
will be given its e-th root mod n;

you must produce the e-th root mod n
for one of the remaining y;.

Informal argument:

RSA1(g) is no easier than RSA.

Formal reduction:

RSA can be solved using O(q) iterations
of an algorithm for RSA1(g).

So a lower bound for RSA must be divided
by O(q) to get a lower bound for RSA1(q).

32



Many researchers developed modifications of
the original RSA signature scheme that have
“tight” reductions.

That is, they can prove that an algorithm to
break their system can be used to solve the
RSA-problem in essentially the same amount
of time.

Is this worthwhile?

Is it wise to replace a simple system by a more
complicated one in order to be able to give a
“tight” reduction argument?

33



My opinion: No!

(1) The more complicated something is, the
more that can go wrong with it. For exam-
ple, if it requires a random number generator,
then someone might find a way to break into
that device.

(2) In this whole business everyone is implicitly
assuming that the RSA-problem is as hard as
factoring. By Boneh—Venkatesan, it is very un-
likely that there’s a reduction from factoring to
the RSA-problem. So this assumption is based
on experience over the years, “common sense,”
and the “gut feeling” of experts.

It’s inconsistent to refuse to use “common
sense” in the case of RSA vs RSA1(q).

In the presumed equivalence
Factoring <— RSA <= RSAI(q),

the first <= is most likely the weakest link.

34



In other words:

Tight formal reduction arguments are nice to
have.

But sometimes in cryptography one wants to
assume that P; is as hard as Py even if there is
no prospect of ever constructing such a reduc-
tion from P, to P;.

35



Summary:

I. A “proof of security” establishes security only
against a certain type of attack — and only con-
ditionally on a certain problem being hard.

The Rabin example shows that the same feature
that allows one to prove security against one
type of attack could make the system totally
vulnerable to another type of attack.

We’re so busy improving the lock on the front
door that we fail to notice that the back door
is wide open.

36



II. A “proof of security” doesn’t always agree
with common sense.

The lack of a tight reduction argument might
lead us to shun a simple system and prefer a
more complicated one.

This might or might not be a good idea.

37



III. The “provable security” field lost credibil-
ity when the Bellare—Rogaway “proof” for their
Optimal Asymmetric Encryption was found to
be fallacious.

In the crypto research community there’s an
unfortunate tradition of trying to rush as many
papers into print as rapidly as possible.

There’s not much of a tradition of careful read-
ing of other people’s papers.

For 7 years no one examined the 1994 Bellare—
Rogaway paper carefully, even though it was
a very important paper that influenced real-
world practice.

38



Notice the contrast with math:
1993 — examination of Wiles’ FLT manuscript

2002 — ‘Primes is in P’ by Agrawal et al

39



IV. Most papers in the field are hard to read
— math/comp.sci. jargon, excessive formalism.

V. The use of the theorem/proof paradigm is
unfortunate.

I prefer the words “claim” and “argument”
(more precisely:

‘reductionist security claim’
and

‘reduction argument to support the claim’).

40



Two things wrong with the word “proof” here:
(1) it connotes 100% certainty;

(2) it suggests an intricate, highly technical se-
quence of steps, which no one outside an elite
of narrow specialists is likely to understand or
raise doubts about.

A “proof of a theorem” is an intimidating
notion.

An “argument in support of a claim” sounds
humbler, and it suggests something that any
well-educated person can try to understand and
perhaps question.

41



Conclusion:
In the U.S. there’s a long tradition of over-
hyping the power of technology to guarantee

security.

In the early decades of the Nuclear Age:
fallout shelters, bomb drills.

More recently:

demagogic politicians spending billions
of dollars to construct “missile shields”.

In cryptography, as elsewhere, we shouldn’t
fool ourselves into a false sense of security.

Does provable security exist?
My answer: No.
The search for secure cryptosystems is more an

art than a science, and we can never be 100%
sure that we’ve achieved success.

42



