Neuromorphic Accelerators: A Comparison Between
Neuroscience and Machine-Learning Approaches

Zidong Duf?
Tianshi Chen'

Daniel D Ben-Dayan Rubin?
Lei Zhang'*

Yunji Chen'
Chengyong Wu' Olivier Temam?

Ligiang He'

State Key Laboratory of Computer Architecture, Institute of Computing Technology (ICT), CAS, China

tiUniversity of CAS, China *Intel, Israel

{duzidong,cyj,chentianshi,cwu }@ict.ac.cn

ligiang.he@gmail.com

TCollege of Computer Science, Inner Mongolia Univ., China
daniel.ben-dayan.rubin@intel.com
zhanglei515@mails.ucas.ac.cn  olivier.temam@inria.fr

$Inria, France

ABSTRACT

A vast array of devices, ranging from industrial robots
to self-driven cars or smartphones, require increasingly
sophisticated processing of real-world input data (image,
voice, radio, ...). Interestingly, hardware neural network
accelerators are emerging again as attractive candidate
architectures for such tasks. The neural network algo-
rithms considered come from two, largely separate, do-
mains: machine-learning and neuroscience. These neu-
ral networks have very different characteristics, so it is
unclear which approach should be favored for hardware
implementation. Yet, few studies compare them from a
hardware perspective. We implement both types of net-
works down to the layout, and we compare the relative
merit of each approach in terms of energy, speed, area
cost, accuracy and functionality.

Within the limit of our study (current SNN and machine-

learning NN algorithms, current best effort at hardware
implementation efforts, and workloads used in this study),
our analysis helps dispel the notion that hardware neu-
ral network accelerators inspired from neuroscience, such
as SNN+STDP, are currently a competitive alternative
to hardware neural networks accelerators inspired from
machine-learning, such as MLP+BP: not only in terms
of accuracy, but also in terms of hardware cost for re-
alistic implementations, which is less expected. How-
ever, we also outline that SNN+STDP carry potential
for reduced hardware cost compared to machine-learning
networks at very large scales, if accuracy issues can be
controlled (or for applications where they are less im-
portant). We also identify the key sources of inaccuracy
of SNN+STDP which are less related to the loss of in-
formation due to spike coding than to the nature of the
STDP learning algorithm. Finally, we outline that for
the category of applications which require permanent on-
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line learning and moderate accuracy, SNN+STDP hard-
ware accelerators could be a very cost-efficient solution.

Categories and Subject Descriptors

C.1.3 [PROCESSOR ARCHITECTURES]: Other
Architecture Styles
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1. INTRODUCTION

Due to stringent energy constraints, both embedded
and high-performance systems are turning to accelera-
tors, i.e., custom circuits capable of efficiently imple-
menting a range of tasks, at the cost of less flexibil-
ity than processors. While FPGAs or GPUs are pop-
ular forms of accelerators, Kuon et al. [1] still report
an energy ratio of 12x on average between FPGAs and
ASICs, and GPUs are even worse [2]. At the same time,
single-algorithm ASICs are not an option for most het-
erogeneous multi-cores or SoCs except for a few specific
but frequently used algorithms, such as video decoding.
Finding accelerators which can achieve high energy effi-
ciency yet retain a broad application scope is a signifi-
cant challenge.

In that context, machine-learning is a particularly in-
teresting application domain: a very broad set of appli-
cations rely on machine-learning algorithms, especially
on the client for processing real-world inputs such as
visual and audio information, e.g., typically image and
audio/voice recognition tasks. And interestingly, at the
same time, a few key algorithms, especially Deep Neural
Networks (DNNs), have been shown to be state-of-the-
art across a broad range of applications [3, 4]. This, in
turn, provides a unique opportunity to design accelera-
tors which can be very efficient, because they only need
to implement a few variations of the same algorithm,
yet achieve a very broad application scope. A number
of researchers have identified that recent trend and pro-
posed hardware neural network accelerators [5, 6]. How-
ever, DNNs are far too large to be fully mapped in hard-
ware with tens of millions of synapses and hundreds of
thousands of neurons [4]. So the most recent research



works propose only to implement a few of the neurons
of Convolutional Neural Networks (CNNs, a variant of
DNNs) [5] or a full but small-scale Multi-Layer Percep-
tron (MLP) [6].

However, next to this trend, another type of hard-
ware neural networks is emerging: those inspired by
neuroscience. Unlike machine-learning neural networks
which only have a remote relationship with biological
neurons, these neural networks are more directly in-
spired from neuroscience models [7]. The primary goal
of these hardware neural networks is the emulation of
large-scale biological neural networks, though, increas-
ingly, they are also considered for application purposes.
Two of the most prominent efforts are driven by compa-
nies, i.e., TrueNorth [8] by IBM and the recent Zeroth
processor [9] by Qualcomm, so it is safe to assume that
such efforts will ultimately target commercial applica-
tions. Such neuroscience-inspired models have several
significant assets: (1) they have been successfully applied
to complex machine-learning tasks, such as face detec-
tion or handwritten digit recognition [10, 11], so they
should not be ruled out as potential candidate acceler-
ators, (2) the fact the information is coded using spikes
(Spiking Neural Networks or SNNs) can help achieve sig-
nificant area and energy savings [12], (3) the bio-inspired
learning rule called Spike-Timing Dependent Plasticity
(STDP) which allows to learn continuously while the
SNN is being used, providing high adaptivity.

As a result, it is no longer clear which type of model
is the most compatible with the area, speed, energy,
accuracy and functionality requirements of embedded
systems. Unfortunately, since the two types of mod-
els are investigated by two fairly different communities,
i.e., machine-learning and neuroscience, there are very
few quantitative comparisons of their accuracy and even
less so of their hardware cost. In order to help fill this
gap, we make a quantitative comparison between two of
the most well-known models of each type: the Multi-
Layer Perceptron with Back-Propagation (BP) [13] and
the Spiking Neural Network with Spike-Timing Depen-
dent Plasticity learning [10]. Using the MNIST bench-
mark for handwritten digit recognition [13] as our driv-
ing example, we make a best effort at exploring their de-
sign spaces,' and implementing them in hardware, down
to the layout at 65nm,? in order to evaluate their area,
energy, speed and accuracy. We also validate our con-
clusions on two other benchmarks respectively tackling
image recognition and speech processing: the MPEG-7
benchmark for object recognition [14], and the Spoken
Arabic Digits for speech recognition [15].

We attempt to provide some answers to the following

1We have explored the topologies and operator types for both MLP
and SNN models. For SNN, we have additionally explored different
coding schemes (including four rate coding and two temporal coding
schemes, see Section 5) as well as neuron parameters. we also make
a best effort at reimplementing an IBM TrueNorth core [8] in our
exploration of hardware SNNs, see Section 5.

21n accordance with prior art [16, 11, 8], we focus the hardware im-
plementation on the feed-forward (testing or inference) path of neural
networks as most applications are compatible with offline learning [6,
16]. However, we also investigate the hardware cost of implementing
STDP as it allows for online learning, unlike BP.
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(a) MLP vs. (b) SNN.

questions about hardware neural network accelerators:

1. Can neural networks inspired from neuroscience
(such as SNN+STDP) perform as well as (or better
than) neural networks inspired from machine-learning
(such as MLP+BP) on recognition tasks?

2. Is the cost of hardware SNN significantly lower
than the cost of hardware MLP?

3. In which cases shall the designer consider using
hardware SNN or hardware MLP accelerators?

Since both SNN and machine-learning NN models evolve
constantly, as well as the options for implementing them
in hardware, we cannot provide definite answers to these
questions. However, for current models, using best ef-
forts at hardware implementations and current technolo-
gies, and using a limited set of workloads (especially
MNIST, one of the few workloads used in both SNN and
machine-learning NN studies), we can provide a snap-
shot of what the current balance between the two ap-
proaches is.

Within these restrictions of the scope of our study, we
provide the following conclusions:

(1) When considering the exact same recognition task
(e.g., MNIST handwritten digit recognition), the accu-
racy of models inspired from neuroscience, SNN+STDP,
is significantly lower than even simple models inspired
from machine-learning, such as MLP+BP. We also find
that the cause of the accuracy gap is non-trivial, less
related to spike coding than to the nature of the STDP
learning algorithm; we were able to fully bridge the ac-
curacy gap between SNN+STDP and MLP+BP.

(2) While hardware SNNs are significantly cheaper (area
and power) than MLPs when they are fully expanded in
hardware (each logical neuron and synapse mapped to a
hardware neuron and a hardware synapse respectively),
MLPs are actually cheaper than SNNs when reasonable
area costs constraints, compatible with embedded sys-
tem design, are considered. We could reduce the gap
between the two models, especially energy-wise, by us-
ing a simplified SNN model, at a moderate loss of ac-
curacy; however, the MLP model remains significantly
more area/energy efficient than the SNN one.

(3) Even though the range of applications which require
permanent online learning (as opposed to offline learn-
ing) may be limited, we observe that the hardware over-
head (area and power) of implementing STDP is very
low. So applications requiring permanent online learning
and tolerant to moderate accuracy are excellent candi-
dates for SNN+STDP accelerators. SNN+STDP should
also be the design of choice for fast and large-scale imple-
mentations (spatially expanded), especially if accuracy
issues can be mitigated by changing the learning algo-
rithm as explored in this article.

In Section 2 we present the two target models (MLP+BP
and SNN+4STDP), in Section 3 we compare their ac-



\ () input “
|
: neuron |
weight | neuron ‘ i
/

fJu:

output
Iayer

3 8
“s¢o

hidden \
layer

/\\

Figure 2: Operators within a 2-layer MLP.
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Figure 3: Spike coding in SNN: (left) all spikes of 300 neu-
rons (one meuron per line) for one MNIST presentation image,
(right) the potential of the different neurons increases as they re-
ceive input spikes (one color line per neuron), until one fires; the
firing neuron enters a refractory period for 20 ms, and the other
neurons are inhibited for 5 ms by the firing neuron; note that all
neurons have different firing thresholds due to homeostasis.

curacy and attempt to bridge them, in Section 4 we
consider two variants of hardware implementation (spa-
tially expanded at any cost, and cost-constrained spa-
tially folded), including a simplified (and more energy-
efficient) variant of SNNs, and we also explore the hard-
ware cost of implementing online learning (STDP); in
Section 6 we present the related work.

2. MODELS

In this section, we briefly recap how both models
(MLP+BP and SNN+STDP) operate as an introduction
to their hardware implementation in Section 4, both in
feed-forward mode, and in learning mode, then we com-
pare their accuracy on the MNIST benchmark.

2.1 MLP

Topology. MLPs contain input layer, one or multiple
hidden layers, and an output layer; the input layer does
not contain neurons, and the inputs are usually n-bit
values (8-bit values in our case for the pixel luminance).
The output neurons are connected to all neurons in the
hidden layer, and all neurons in the hidden layer are
connected to all inputs.

Neurons and synapses. A neuron j in layer [ per-

forms the following computations: y; = f(s}) where
sh = Zivlol whiyi ™, wy; is the synaptic weight between

neuron i in layer [ — 1 and neuron j in layer [, N; is the
number of neurons in layer [, and f is the activation func-
tion; we used the typical sigmoid function f(z) = ="
Learning (Back-Propagation). Back-Propagation is
a supervised learning method where an input is first pre-
sented to the network which produces an output using
the feed-forward path. The error between this network
output and the known output is then propagated back
through the network to update the weights. The method
is iterative: this process is repeated multiple times until
the target error is achieved or the allocated learning time
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has elapsed The weights are updated as follows: w’, (t+
1) = whi(t) + nd5()y: " (t), where ¢ is the learning itera-
tion, 7 is the learnlng rate, and 5; is the error gradient,
i.e., the direction of the error. At the output layer, the
gradient expression is &} (t) = f'(s}(t)) x €} (t), where €} is
the error (the difference between the network output and
the expected output), and in the hidden layer, the gra-
dient expression is L) = F(s5(8)) X St S (8w (1),
where f’ is the derivative of f.

2.2 SNN

Topology. The SNN layer is not only connected to all

its inputs through excitatory connections, but all neu-
rons are connected among themselves using inhibitory
connections. We consider a single-layer SNN. While this
choice may initially come across as unfair with respect
to MLPs, the best reported results so far on MNIST us-
ing SNNs have been achieved with a single layer [11].
In fact, the lateral inhibitory connections produce the
so-called winner-takes-all (WTA) dynamics and create
a form of recurrent network. This type of connectiv-
ity effectively ensures both compactness and, theoreti-
cally, a number of non-linear mappings of the input data,
leading to competitive recognition accuracy compared to
multi-layer networks [17].
Neurons and synapses. The inputs and outputs of
the neuron are spikes, see Figure 3. Each of the neu-
ron output can be reinterpreted as a spike train and the
spike frequency converted by counting the number of
spikes over a fixed time interval [12]. However, a more
efficient readout method is to consider the first neuron
which spikes as the winner, i.e., a form of spike-based
winner-takes-all. This approach lends well to both a fast
and dense hardware implementation and it has achieved
some of the best machine-learning capabilities so far with
SNN [10].

We consider the standard Leaky Integrated and Fire
(LIF) neuron model [18], where the neuron potential v;
of neuron j is the solution of the following differential

equation:
T‘leak Z; Wii X I
where Ti..r is the leakage time constant, and I; is the
value of input i. Normally, the solution is obtained
via discrete simulation (multiple time steps), which, in
hardware, would translate into repeated computations
at short time intervals. This would be inefficient from
both a time and energy perspective. We take advantage
of the fact that the potential v;(t) is the solution of the
following differential equation between two input spikes:
0; () + %’e—ti = 0. Unlike the aforementioned differential
question, it is possible to derive an analytical solution of
this equation and deduce that the potential, between two
consecutive spikes occurring at time 77 and 715, is given
Ty —T

by the following expression: v;(T2) = v;(T1) X ¢ Tiean .
Such an expression lends to a more efficient hardware
implementation.

Finally, note that when a neuron fires, it inhibits all
other neurons, emulating the presence of inhibitory con-
nections, in line with the practice of other efficient SNN

0;(t



neuron i

neuron j

LTD/LTP:

LTD:

presynaptic

postsynaptic
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models [10]; it also enters a refractory period where in-
coming spikes have no impact.

Learning (STDP). The learning principles of STDP
are very different from BP: the learning is unsupervised,
each neuron progressively converging to one of the most
salient information. The learning principle is to de-
tect causality between input and output spikes: if a
neuron fires soon after receiving an input spike from a
given synapse, it suggests that synapse plays a role in
the firing, and thus it should be reinforced; this notion
is called Long-Term Potentiation (LTP), see Figure 4.
Conversely, if a neuron fires a long time after receiving
an input spike, or shortly before receiving it, the cor-
responding synapse has most likely no impact, and it
should thus be decreased; this is called Long-Term De-
pression (LTD), see Figure 4. Note that, in our case,
STDP is only applied to the input excitatory connec-
tions, not the lateral inhibitory connections.

Homeostasis. Finally, in order to balance information
among neurons, it is critical to adjust their firing thresh-
old, by punishing neurons which fire too frequently (by
increasing their firing threshold), and promoting neu-
rons which fire infrequently (by conversely decreasing
their firing threshold). Such dynamic adjustment exists
in biological neurons through a process called homeosta-
sis [19], which we have also implemented. While this
ensures that all output neurons are learning to be spe-
cialized, we observed that it improves the SNN accuracy
around 5%. Overall, only one neuron can fire for a given
input image, making the readout both trivial and fast.

Homeostasis works on a large time scale compared
to spike events; we define a homeostasis epoch, and we
update all neurons thresholds at the end of each such
epoch. The update is done by increasing (respectively
decreasing) the neuron threshold if it has fired more (re-
spectively less) than a pre-set homeostasis threshold, ac-
cording to the following expression: firing_threshold+ =
sign(activity — homeostasis_threshold) * firing_threshold x
r, where activity is the number of times the neuron has
fired during the homeostasis epoch, and r is a multiplica-
tive positive constant [20]. Note that the whole process
is entirely local to each neuron (so the wiring overhead at
the hardware level will be small), except for the counter
for signaling the end of a homeostasis epoch.

Labeling. Because STDP is an unsupervised learning
method, there is a need for a complementary step to
label the neurons with the corresponding output infor-
mation. We use a self-labeling method which proceeds
as follows. We use the training images, of which the la-
bels are known, to label the neurons. Each neuron has
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Table 1: MLP and SNN characteristics.
MLP Para. Range

Our choice Description

# Npidden 10-1000 100 hidden neurons

# Noutput 10 10 output neurons

n 0.1-1 0.3 Learning rate

# epochs 10-200 50 Training epochs

SNN Para. Range Our choice Description

# N 10-800 300 Single layer, neurons
Tperiod 100-800 500ms Image presentation duration
Tieak 10-800 500ms Leakage time constant
Tinhibit 1-20 5ms Inhibitory period
Trefrac 5-50 20ms Refractory period

Trrp 1-50 45ms LTP threshold

Tinit Wimaz 70 17850 Initial firing threshold
Homeor 10 % Thepiod * (#N) 1,500,000 Homeostasis epoch in ms
Homeoyp, 3xHomeop 30 Homeostasis threshold

Tperiod*(#N>

as many counters as the different possible labels; when
an output neuron fires for a given input image label,
the corresponding neuron label counter is incremented.
After all training images have been processed, each neu-
ron gets tagged with the label with the highest score
(the score is deduced from the label counter value by
dividing by the number of input images with that label;
this accounts for possible discrepancies in the number of
times each label is used as input).

3. ACCURACY COMPARISON
3.1 SNN+STDP vs. MLP+BP

In order to compare the accuracy of both models, we
use the well-known MNIST [13] machine-learning bench-
mark corresponding to handwritten digits. The winning
neural network of the ImageNet 2012 competition (a
CNN) achieves an accuracy of 99.21% on the MNIST
benchmark using 60 million synapses and 650,000 neu-
rons [4], well beyond reasonable hardware capacity, and
the best reported results (99.77%) have been achieved
with a multi-column DNN [21].

We trained a much smaller MLP (100 neurons in hid-
den layer, see Table 1) on this problem and we achieved
an accuracy of 97.65%, slightly lower than the best re-
ported results for MLPs [22] (98.4% using 800 hidden
neurons). We selected 100 hidden neurons after explor-
ing the number of hidden neurons from to 10 to 1000
(and simultaneously exploring the hyper-parameters, such
as the learning rate), and we concluded that beyond 100
hidden neurons, the accuracy gains become marginal
with respect to the area overhead. We used the full
60,000 non-distorted MNIST images, and the full 10,000
testing images.

We then trained the SNN as follows. Each pixel lu-
minance is converted into a Poisson spike train of rate
proportional to the pixel luminance, for example, a max-
imum luminance of 255 corresponds to a mean period
of 50ms (20Hz). The A value of the Poisson process

corresponds to the following expression: m,
where U is a pre-defined constant indicating the max-
imum spike frequency and p(i, j) is the luminance value
of input pixel. We did a fine-grained exploration to de-
cide the rest parameters of SNN; including #neurons,
duration of image presentation, leakage time constant,

etc (see Table 1 for the final parameter setting selected



Table 2: Best accuracy Table 3: Accuracy of MLP
reported on MNIST (no and SNN on MNIST.

distortion). Type Accuracy
(%)

Type Accuracy  —gNNFSTDP - LIF 91.82
MLPTBP [22] g?z;o (SNNwt)

SNN+STDP [11] 93.50 Ede(gSNTV?Vit) Simpli- 90-85
SNN-+STDP [23] 95.00 SNN-+BP 95.40
ImageNet [4] 99.21 MLP+BP 97.65
MCDNN [21] 99.77

out of 1000 evaluated settings). Note that, even though
SNN is a model inspired from neuroscience, our main
goal here is computing efficiency and accuracy. So when
it comes to calibrating the model hyper-parameters, we
do not impose ourselves to strictly abide by values com-
patible with neuroscience observations, we simply select
the values yielding the best results, e.g., our empirical
exploration showed that the best accuracy was achieved
with a leakage time constant of 500ms, while that con-
stant is known to be around 50ms in the neuroscience
literature.

We report the accuracy results in Table 2 and Ta-
ble 3. We can observe that the SNN+STDP accuracy is
5.83% less than for the MLP. This result is within 1.68%
of the best reported result using SNN+STDP and that
number of neurons for MNIST (93.50% by Querlioz et
al. [11]). Note that we attempted to exactly match
that result by carefully reproducing their approach, and
even interacted with the authors, but since we could not
access their software, it was impossible to fully bridge
this gap. Anyway, whichever is the effective best pos-
sible result using SNN-+STDP on MNIST (our 91.82%
or their 93.50%), it is 5.83% to 4.15% away from the
MLP result. While this difference is significant for cer-
tain applications, e.g., life or death decisions for radiog-
raphy analysis of cancer patients, it is acceptable for be-
nign applications, e.g., identifying surrounding objects
using a smartphone app such as Google Goggles. In
a nutshell, SNN+STDP performs significantly less well
than MLP+BP, but its accuracy remains high enough
for many applications. Note that Diehl et al. [23] reports
a better MNIST accuracy of 95% using an SNN model
similar to [11], albeit with 6400 neurons (and 82.9% with
400 neurons vs. 91.82% with 300 neurons in our case).

3.2 Bridging the gap between SNN+STDP and
MLP+BP

SNN+BP. We want to further analyze the source of
(and as much as possible bridge) the accuracy discrep-
ancy between SNN+STDP and MLP+BP. Here, we fo-
cus on the learning algorithms which differ in two major
ways. First, STDP is an unsupervised learning algo-
rithm while BP is a supervised learning algorithm. The
principle behind STDP [24] relies solely on the timing of
the occurring spikes in the pre- and post-synaptic neu-
rons, i.e., local information, there is no notion of a global
error signal as in BP; there is also no notion of back-
propagation of error along the input-output pathway.
Second, STDP is an online algorithm, while BP is an
offline algorithm. Online learning rules like STDP raise
the problem of retention of earlier memories when new
ones are presented. In single-neuron models, the learn-

498

f(x)
sigmoid (a=1)
sigmoid (a=2)
sigmoid (a=4)
sigmoid (a=8)

sigmoid (a=16) 7
step [0/1] /

-5 o} 5 x
Figure 5: Activation function profiles (parameterized

—
/)
|

0.5

sigmoid and step function).
ing rule was shown to have a strong effect on the mem-

ory retention time [25]. In particular, it was shown that
sufficient lateral inhibition stabilizes receptive fields, the
stability of which is a measure of memory retention time
span [25].

In order to assess the impact of the learning algorithm,

we train the SNN using back-propagation. We proceed
as follows: in the feed-forward mode, we use the SNN
exactly as before (spikes, leakage, threshold for firing,
etc), but after each image presentation, we compute the
output error, and propagate it to the synaptic weights
using the Back-Propagation algorithm (gradient descent
and weights updates). We report the results in Table
3, and we can see that the accuracy has jumped from
91.82% to 95.40%, i.e., only 2.25% of accuracy difference
between SNN+BP and MLP+BP. This highlights that
spike coding only carries a small responsibility in the loss
of accuracy, most of it is due to the learning algorithm
(STDP).
Threshold function vs. Sigmoid. We try to further
bridge the gap between SNN+BP and MLP+BP. At this
point, the main difference between the two models lays
in spike coding and in the activation function used. It
is as if SNNs use a threshold function which is a simple
[0/1] step function (no spike/spike), while MLPs use a
sigmoid, see Figure 5. By parameterizing the sigmoid
function f,(z) = ﬁ, instead of f(x) ﬁ, it is
possible to gradually alter the profile of the sigmoid in
order to bring it closer to the profile of a step function;
a is a slope parameter, and the higher a, the closer to
a step function. see Figure 5. We train and test the
MLP+BP for different values of a, and we show the cor-
responding error in Figure 6. One can see that when a
increases, the error becomes increasingly close to that
of the step function, closing the gap between SNN+BP
and MLP+BP.

Overall, we observe that spike coding is only partially
at fault in the accuracy discrepancy between SNN+STDP
and MLP+BP: the nature of the learning algorithm (STDP)
has far more impact, and the only spike-related aspect
is the use of a threshold function to generate spikes, in-
stead of the sigmoid function used by MLPs. While our
hardware implementation of SNN described thereafter
uses a step function, this analysis suggests a research
direction for further bridging the accuracy gap between
SNNs and MLPs.

4. HARDWARE COST COMPARISON

In this section, we investigate the design tradeoffs
for implementing MLPs and SNNs in hardware. As
explained in the introduction, we focus the hardware
implementation on the feed-forward path because most
applications are compatible with offline learning. We
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distinguish two types of design: the most straightfor-
ward, but also costliest, approach where the hardware
design corresponds to the conceptual representation of
the NN, and where all components (neurons, synapses)
are mapped to individual hardware components, i.e., it
is spatially erpanded in hardware. Due to the cost of
such designs, they can only correspond to small-scale
NNs and thus they are not appropriate for meaning-
ful applications. We then explore spatially folded de-
signs where hardware components (especially neuron in-
puts) are time-shared by several logical components of
the original NN. For the sake of fairness, we try to make
similar choices for the implementation of both MLPs and
SNNs.

4.1 Methodology

We have implemented the different circuits described
in this article at the RTL level, synthesized them and
placed and routed them; in some cases (fully expanded
version), we estimate the area of the circuits based on the
placed and routed versions of individual neurons, when
the circuits are too large. The synthesis was done using
the Synopsys Design Compiler (TSMC 65nm GPlus high
VT library), and the layout using the Synopsys IC com-
piler. With the layout version, we simulated the design
using Synopsys VCS and PrimeTime PX to get accu-
rate power and energy numbers. All reported area, de-
lay, power and energy numbers are obtained with these
tools.

For the accuracy comparisons, we implemented a C++
version of both the SNN+STDP and MLP+BP due to
the long training times, incompatible with RTL-level
simulations. We validated both simulators against their
RTL counterpart.

4.2 Spatially Expanded

4.2.1 MLP.

For MLPs, the spatially expanded hardware design
is similar to the conceptual representation of Figure 2.
The hardware neuron is implemented through a set of
multipliers, one per input synapse, followed by an adder
tree to cumulate all such products. The sigmoid is im-
plemented using 16-point piecewise linear interpolation,
requiring only a small SRAM table to store the interpola-
tion points (2 coefficients per point), an adder and a mul-
tiplier [6], i.e., the interpolated function f value at point
x in segment ¢ is f(z) = a; xx+b;. We evaluated the op-
timal size of the operators and synaptic storage (through
repeated training/testing experiments using the MNIST
benchmark), and we found that the results achieved with
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8-bit fixed-point operators (multipliers, adders, SRAM
width) were on par with the ones obtained with floating-
point operators: respectively 96.65% vs. 97.65%.

4.2.2 SNN.

Spike timing has a fundamental impact on the bio-
realistic STDP learning strategy typically used with SNNs
[26]. However, in the feed-forward path, it is less obvious
that spike timing information is as critical. Being able
to ignore the timing information would bring significant
speedups by avoiding the need to carefully model timing
information and treating spikes simultaneously.

Therefore, we start by evaluating the importance and
impact of timing information in the forward path. We
consider two SNN versions: one is a traditional Leaky
Integrated and Fire model, as presented in Section 2.2
(which we call SNNwt for “SNN with time”) and the
second one is a simplified model where all timing infor-
mation has been removed (which we call SNNwot for
“SNN without time”). For SNNwot, each pixel is con-
verted into a set of spikes, along the same principles as
for the LIF model, except only the number of spikes is
obtained, not the time between spikes; similarly, the role
of the leak is ignored. We report the corresponding ac-
curacy results in Table 3. We observe that the accuracy
difference between the two is 1.03%, which is not negligi-
ble, but small enough that it can be accepted provided it
comes with significant speed benefits. We now consider
the hardware implementation of each version.

SNN without Timing Information (SNNwot).

Spike generation. We first need to convert pixel in-
formation (here, 8-bit greyscale) into spikes; note that
some sensors can directly generate spikes [27], but we
make the conservative assumption that traditional CMOS
sensors are used.

Ignoring the time interval between spikes allows to sig-
nificantly reduce the hardware complexity and improve
speed: we only need to count the number of spikes gen-
erated by a given pixel value. Still, we must generate the
same number of spikes as for the STDP learning process
in order to obtain consistent forward-phase results. The
pixel-to-spikes conversion is the following: an 8-bit pixel
can generate up to 10 spikes (the delay between image
presentation is 500ms and the minimum spike interval is
50ms), though this number of spikes is directly generated
as a 4-bit value, see Figure 7, instead of the sequence of
unary spikes (spike train) used by STDP.

Neuron. The neuron potential increases with each spike,
by an amount equal to the synaptic weight on the corre-
sponding neuron input, see Figure 1. For a given input
with synaptic weight W, the accumulation of weights



Table 4: Spatially expanded SNN vs. MLP.

Network Operator Area  # Total Total SRAM Total
Jop-  opera- cost Jop- cost /wo (mm?) cost
erator tors erator SRAM (mm?)
(pm?) (mm?)  (mm?)

SNNwot adder tree 89006 300 26.70

(28x28- max 6081 16 0.10 26.79 19.27 46.06

300)

SNNwt adder tree 60820 300 18.25

(28x28- rand 1749 784 137 19.62 19.27 - 38.89

300)

MLP adder tree 45436 100 4.54

(28x28- adder tree 5657 10 0.06 73.14 6.49 79.63

100-10) multiplier 862 79510 68.54

MLP adder tree 45436 15 0.68

(28x28- adder tree 1131 10 0.01 10.98 1.35 12.33

15-10) multiplier 862 11935 10.29

is equal to N x W where N is the number of spikes.
Due to the limited value of N (N < 10, i.e., less than
10 spikes), an efficient hardware implementation of the
multiplier consists of 4 shifters and 4 adders, to compute
Ny * 2%« W +ngx 225 W ny 2L« W +ng 20« W
where N = ngnoning, see Figure 7. The results from all
inputs are accumulated through a Wallace tree adder.
Readout. After reaching a threshold potential value, a
neuron will fire an output spike. The most typical read-
out method for SNNs is to count the number of output
spikes and the one fires most wins. An alternative is to
detect the first neuron which spikes [28]. Both methods
rely on timing information which have been voluntarily
removed for hardware efficiency purposes. However, the
neuron potential is highly correlated to the number of
output spikes, so we determine the winning neuron as
the one with the highest potential.

Overall, the hardware implementation is a 3-stage
pipeline, one for the spike generation, one for the adder
tree, and one for the max operation of the readout.

SNN with Timing Information (SNNwt).

In order to use the spike timing information, we must
randomly generate the number of spikes and the time
between spikes for each pixel value, as explained in Sec-
tion 3.1, see Figure 3. In order to both speed up the
execution and minimize the number of random number
generators per neuron, we only generate the spike time
intervals, and since a fixed amount of time is assigned to
each image presentation (500 ms in our case, emulating
one millisecond with one clock cycle), we simply stop the
spike generation when that threshold is reached; so we
do not generate the number of spikes per se, it is done
implicitly.

We normally need a Poisson random number genera-
tor, see Section 3.1, however, such a generator is usually
costly [29, 30]. We have experimented with various alter-
native methods for generating the spike timings, and we
have observed that the accuracy does not change notice-
ably with a Gaussian instead of a Poisson distribution,
even though it is slightly less bio-realistic. Fortunately, a
Gaussian pseudo-random number generator can be effi-
ciently implemented [31] using the central limit theorem.
The principle is to sum random uniform numbers gener-
ated from four Linear Feedback Shift Registers (LFSRs).
Using 31-bit as the length and 23! + 23 + 1 as the prim-
itive polynomial avoids obtaining cycling over numbers
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using LFSRs. A single Gaussian random number gener-
ator costs 1,749 um?, and we use 784 such generators (as
many as the number of inputs). These generators pro-
vide the time between spikes in milliseconds (with one
clock cycle modeling one millisecond), the counters are
decremented every cycle, and a new spike is generated
when the counter reaches 0.

4.2.3 Comparison.

We now compare the area of the spatially expanded
version of both networks. Each network has 28x28 8-bit
greyscale inputs corresponding to the MNIST images.
For each network, we adopted the structure most com-
monly found in the literature: 2 layers for MLP (one
hidden layer) [13], 1 large layer for SNNs albeit with lat-
eral inhibition [32]. We then explored the configuration
of both networks to find the minimal number of neurons
in each case for the MNIST benchmark. Consider Figure
8 where we vary the number of neurons for both MLPs
and SNNs; we can observe that the accuracy of the MLP
plateaus around 100 hidden neurons, and the accuracy
of the SNN plateaus around 300 neurons.

We also explored the neurons and synapses bit width,
with the goal of finding the most compact size which
is within 1% of the best accuracy on MNIST obtained
by floating-point operators. We ended up using 8-bit
operators and weights for the MLP. For the SNN, SNNwt
uses 8-bit weights, and SNNwot uses 12-bit weights (8-
bit weights x number of spikes). It is one of the assets
of the learning algorithm of neural networks to be able
to compensate for such low precision.

The MLP network is too large to lay out for a nor-
mal server (estimated footprint is about 73 mm?), so we
proceeded as follows: we estimated the area cost of both
networks based on the individual size and number of all
operators and registers, and we also laid out two small-
scale versions of the network. The approximate area cost
of the full networks is shown in Table 4, where the cost
of individual operators and registers are estimated using
the TSMC 65nm GPlus high-VT library. We can ob-
serve that the area cost of the MLP version is far larger
(2.72x) than that of the SNN version in spite of the lower
number of neurons, because of the high cost of the mul-
tipliers used in MLP neurons, while SNN neurons only
use adders.

Comparison of the layout of two small-scale designs.
These results are further confirmed by fully laying out
two small-scale designs, see Table 5, where the number
of entries is restricted to 4x4 inputs, the MLP uses 10
hidden neurons and 10 output neurons, while the SNN
uses 20 neurons. Note that delay and energy ratios are
on par with the area ratio, only the power costs of both
networks are similar, in part because of the clock power



Table 5: Hardware Characteristics of SNN (4x4-20)
and MLP (4x4-10-10).
Type Area (mm?) Delay (ns) Power (W) Energy (nJ)

SNN 0.08 1.18 0.52 0.63
MLP 0.21 1.96 0.64 1.28

accounts for a larger share of the total power in the SNN
version (60% vs. 20% in the MLP).

Area comparison at same accuracy. Finally, we also
empirically compare the area costs of MLP and SNN
when they achieve a similar accuracy. Since the SNN has
a lower accuracy than the MLP, we reduce the number
of neurons in the MLP until their accuracy are almost
the same, i.e., with 15 neurons, the MLP accuracy is
92.07% vs. 91.82% for the best SNN MNIST accuracy
we achieved, see Figure 8. However, the area of the MLP
is then respectively 68.30% and 73.23% smaller than for
SNNwt and SNNwot, further confirming that when fac-
toring both cost and accuracy, MLP significantly out-
performs SNN.

4.3 Spatially Folded

The estimated area cost of the spatially expanded ver-
sions of the networks described in Section 4.2 shows that
such networks are too large for accelerators compatible
with the low footprint expected for embedded systems.
There exist prior MLP designs [6] with a footprint of
a few mm?, but they were targeting tasks of the UC
Irvine machine-learning repository [15], which typically
have few inputs and outputs; as a result, an MLP with
90 inputs, 10 hidden neurons and 10 output neurons
was sufficient in this case. For embedded systems ap-
plications, an input image of 28x28 greyscale pixels is
already on the low-end of the application spectrum, so
it is fair to state that spatially expanded designs would
be too costly for most devices.

While spatially expanding NN designs provide for max-
imum speed, it is possible to spatially fold NN designs:
the principle is to time-share a few hardware neurons
between the many logical neurons of the target network;
spatial folding has been adopted in early hardware neu-
ral networks when the number of transistors was low
[33], and in recent convolutional/deep neural network
accelerators [16]. We now consider and compare spa-
tially folded versions of both the MLP and SNN designs
in order to achieve NN accelerators with more realistic
footprints.

4.3.1 MLP.

Hardware neuron. The high cost of the spatially ex-
panded design is essentially due to the high connectivity
(high number of inputs and synaptic multipliers) of the
neurons. So a spatially folded design consists in putting
a bound on the maximum number of inputs each hard-
ware neuron can have; let us call n; that number. As
a result, a folded hardware neuron must accumulate the
inputs x weights products by chunks of size n;, and it
must contain a register to store the partial product, see
Figure 10 for an example when n; = 2. Since the weights
are unique to each input, they must be brought in for
each chunk; so the neuron also contains n; registers for
the inputs, and an SRAM table stores all the weights

501

|

n; = 16).
! ;'_/-"\\. ah ‘ P\
® | et
g H YN
el L2 4
¢ o
® o @ @

Figufe 10: MLP schedliling o\n spatially folded aesign.

needed by the neuron (the SRAM table has a single port,
of width n; x 8 bits; since it must contain all NV; inputs,
its depth is flfl ). The corresponding hardware MLP neu-
ron design is shown in Figure 11.

Scheduling. Due to spatial folding, a hardware neuron
now needs le + 1 cycles to compute its output (the
“+1” term is for the multiplier and adder of the activa-
tion function). While this multi-cycle computation for-
bids a fully pipelined execution (processing a new image
every cycle) as for the expanded design, it is still possi-
ble to implement a staggered pipeline where each stage
requires multiple execution cycles (as for most floating-
point operations in processors). On the other hand, the
smaller number of inputs allows to achieve a higher clock
time than for a spatially expanded design, see Table 7,
where the critical path delay of the hardware neuron
naturally decreases as the number of inputs n; decreases.
Note that the output of each neuron of the hidden layer
is computed in parallel; it is then buffered in the output
register of the neuron while the neurons of the output
layer use them as inputs, by chunks of n; again (same
hardware neuron characteristics).

Measurements. In Table 7, we report the area, delay,
power and energy for the MLP used for MNIST using
a spatially folded neuron design (same number of hard-
ware neurons as in the expanded design though). We
observe that a hardware neuron with n; = 16 inputs
(vs. 784 inputs for the expanded neuron design) leads
to an overall design which is 38.84x smaller than the
expanded design, far more compatible with embedded
designs, and processing one MNIST input only requires
57 cycles at 435MHz. A hardware neuron with n; = 4
inputs leads to a design which is 117.76x smaller and
requires 223 cycles per input at 435MHz. On the other
hand, the energy of the folded designs is about 5x that of
the expanded design; in fact the power of the expanded
design is naturally high due to the high number of op-
erators, but one image is treated in 15.16 ns (4 cycles of
3.79ns) vs. 128.25ns (57 cycles of 2.25 ns) to 1975.68 ns
(882 cycles of 2.24ns) in the folded design.

4.3.2 SNN.

Spatial folding of the SNN neuron follows several of
the same principles as for the MLP neuron. The number
of inputs is similarly limited to n;, with weights stored in
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Table 6: SRAM characteristics for synaptic storage.

Design ni=1 ni =4 ni =8 ni = 16
SNN MLP SNN MLP SNN MLP SNN MLP
SRAM width 128 128 128 128
SRAM depth 784 200 128 128
Read Energy (pJ) 44.41 33.05 32.46 32.46
Area (,u/rnz) 108351 46002 40772 40772
# Banks 19 8 75 28 150 55 300 110
Total Energy (nJ)[0.84 0.31 2.48 0.93 4.87 1.79 9.74 3.56
Total Area (mm2) 2.06 0.76 3.45 1.29 6.12 2.24 12.23 4.48

an associated SRAM table (width of n; x 8 bits) and fed
into n; registers every cycle. Naturally, unlike the MLP
folded neuron, the SNN folded neuron contains an adder
dealing with n; inputs instead of a multiplier; upon every
group of n; spikes, the potential is incremented. After all
inputs have been processed, the potentials of all neurons
are passed to a max operator. This max operator could
also be folded, just like neurons, by limiting its number
of inputs, but we found that a two-level max tree (15
max with 20 inputs, followed by one max with 15 inputs)
only accounts for 5.6% (178,448 um?) of the area of the
smallest SNN folded neuron with n; = 1, so we decided
to keep a fully expanded max tree.

We report the area, delay, energy and number of cy-
cles for both the folded SNNwt and SNNwot in Table
7. SNNwt has a significantly lower area than SNNwot
because SNNwot can treat all spikes of a single synapse
simultaneously and thus requires operators which can
accommodate more simultaneous inputs than SNNwt
(n; times the maximum number of spikes which can
be received for one pixel). On the other hand, SNNwt
must emulate the whole sequence of the image presenta-
tion and the associated leakage process, corresponding
to 500ms; by decomposing the sequence into steps of
1 ms (an already coarse granularity), SNNwt requires
500 steps (i.e., 500 clock cycles) to complete the com-
putation. With folding, this number of steps is further
multiplied by the ratio of the number of inputs by n;,
i.e., approximately % x 500. As a result, while SNNwt
is competitive cost-wise, it is not competitive time-wise
with SNNwot. Consequently, we will focus on the com-
parison between SNNwot and MLP.

4.3.3 Comparison.

MLP vs. SNN. While for the fully expanded ver-
sion, the cost of an SNN accelerator is several times
lower than that of an MLP, this ratio no longer holds
for folded versions. Even with a fairly large degree of
parallelism in the processing of inputs, e.g., n; = 16, the
area of a folded MLP is 2.57x lower than that of a folded
SNNwot (and even slightly lower than the cost of a
folded SNNwt). The main cause of the discrepancy is re-

Table 7: Hardware characteristics of spatially folded
SNN and MLP.
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Type # Inputs Area Total Delay Energy # Cycles
per (no SRAM) Area (per
operator  (mm?) (mm?) (ns) (uJ) image)
ni =1 1.11 3.17 1.24 1.03 791

SNNwot ni =4 1.89 5.34 1.48 0.68 203

(28x28-300) |ni = 8 2.79 8.91 1.76 0.67 105
ni = 16 4.10 16.33 1.84 0.70 56
expanded® 26.79 46.06 3.17 0.03 3
nt=1 0.48 2.56 1.15 471.58 791*500

SNNwt ni =4 0.84 4.36 1.11  315.33 203*500

(28x28-300) |nit = 8 1.19 7.45 1.18 307.09 105*500
ni = 16 1.74 14.25 1.84 325.69 56*500
expanded® 19.62 38.89 2.61 214.70 500
ni =1 0.29 1.05 2.24 0.38 882

MLP ni =4 0.62 1.91 2.24 0.29 223

(28x28-100 |ni =38 1.02 3.26 2.25 0.30 113

-10) ni = 16 1.88 6.36 2.25  0.29 57
expanded® 73.14 79.63 3.79 0.06 4

3Estimated numbers, based on synthesized version of operators

lated to the synaptic storage required for the SNN. More
neurons are needed in the SNN to achieve the best possi-
ble accuracy (though still significantly lower than MLP),
and as a result, the total number of synaptic weights
is significantly larger (784 x 100 + 100 x 10 = 79,400
weights for the MLP, i.e., 784 x 100 for the hidden layer
and 100 x 10 for the output layer vs. 784 x 300 = 235, 200
weights for the SNN); as a reference, we indicate in Ta-
ble 6, the SRAM storage cost for different values of n;
for both MLP and SNN, using 128-bit SRAM banks.
Energy-wise, the advantage of MLP is a bit less signifi-
cant because the higher cost and complexity of the mul-
tipliers both increase the delay and the power cost of
individual operations; still, the MLP is 2.41x more en-
ergy efficient than SNNwot at n; = 16, and even 2.71x
at n; = 1 because of the lower number of multipliers.

Overall, one can only observe that folded MLPs ap-
pear to be attractive accelerators with respect to SNNs
in terms of cost, energy and accuracy. SNN-+BP can sig-
nificantly bridge the accuracy gap, as shown in Section
3.2, though not entirely, still making MLP+BP a bet-
ter alternative. Nevertheless, there is one domain where
SNN+STDP still shines with respect to MLP+BP: STDP
is an online learning process, allowing the network to
learn and be used at the same time, a characteristic
which may turn out to be useful for certain applications.
As a result, in the next section, we evaluate the cost of
implementing STDP in hardware.

MLP & SNN accelerators vs. GPU. While the
focus of this study is to understand which neural net-
work accelerator approach one should pursue, we still
provide a comparison with the corresponding software
models implemented on a GPU, as a reference. We im-
plemented CUDA codes which correspond as closely as
possible to the two most efficient accelerator versions

Table 8: Speedups and energy benefits over GPU.

GPU ni=1 ni =16 expanded
SNNwot 1 59.10 543.43 6086.46
Speedup SNNwt 1 0.12 1.14 44.60
MLP 1 40.44 626.03.04 5409.63
SNNwot 1 2799.72 4132.53 31542.31
Energy Benefit SNNwt 1 6.15 8.90 13.51
MLP 1 12743.14 16365.61 79151.75
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(MLP and SNNwot), and in order to ensure good qual-
ity code we have resorted to the CUDA BLAS library
(CUBLAS) [34], especially the sgmv routine [35, 36]. We
use a recent NVIDIA K20M GPU, and we report the
speedups for different values of n; over the same GPU
implementation (corresponding to n; = 1) in Table 8.
Even for n; = 1 the accelerators speedups are significant
for at least three reasons: the time to fetch data from
global memory to the computational operators, the lack
of reuse for the target operations, and the small size of
the data structures (100 to 300 neurons, 784 inputs) [35,
36].

4.4 Online Learning

The neuron-level STDP circuit manages several infor-
mation through a simple finite-state machine, see Figure
12.(b). First, it records the time elapsed since the last
output spike for each neuron; this information will be
used to later implement LTP and LTD, see Section 2.2.
It also manages a refractory counter and an inhibitory
counter. The refractory counter is reset once the neu-
ron fires; the inhibitory counter is reset when any other
neuron fires (and then sends an inhibitory signal); when
either counter is active, the neuron ignores the input
spikes and does not modify its potential. In order to im-
plement LTP and LTD, a neuron also keeps an internal
counter which is reset every time it fires. At the next
firing event, it compares this counter to the LTP delay,
and if it is smaller or equal, the corresponding weight is
increased (LTP) by a constant increment (1), otherwise
it is similarly decreased (LTD).

As aresult, the neuron circuit determines which synap-
tic weights to increase or decrease; it applies constant
increments/decrements of 1. As explained in Section
2.2, we use the following expression: v;(T2) = v;(T}) X

To—T-
¢~ Tear to model the leak. We implement this expres-
sion in hardware using piecewise linear interpolation.

Homeostasis. Finally, the neuron also records the
number of times it fired within a homeostasis epoch (a
constant period of time after which the threshold is ad-
justed in all neurons; we use 1,500,000 ms, i.e., every
3,000 images). Once the homeostasis epoch is finished
(it is managed by a single external counter, common
to all neurons), the number of firings of each neuron is
compared to a preset homeostasis_threshold, and the
neuron firing threshold is adjusted along the expression
provided in Section 2.2.

4.4.1 Overhead of STDP.

In Table 9, we present the characteristics of the layout
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Table 9: Hardware features (SNN with online learning).

Type Area (no SRAM) Total Area Delay Energy
(mm?) (mm?)  (ns) (mJ)
ni=1 |2.55 4.92 1.23 0.71
SNN |ni=4 |3.33 7.10 1.48 0.37
ni=8 |4.26 10.70 1.81 0.32
ni=16|6.44 19.06 1.88 0.33

of the SNNwt neuron with STDP for different values of
n;. We can observe that the total area (with SRAM)
is about 1.34x (n; = 16) to 1.93x (n; = 1) times larger
than the SNNwt neuron alone, described in Table 7. The
cycle time increases by 7% at most, and the energy is
about 1.02x (né = 16) to 1.50x (né = 1) times larger than
the SNNwt neuron. Consequently, one can observe that
the hardware overhead of implementing STDP is quite
small. So the real value of hardware accelerators imple-
menting SNN-+STDP seems to be in the tasks specifi-
cally requiring permanent (online) learning.

4.5 Validation on Additional Workloads

We used the MNIST benchmark as a driving example
throughout our study because it is one of the very few
benchmarks used by both researchers from the machine-
learning and the neuroscience domain. Nevertheless, we
also want to validate our observations on other types
of workloads. We picked two of the main important do-
mains: object and speech recognition, namely the MPEG-
7 CE Shape-1 Part-B [14] benchmark, and the Spoken
Arabic Digits (SAD) dataset [15].

For these two workloads, we conducted exactly the
same exploration as for the MNIST workload for both
SNN and MLP, i.e., defining the optimal set of hyper-
parameters of each model, especially the number of neu-
rons, and then determining their hardware cost.

For MPEG-7, the optimized MLP (28x28-15-10) and
SNN (28x28-90) achieve an accuracy of 99.7% and 92%,
respectively. When n; varies from 1 to 16, the spatially
folded SNNwot consumes 3.81x-5.57x more area, and
3.20x-5.08x more energy than the spatially folded MLP.

For SAD, the optimized MLP (13x13-60-10) and SNN
(13x13-90) achieve an accuracy of 91.35% and 74.7%,
respectively. When n; varies from 1 to 16, the spa-
tially folded SNNwot consumes 1.27x-1.31x more area,
and 1.24x-1.26x more energy than the spatially folded
MLP.

In a nutshell, our results on these benchmarks are
consistent with the results obtained on MNIST: SNN
achieves lower accuracy and requires a higher cost than
MLP.

S. DISCUSSION
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Figure 13: Hardware STDP.
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Coding Scheme. In addition to rate coding schemes
studied in previous sections, we had also explored two
common temporal coding schemes, rank order coding [28]
and time-to-first-spike coding [37, 38] for SNN. While
both rate coding [39, 40] and temporal coding [41] have
been shown to be biologically plausible, we observed on
MNIST that the SNN with temporal coding schemes is
significantly less accurate than the SNN with rate cod-
ing schemes (82.14% vs. 91.82%), see Figure 14, where
both SNN models use the same network topology. For
the sake of brevity, we only discuss rate coding in previ-
ous sections.

TrueNorth. TrueNorth is a digital many-core spiking-
neuron chip developed by IBM [42]. While the most
recent article [42] did not report TrueNorth’s accuracy
on standard machine learning benchmark datasets such
as MNIST, MPEG-7 and SAD, we were able to extract
related information from previous articles published by
the same group. For example, according to Merolla et
al. [8], a TrueNorth core (having the same architecture
but 4 times larger [42]) that contains 1024 inputs, 256
output neurons, and 1024 x 256 synapses (with 9-bit
precision) within 4.2mm? area under IBM 45nm process
and runs at 1MHz,? can achieve the accuracy of 89%
on MNIST [43, 42]. Here we compare TrueNorth with
the SNNwot folded with ni = 1, an SNN accelerator
sharing similar characteristics with the TrueNorth core
(e.g., both process one input for all output neurons at
a time, see Section 4.3.2). As IBM has not released the
resources of TrueNorth, we made a best effort to reim-
plement the TrueNorth core down to the layout (using
TSMC 65nm GPlus high VT standard library) accord-
ing to the descriptions in [8]. Using our reimplementa-
tion, we observe that SNNwot outperforms TrueNorth
in terms of area (3.17mm? vs. 3.30mm?), speed (0.98us
vs. 1024us), energy (1.03uJ vs. 2.48uJ) and accuracy
(90.85% vs. 89%); however, it is likely that our reimple-
mentation, and this comparison, does not make justice to
TrueNorth design optimizations that were not described
in the article.

6. RELATED WORK

Neural Network applications. Thanks to recent
progress in machine-learning, certain types of neural net-
works, especially Deep Neural Networks [3] and Convo-
lutional Neural Networks [13], have become state-of-the-
art machine-learning techniques [44, 4] across a broad
range of applications such as web search [45], image anal-
ysis [46] or speech recognition [47].

4TrueNorth adopts a physical frequency of 1MHz so that the largest
possible spiking frequency can become lower than 1KHz, a level con-
sistent with neuroscience findings [39, 40].

504

Neural Network accelerators.

Machine-Learning accelerators. Because these models
need costly computing-intensive architectures such as
GPUs to be run [48, 49], there is a growing interest
in developing custom accelerators in order to broaden
their usage in embedded devices and data centers. For
instance, Farabet et al. [5] proposed the Neuflow ar-
chitecture which can run a CNN in real-time, Chen’s
group proposed DianNao [16], a small-footprint acceler-
ator to implement CNNs and DNNs, DaDianNao [50],
a custom multi-chip architecture for CNNs and DNNs,
and ShiDianNao [51], a super efficient CNN accelerator
for embeded system, mobile platform. Beyond cost, Es-
maeilzadeh et al. [52] has proposed to use an MLP accel-
erator to speed up (by approximating) certain functions
within a program.

Neuroscience accelerators. Together with these acceler-
ators for machine-learning tasks, a number of hardware
neural networks have been proposed to accelerate (of-
ten large-scale) biological neural network models. For
instance Vogelstein et al. [53] have investigated sev-
eral neuron models in hardware, Smith [54] has stud-
ied the capabilities and hardware implementations of
LIF neuron models, Schemmel et al. [55] investigate
wafer-scale spiking neural networks as part of the Brain-
Scale project, SpiNNaker proposes to implement a bil-
lion (spiking) neurons [56], IBM has proposed several
digital neuromorphic implementations [8, 57] with the
goal of implementing as many neurons as in a cat brain
as part of the SYNAPSE project. Slightly more appli-
cation than neuroscience-oriented, Joubert et al. [58]
has investigated a network of analog spiking neurons for
signal processing tasks, Roclin et al. [59] have analyzed
how to reduce the cost of a SNN4+STDP model without
effectively proposing a hardware design, and Qualcomm
recently introduced the Zeroth [9] project for a spiking
neural network accelerator.

Neuroscience vs. Machine-Learning Neural Net-
work models. While there are innumerable studies on
respectively neural network models derived from neuro-
science and neural networks used as machine-learning
algorithms, there are very few studies which effectively
compare both types of neural networks. MNIST is one
of the rare elements of comparison between the two do-
mains as one of the few benchmarks used in some neu-
roscience and some machine-learning studies. Unfor-
tunately, neuroscience studies rarely use MNIST to its
full extent, e.g., all ten digits, all training inputs, all
testing inputs, etc, thus still making a fair compari-
son difficult. For example [60] reported an accuracy of
91.90% (down to 89.4% for a 5-bit resolution synapses)
when a RBM composed of LIF neurons (824 visible and
500 hidden neurons) with STDP synapses using a newly
proposed event-driven contrastive divergence sampling.
When standard contrastive divergence is used for the
above architecture with stochastic units the performance
is 93.6%. Arthur et al. [61] achieved 94% accuracy
(down to 89% when implemented with finite resolution
synapses of their neurosynaptic core) using LIF neurons
with an RBM layout (256 visible and 484 hidden neu-



rons). Other results are in the range of 96.8% [62],
91.64% [63], but they are not directly comparable be-
cause of a partial and different usage of the MNIST
dataset, synaptic update rule, synaptic model, and spik-
ing neuron model. Querlioz et al. [11] perform one of
the few thorough evaluations of MNIST on SNN in the
context of a spiking neural network architecture based
on memristive devices. We also mentioned the work of
Diehl et al. [23] which achieved a slightly better MNIST
accuracy (95% vs. 93.50%) than Querlioz et al., albeit
using 6400 neurons vs. 300 neurons; with 400 neurons,
their accuracy is only 82.9%.

A small number of works specifically focus on the com-
parison between neuroscience and machine-learning neu-
ral networks. For instance, Serre et al. [64] pro-
pose HMAX, a neural network inspired from the visual
cortex (albeit using rate-based, not spiking, neurons)
and shown to be competitive with established machine-
learning models (not neural networks though). More
closely, Masquelier et al. [10] compare a SNN-based
neural network (similar to SNNwot) against HMAX and
demonstrate competitive results on object recognition
tasks; Nere et al. [65] use a more biologically pre-
cise SNN-+STDP model (closer to SNNwt) and build an
HMAX-like neural network, unfortunately, their goal is
not to compare against HMAX. Farabet et al. [66] com-
pare SNN and CNN models mapped to FPGAs; they
outline the lower computational requirements of SNNs
with respect to multi-layer CNNs, however, they perform
limited exploration of the possible hardware designs (for
both SNNs and CNNs), considering only fully expanded
(non time-multiplexed) designs (with time information
for SNNs), similar to our fully expanded SNNwt. Rast
et al.[67] propose a different approach, and they map an
MLP on an architecture designed for SNNs (SpiNNaker
[56]), but it does not help clarify the debate between
MLP and SNN, it just provides an alternative approach
for implementing MLPs in hardware.

7. CONCLUSIONS AND FUTURE WORK

The motivation for this work is the growing interest
in cognitive tasks at large, and the existence of two,
largely distinct, candidate neural models for these ac-
celerators: one from neuroscience and the other from
machine-learning.

In order to help decide whether industrial applica-
tions should rather target machine-learning or neuro-
science inspired models, we compare two the best known
models in each approach on one of the only benchmarks
(MNIST) used in both neuroscience and machine-learning
studies, and we further validate our results on an object
recognition and a speech recognition benchmark.

Our study has inherent limitations: current SNN and
machine-learning NN algorithms, current best effort at
hardware implementation, and a restricted set of target
workloads. But within these limitations, we can make

responding hardware accelerator is currently not com-
petitive with a hardware accelerator based on a classic
machine-learning model, across all characteristics (accu-
racy, area, delay, power, energy) for area footprints of a
few mm?.

Only for very large-scale implementations, SNNs could
become more attractive (area, delay, energy and power,
but still not accuracy) than machine-learning models.

We also identify the cause of the accuracy discrepancy
between SNN4+STDP and MLP+BP, i.e., the nature of
the STDP learning algorithm, and spike coding.
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