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Abstract

Reconfigurable systems can offer the high spatial parallelism and fine-grained, bit-level resource control traditionally associated with
hardware implementations, along with the flexibility and adaptability characteristic of software. While reconfigurable systems create new
opportunities for engineering and delivering high-performance programmable systems, the traditional approaches to programming and
managing computations used for hardware systems (e.g., Verilog, VHDL) and software systems (e.g., C, Fortran, Java) are inappropriate
and inadequate for exploiting reconfigurable platforms. To address this need, we develop a stream-oriented compute model, system
architecture, and execution patterns which can capture and exploit the parallelism of spatial computations while simultaneously abstract-
ing software applications from hardware details (e.g., timing, device capacity, and microarchitectural implementation details) and con-
sequently allowing applications to scale to exploit newer, larger, and faster hardware platforms. Further, we describe hardware and
software techniques that make this late-bound platform mapping viable and efficient.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Reconfigurable computing offer a large potential advan-
tage in computing power over conventional, microprocessor
based systems [24]. Uniprocessor performance improve-
ments have stalled (e.g., [1]) while silicon capacity continues
to grow; consequently, the raw computational density gap
widens and the role for spatially oriented programmable
computations grows larger. Unfortunately, FPGA-based
and reconfigurable computing remains limited to niche
applications (e.g., [56,68,78]) and ASIC replacements for
rapid prototyping, fast time-to-market, and low non-recur-
ring engineering (NRE). The key factor limiting wider appli-
cation of reconfigurable computing is the difficulty of
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developing high-performance, high-quality reconfigurable
solutions and the manual effort required to scale reconfigura-
ble solutions to newer, larger, and more capable hardware.

To unleash the power of reconfigurable computing and
allow spatially programmable architectures to play a full-
featured role alongside microprocessors, it is necessary to
exploit the key advantages of the reconfigurable hardware
while abstracting implementation details to facilitate scaling.
We need a compute model that abstracts hardware details:

• device capacity
• resource placement
• inter- and intra-module timing
• microarchitecture of computing blocks

At the same time, the model and execution architecture
should allow applications to

• ride vendor technology curves
• reuse components
• exploit parallelism, especially pipelined, spatial dataflow
• exploit bit-level control
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A compute model allows us to define the meaning of an
application separately from a particular hardware device,
just as the sequential instruction set architecture (ISA)
model defines the meaning of an application separately
from the detailed processor microarchitecture [3].

The ISA abstraction has served us well for four decades,
allowing processors to scale in capacity while preserving
software developments. However, its sequential, instruc-
tion-oriented execution and monolithic memory model is
now limiting the further exploitation of silicon capacity.
It does not capture the freedom for efficient, spatial execu-
tion that exists in many applications, and hence cannot be
used to fully exploit the capabilities of FPGAs and recon-
figurable computing systems.

Conventional register-transfer-level (RTL) hardware
models, and their associated programming languages
(e.g., VHDL, Verilog) are not the solution, either. Their
execution model is cycle-based, focusing on exactly when
each computation occurs; this hides freedom which exists
in most applications to pipeline computations to accommo-
date changing hardware costs (e.g., increasing interconnect
delays [67,66]). Furthermore, an RTL description captures
a particular level of parallelism for an application, corre-
sponding to a particular amount of hardware. This
assumes that one will discard and rewrite the application
to provide higher performance on larger-capacity devices.
This model thus inhibits automated scalability to newer
devices with greater capacity and different relative opera-
tion timings.

To meet the opportunities of spatially programmable
hardware, we employ a compute model (Section 2.2) which
is more parallel than the ISA model while being more
abstract than cycle-by-cycle RTL. The model facilitates
automated run-time reconfiguration (RTR), abstracted
from the user and scalable across different sized FPGA
platforms (Section 2.5). To make parallel computation
manageable, and to guide designers towards efficient, spa-
tially parallel and scalable solutions, we employ a pipe-
and-filter style (streaming) system architecture (Section
2.3). We support this model and system architecture with
efficient execution patterns that exploit the capabilities of
FPGA and reconfigurable substrates and facilitate scaling
(Section 4). Several of the execution patterns can be layered
on top of existing FPGA architectures, but the system
architecture suggests ways to design and build novel recon-
figurable computing devices specifically optimized to
support this compute model and system architecture (Sec-
tion 5). Late-bound platform mapping requires that we
perform important mapping tasks (i.e., scheduling, place-
ment, and routing) at load time or run time. Consequently,
we introduce compilation techniques (Section 7) and run-
time support (Section 8) that allow us to perform this
mapping orders of magnitudes faster than conventional
approaches.

We started developing stream computations organized
for reconfigurable execution (SCORE) in 1999 and first
presented it in [17,16].
2. Model and system architecture

In our model for scalable reconfigurable designs, there
are two things we need to capture:

1. What is the meaning of a program? We need to capture
the meaning abstracted from any particular implementa-
tion so as to enable automated optimization and scaling.
Optimization and scaling, in turn, exploit the freedom
allowed by the compute model to provide efficient
implementations.

2. How should programmers think about a scalable, applica-

tion for reconfigurable computing systems? In addition to
abstracting the user from the hardware, we also need to
guide the designer towards good solutions:

• solutions that are efficient on the platform (high per-

formance, minimal cost)
• solutions that are scalable
• solutions and components that are reusable
• solutions that minimize complexity and avoid pitfalls

The compute model (Section 2.2) defines the meaning
of the computation. The system architecture (Section
2.3) provides the disciplined framework for design-
ing applications which exploit the hardware and avoid
challenges to scaling, reuse, and complexity management.

2.1. Motivation

2.1.1. What do spatially programmable architectures do

well?

These architectures excel at doing the same thing over-
and-over again. Their strength is in being able to wire up
a datapath that performs some regular, core computation
with direct dataflow. Reconfigurable architectures have
higher computational density than processors precisely
because they allocate minimal area for instruction storage
[24,23]. The reconfigurable datapath can be inexpensively
pipelined and can be reused to do the same calculation
on different data. In fact, most applications perform the
same operations on large amounts of data—consider the
ratio between dynamic instructions issues and static
instructions in a program description. Spatially program-
mable architectures allow us to identify the common data-
flow, build it once on a compact, programmable fabric, and
reuse it repeatedly. In effect, we hoist the description of the
computation dataflow and the computation required to
construct it out of the inner-loop, construct it once, and
then perform just that necessary computation on each data
set or data item.

2.1.2. What are the reusable building blocks and how are

they composed?
In sequential programing, we write functions to define a

reusable unit of computation. We compose function calls
together in sequences and expressions in order to build
larger functionality hierarchically out of components. This
allows us to conquer the complexity of a large task by
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dividing it into components, and the components are often
common elements which we can abstract and reuse in mul-
tiple problems.

To exploit what these spatially programmable architec-
tures do well, we want to avoid demanding sequential
composition whenever possible. However, we can naturally
compose blocks spatially, with the output of one block
feeding into the input of the next. The blocks are computa-
tional pipelines, perhaps with state, transforming input
sequences into output sequences. The blocks might be
individual multipliers and adders which can be composed
into larger blocks like FIRs, FFTs, or DCTs. Larger blocks
may be further composed in a hierarchy, much as function
calls may be composed to form new, larger functions.

2.1.3. What happens when we scale and how do we prepare

computations for scaling?

When we scale applications, we can place more spatial
pipelines simultaneously on our platform, and we can
afford to make each block larger, perhaps exploiting more
internal parallelism. So, ideally, we want to capture the
whole computation as a set of concurrent, operating spatial
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Fig. 1. SCORE application and sequential vs fully spatial execution. (a) V
(c) Fully spatial implementation on SCORE hardware.
pipelines (e.g., Figs. 1(a) and 2). When we must run the
task on platforms which are smaller than the ideal compu-
tation, we can decompose the large, concurrent graph and
run pieces of it in sequence (e.g., Fig. 1(b)). When the plat-
form is large enough, the task can be implemented spatially
on the platform (e.g., Fig. 1(c)). That is. rather than start-
ing with a maximally sequential design, as ISAs have tradi-
tionally done, we start with maximally spatially parallel
designs.

In order to scale across technology and platforms, we
must also deal with variations in timing:

1. as we sequentialize the concurrent graph, we run differ-
ent subsets of the graph concurrently and consequently
change the relative timing of the data processing
operations

2. we can further perform area-time tradeoffs within a
block, changing its timing

3. we may introduce micro-architectural optimizations in
the block implementation which changes its timing
(e.g., adding or optimizing a carry chain to make arith-
metic faster)
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ideo compression task. (b) Capacity-limited, sequential implementation.
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4. as we scale to smaller feature sizes, computation scales
faster than non-local communication, suggesting the
need to change the relative timing allocation (e.g., num-
ber of clock cycles) between computation and
communication

Consequently, we must tolerate timing variations in order to
allow scaling. Note that ISA models tolerate variable mem-
ory delays as part of their strategy to facilitate scaling; for
ISA-based processors, the memory delay and bus speeds
scale at different rates compared to the computation.

2.2. Compute model

Motivated by these demands, we employ a stream-
oriented compute model to facilitate the capture and
scaling of compute-centric reconfigurable designs.

2.2.1. Informal description

A SCORE computation is a graph of computation nodes
(operators) and memory blocks (segments) linked together
by streams (e.g., Fig. 2). Streams provide node-to-node com-
munication and are simply single-source, single-sink FIFO
queues with unbounded length. Graph nodes (operators)
are of two forms: (1) Finite-State Machine (SCORE FSM
or SFSM) nodes which interact with the rest of the graph
only through their stream links; and (2) Turing complete
(SCORE TM or STM) nodes which support resource alloca-
tion in addition to stream operations.

SFSMs have the property that the present state identifies
a set of inputs to be read from the input streams. Once a
full set of inputs is present, the SFSM consumes the inputs
from the appropriate set of input FIFOs and may condi-
tionally emit outputs or close input or output streams. As
with any standard FSM, SFSMs transition to a new state
based on their inputs and present state. Each SFSM has
a distinguished done state into which it may enter to signal
its completion and to remove itself from the running com-
putation. With its finite state, a SFSM is a natural abstrac-
tion for a spatially programmable logic on an FPGA or
other reconfigurable platform.

An STM node is similar to a SFSM node but adds the
ability to allocate memory segments and to create new
graph nodes (SFSM or STM operators) and edges
(streams) in the SCORE compute graph. With this addi-
tional capability, STMs may be best handled by a sequen-
tial processor in the reconfigurable systems. Allocation is
an infrequent operation compared to datapath use, so it
can tolerably be implemented on a sequential fabric with-
out substantially impacting application performance. Here,
we follow the system design principle of making the com-
mon cases fast and implementing the uncommon cases
inexpensively.

Memory is allocated in finite-sized blocks called seg-

ments. Each segment may be owned by a single operator
at a time. An STM may allocate new segments and pass
them on to an SFSM or STM node that it creates. Upon
termination, when a STM or SFSM node enters the done
state, it returns ownership of any received segments back
to the operator that created it. If an operator attempts to
access a memory segment that it does not presently own,
that access is blocked (i.e., the operator stalls) until the
operator regains ownership of the memory segment.

A more formal treatment of the compute model is pro-
vided in [16,14].

2.2.2. Timing independence

The operational semantics of the SCORE compute
model are fully deterministic. This follows from the deter-
minism of individual operators, the timing independent
communication discipline, and the fact that operators can-
not side-effect each other’s state. In particular, (1) opera-
tors communicate with each other only through streams
whose token flow semantics guarantee a timing-indepen-
dent order of execution; (2) memory segments have a
single, unique owner at any time and thus do not suffer
from multiple-user read/write-ordering hazards. Thus, the
observable results of a SCORE computation are comple-
tely independent of the timing of any operator or the delay
along any stream.

This timing independence is key to scalability, as it
allows many things to vary from implementation to
implementation without changing the behavior of the
application. Implementations may vary in

• co-residence of operators – on smaller platforms, fewer
operators are co-resident; on larger platforms, more
are co-resident

• clock cycles between operators – as interconnect contin-
ues to scale more slowly than compute, the number of
pipeline stages between physical operators will increase;
this also abstracts placement, allowing operators to be
placed varying distances apart

• implementation fabric – operators may be implemented
on slower fabrics (e.g., sequentially on a processor) or
faster fabrics (e.g., a specialized, hardwired unit for
common operator types)
2.2.3. Relation to other models of computation

There are a large number of stream-oriented process
network models with similar and slightly varying power
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and semantics [44,43]. Fig. 3 shows where SCORE is placed
in power and semantics in relation to a number of common
models. Hoare’s communicating sequential processes
(CSP) [36] is a very general model for capturing and mod-
eling concurrent programs. CSP uses direct rendezvous
between communicating processes, but one can add FIFO
buffering by constructing explicit queue processes that
mediate between the original computing processes. With
buffering, the result is an extended process network model.
Extended process network models allow operators to check
if data is present and to act differently based on its pres-
ence. This ability, while powerful, makes it harder to verify
that a program will work correctly on any hardware plat-
form. That is, a program that works on one piece of hard-
ware and one timing may produce a different result and
hence may break when the relative timings of the hardware
change. To avoid this, SCORE and numerous other pro-
cess network models prohibit user-level operators from
testing the presence of data on input streams. The resulting
blocking read semantics force an operator to always wait
for the desired data (a compiled operator may still peek
at data for efficient implementation, provided it preserves
the original semantics of the compute model). SCORE
graphs have the same semantic power as process network
models such as Integer Data Flow (IDF) [11] and Kahn
process networks [40,41]. Process networks, including
SCORE, allow dynamic data rates between operators; this
makes them semantically more powerful than Statically
Schedulable Data Flow, such as Synchronous Dataflow
(SDF) [45,7] and Cyclo-Static Dataflow (CSDF) [8]. The
expressive power of dynamic data rates enables efficient
implementation of operations with data-dependent input
and output sizes (e.g., packet filtering, compression,
decompression), but it comes at the cost that tasks cannot
be optimally scheduled offline and that no upper bound can
be placed on the buffer depth between operators [59]. Pro-
cess network models such as IDF and SCORE are Turing
Complete while SSDF models are not.

2.3. System architecture

While we have explicitly detailed the computational
model for SCORE above, SCORE can alternately be
viewed as a pipe-and-filter system architecture restriction
on a general multithreading or CSP compute model.

We could have chosen a general multithreading model
or even CSP as our base compute model. However, in so
doing, we would offer developers little guidance on how
to write good applications that can be implemented effi-
ciently on spatially programmable hardware and take
advantage of the strengths of these platforms [43]. Further,
we would have subjected the programmer to all the chal-
lenges and pitfalls that notoriously make multithreaded
parallel programming hard, such as manual synchroniza-
tion and subtle, lock-related bugs.

Instead, we introduced a stylization which matches
the strengths of reconfigurable hardware. If a developer
can match his problem to a set of persistent, stream-
connected operators, there is a good chance it can run
efficiently on spatially programmable hardware. Further,
we give the developer a discipline for communication
which provides strong guarantees for size and timing
independence.

Parallel programming is hard because there is too much

freedom for the developer to manage. Strategically res-
tricting the programming model helps to constrain the
developer to a portion of the design space where many
good solutions can be found. To contain the difficulties
associated with arbitrary parallel and distributed comput-
ing, software engineers have begun to develop Concurrent
System Architectures (Software Architectures [64] – e.g.,
layered, object-oriented, implicit invocation, repositories,
and interpreters) to provide exactly this kind of guidance
and discipline for the design of applications.

In fact, the pipe-and-filter system architecture is essen-
tially a process network model. Filter (operators, STMs
or SFSMs) are threads of computation interconnected by
pipes (FIFO buffers, streams). This suggests we think about
computation as a set of filters that transform input streams
to output streams. Pipes provide communication and syn-
chronization. With all communication occurring through
pipes, we avoid the need for arbitrary shared memory
and the difficulties it poses to achieving atomicity (we need
not outlaw using shared memory to efficiently implement
pipes in a software multithreaded system – we merely
restrict the use of shared memory to a level of the infra-
structure where we can use a standard, well-debugged solu-
tion rather than leaving it as something every programmer
must write and potentially get wrong). If we use a discipline
that avoids peeking at present data on the pipes (e.g., avoid
unix select-type operations), we can guarantee determinism
as noted above.

The software architecture community identifies roughly
a dozen distinct concurrent system architectures and
hypothesizes that most tasks are naturally captured by
one of these architectures. These general architectures rep-
resent the things that are common between applications,
allowing us to share lessons and infrastructure between
very different tasks.

The pipe-and-filter architecture naturally matches the
strength of FPGAs identified above (Section 2.1). In partic-
ular, SCORE, and pipe-and-filter architectures in general,
are good for applications which are compute centric where
we can organize the computation as a persistent series of
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transforms (operators, filters) with limited state. Most all
signal, image, and graphics processing tasks fall into this
set, as do many network and text processing tasks includ-
ing sorting and searching.

SCORE and pipe-and-filter architectures are not appro-
priate for applications which are data centric; that is, appli-
cations which are best modelled as performing operations
on a large, evolving database are not naturally captured
by these architectures. These data-centric applications
would better be captured by transactional or repository
models. Identifying how other software architectures can
be profitably used as guides for reconfigurable applications
and reconfigurable architectures is an important area for
future work in order to bring engineering discipline to
reconfigurable computing.

2.4. Parallelism

Using this pipe-and-filter architecture, a fine-grained
reconfigurable device (e.g., FPGA) can support the four
levels of parallelism that may exists in applications.

• Bit-Level – operators implemented on FPGAs can
exploit gate-level control to implement designs with a
minimum number of gates, while exploiting all the par-
allelism available at the gate level.

• Instruction-Level – an operator can perform operations
in parallel; tools can use the ILP-extraction techniques
developed for processors to synthesize parallel data-
paths (e.g., [12,13]).

• Thread-Level – each operator (STM, SFSM) is its own
thread of control and operates concurrently with all
other operators.

• Data-Level – within an operator, datapaths can be rep-
licated in parallel to support data-level parallelism;
alternately, parallel copies of operators can be instanti-
ated to handle data. In advanced cases, perhaps with
more specialized software architectures (e.g., multi-di-
mensional streams [4], blocked data), it may be possible
to automatically split an operator into multiple, data-
parallel hardware pipelines (e.g., [32]).
2.5. Virtualization model

Many researchers have proposed Run-Time Reconfigu-
ration (RTR) as a powerful technique to exploit the power
and flexibility of reconfigurable platforms (e.g.,
[30,39,70,50,38]). In particular, RTR can potentially:

• reduce the size of the platform required to solve a
phased problem by reconfiguring the platform so that
it only holds the datapaths to support each phase
independently

• reduce the size of the platform required to solve
multirate applications by time-multiplexing the low-
throughput portions of the application while keeping
the high-throughput portions persistent
• reduce the size of the platform and increase its perfor-
mance by specializing the implementation to the appli-
cation data set with run-time instantiation and
customization of datapaths

• offer time-space tradeoffs so that large applications can
run on smaller hardware, or so that applications with
limited throughput requirements can be implemented
economically on minimum-sized platforms

In principle, application performance should be higher on a
larger platform, e.g., one with more Lookup Tables
(LUTs) or more datapaths. Unfortunately, the size of the
available platform determines the degree and nature of
time multiplexing required of an application. If we design
an RTR application for a particular sized platform, its per-
formance will not increase when we run it on a larger
platform.

2.5.1. Scalable RTR, separate concerns

By abstracting the size of the platform, SCORE sup-
ports scalable RTR. Physical reconfiguration of the device
occurs below the model level. Consequently, the developer
provides a single application description, and it is the
responsibility of the compiler and runtime system to auto-
matically schedule the application onto the platform.

Since SCORE allows the computation graph to evolve,
it facilitates logical reconfiguration of the graph. That is,
SCORE allows operator and stream instantiation (e.g.,
malloc, new, and thread start), and it allows operators to
end and streams to close.

SCORE separates logical reconfiguration of the applica-
tion computation from physical reconfiguration of the
device. Logical reconfiguration is visible at the model level,
since it is a characteristic of the application. Physical recon-
figuration is handled by automated tools, since it is driven
by the details of each specific platform.

2.5.2. Virtual co-processor
In SCORE, computation on a processor interacts with

the reconfigurable hardware through the virtual operator,
unlike instruction augmentation ISA models (e.g., GARP
[12], PRISC [63], Chimaera [34]) where the processor inter-
acts with the physical co-processor. In the instruction aug-
mentation model, the processor sends data to the
reconfigurable co-processor hardware and reads data from
it. Consequently, it does not abstract the number of Recon-
figurable Functional Units (RFUs). Minimal designs like
PRISC and Chimaera are architected to avoid this problem
by outlawing state in the RFU. GARP allows state in the
RFU, but this forces it to only allow one function to be
active in the RFU for each thread of computation.

In SCORE, the communication is always with the virtual
operator rather than the physical operator. Consequently,
many operators can be instantiated simultaneously, each
holding their own state. One communicates with an opera-
tor through the logical stream rather than by doing a read/
write to physical registers. For larger platforms, multiple
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operators may be co-resident, and this provides a way to
address them. For smaller platform, operators may not be
co-resident, but this allows one to uniformly address non-
co-resident operators and to queue up results until the oper-
ators become resident.

3. Challenges

To facilitate scaling, SCORE demands that we push the
following tasks to load time and/or run time.

• Reconfiguration
• Scheduling
• Placement
• Routing

Unfortunately, these tasks can be slow using conventional
devices and approaches. FPGAs from Xilinx and Altera
(e.g., [74,2]) have reconfiguration times in the milliseconds
to seconds range. Placement and routing for these devices
can easily take minutes to hours or even days. Nonetheless,
once motivated by the benefits of scalability and late-
bound platform mapping, we see that it is possible to engi-
neer solutions to bring those times down to manageable
levels (Sections 5.2.1, 8.2, 8.3, and 8.4).

4. Execution patterns

To support the SCORE model, we employ a set of com-
plementary design patterns – i.e., solutions to commonly
recurring problems [25]. These particular patterns are pre-
sented here to better illuminate the nature of the SCORE
model and our work on its implementation. While these
patterns cooperate tightly to support SCORE, they have
broad applicability and often show up in the context of
other computational models and system architectures.

4.1. Streaming data

Streams represent a logical sequence of communication
between a producer and a consumer. STREAMING DATA is a
pattern for describing an important property of a computa-
tion; it abstracts a connection which might be a group of
physical wires in a fully spatial implementation. Capturing
the stream connection explicitly in the model allows the
compiler and the run-time system to optimize around it
(e.g., place the producer and consumer close together, allo-
cate resources for this communication). In models where
communication is implicit (e.g., shared memory), the
model provides no such guidance to the compiler or run-
time. By abstracting the communication into a stream, it
can be assigned to a buffer in the case where the producer
and consumer are not co-resident (Fig. 1(b)), and it can be
assigned to physical networking when the produce and
consumer are co-resident (Fig. 1(c)). Further, it can use
any number of mechanisms (e.g., shared-bus, packet-
switched network, time-multiplexed network, configured
links) based on the data rate, predictability, and platform
capabilities. Once identified as a data stream, when data
must go to or from memory, the platform knows which
data to prefetch and how to package data to/from memory.

4.2. Tagged data presence

In the presence of varying implementations, varying
parallelism, and data-dependent task execution time, it is
not possible to know exactly when data will arrive. Tagging
data presence allows the system to indicate dynamically
when there is real data present versus when there is no data
available. Logically, a stall signal on return data from a
cache memory system and pipeline bubbles are specific
instances of TAGGED DATA PRESENCE; there they deal with
the fact that the return time from a memory depends on
the platform (e.g., size and organization of the cache)
and the data (e.g., set of prior memory accesses). TAGGED

DATA PRESENCE tells a buffer when to store data versus
when there is none to store, and it tells an operator when
there is data to process. Similarly, TAGGED DATA PRESENCE

allows an operator to take more time on a task, perhaps
because the platform is serialized (e.g., operator is imple-
mented on a sequential processor) or the particular data
item requires more cycles of processing (e.g., handling the
infrequent case in more cycles than the common case).
TAGGED DATA PRESENCE also provides a mechanism to stall
operators during partial reconfigurations or exceptions.

4.3. Back pressure

When operations have data-dependent characteristics
such as data-dependent firing or data-dependent timing,
an operator may not be able to immediately consume an
input from a stream. The operator may be busy processing
previous inputs, waiting for a matching input from a differ-
ent source, or waiting for its downstream operator or FIFO
to be ready to take more data. Similarly, a FIFO buffer
implementing a stream may be full and unable to take an
additional data item. Consequently, it is necessary for
operators and streams to prevent an upstream producer
from sending more data. BACK PRESSURE is a channel that
runs in the opposite direction of data flow telling the
upstream producer when the downstream buffer or opera-
tor can accept data. Logically BACK PRESSURE is a variant of
handshaking acknowledgments.

4.4. Queues with back pressure

When operations have data-dependent characteristics
such as data-dependent firing or data-dependent timing
and we use BACK PRESSURE to stall upstream producers,
the whole system might stall as each individual operator
is busy. However, since operators may find themselves busy
at different times, this could be inefficient. Placing queues
between the operators, we allow a producer to continue
to produce data even though a consumer may be busy.
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Similarly, if the queue between operators has data in it, this
allows a consumer to continue to operate even though the
producer is busy performing a long operation or, itself,
waiting for an input. Placing queues between operators
smooths out local fluctuations in the processing rate of
operators, allowing the entire computation to run at the
average throughput of the slowest operator rather than
the worst-case instantaneous throughput of all operators.

4.5. Buffer lock detection and handling

When operators are allowed to produce or consume
data in a data-dependent manner, it is not possible to stat-
ically determine bounds on the size of the buffer needed to
prevent deadlock of the computation. This may create
problems where a task works fine in the abstract compute
model with unbounded FIFOs but may lock up when
run on a platform with fixed-sized buffers. A solution is
to detect the occurrence of a full buffer preventing forward
progress and then allocate more capacity to the buffer (e.g.,
[59]). To retain intermediate results during reallocation, it
may be necessary to spill buffer contents to secondary stor-
age (e.g., common memory pool or off-chip DRAM).

4.6. Streaming coprocessor

One powerful way to integrate a concurrent, co-proces-
sor with an ISA processor is to provide stream links
between the ISA processor and the co-processor. The
ISA processor can write data into a stream FIFO to go
to the co-processor and read data back from stream
FIFOs. This decouples the cycle-by-cycle operation of the
co-processor from the processor, abstracting the relative
timing of the two units. As noted above (Section 2.5.2),
in the case that the physical co-processor can be occupied
(e.g., allocated to another operator or task), this abstracts
out the co-resident presence of the co-processor. It also
allows the number of co-processors to vary with the
platform.

4.7. Coarse-grained time multiplexing

When the operator graph is too large for the platform, it
is necessary to share the physical hardware in time (See
Figs. 1(b) and 4). For a reconfigurable platform, this can
Fig. 4. Partitioning of JPEG image encoder to match platform capacity.
be done by changing the configuration over time, to imple-
ment the graph in pieces. Reconfiguration, however, can be
an expensive operation requiring many cycles. To minimize
the overhead cost for reconfiguration, we want to run each
operator for many cycles between reconfigurations. In par-
ticular, if we can assure that each operation runs for a large
number of cycles compared to the reconfiguration time,
then we can make the overhead for reconfiguration small
(Trun-before-reconfig� Tconfig). STREAMING DATA with large
queues helps us achieve this. We can queue up a large num-
ber of data items that will keep the operator busy. We then
reconfigure the operator, compute on the queued data, and
if the consumer is not co-resident, also queue up the results.
When the input queue is empty or the output queue is full,
we reconfigure to the next set of operators.

For this COARSE-GRAINED TIME MULTIPLEXING to be
effective, it must be possible to run an operator for a large
number of operations without waiting for other operators.
In general, this means that a cycle of operators which take
data from each other must not involve non-resident
operators. If an operator can only process one or a small
number of data items before stalling and waiting on a
non-resident operator, then we will have to reconfigure
often (Trun-before-reconfig� Tconfig); the application will
thrash and spend all of its time reconfiguring. This is the
similar to virtual memory thrashing when the working set
is large compared to the physical memory on a machine.
As with virtual memory, the key to reasonable perfor-
mance is to get the working set to fit on the physical device;
here the working set is a cycle of mutually dependent
operators. If each cycle is smaller than the platform, then
COARSE-GRAINED TIME MULTIPLEXING can work effectively
by making sure that each cycle is scheduled onto the
platform as a set.

4.8. Fixed-size and standard IO page

As noted above, since the platform size varies, it is nec-
essary to perform placement at load time or run time based
on the amount of physical hardware and the time-multi-
plexed schedule. If we had to place everything at the
LUT level, then we would have a very large placement
problem. Further, if we allow partial reconfiguration in
order to efficiently support the fact that different operators
may need to be resident for different amounts of time, we
will have a fragmentation and bin packing problem [5],
as different operators take up different space and have dif-
ferent footprints. We can simplify the runtime problem by
using a discipline of fixed-size pages which have a standard
IO interface. First, we decide on a particular page size (e.g.,
512 4-LUTs) for the architecture. At compile time, we
organize operators into standard page-sized blocks. This
allows us to perform the intra-page placement and routing
problem offline at compile time. At runtime, we simply
place pages and perform inter-page routing. The runtime
placement problem is simplified, since all pages are identi-
cally sized and interchangeable. Furthermore, since pages
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are typically 100 to 1000 4-LUTs, the run-time placement
problem is two to three orders of magnitude smaller than
a LUT-level placement. Unfortunately, fixed-size pages
may incur internal fragmentation, leaving some resources
inside each page unused. Brebner’s SLU is an early exam-
ple of this pattern [10].

Note that this is the same basic idea used in virtual
memory. In virtual memory, we do not manage every bit
or even every word independently, rather we group a fixed
number of words together into a page and manage (e.g.,
map and swap) them as a group. In both cases, this reduces
the overhead associated with page mapping considerably.

4.9. Address generators

When reading through data in memory, it is necessary
to: (1) compute the next address, (2) send it to memory,
and (3) get data back from the memory. When the latency
to memory is long, the round-trip latency to memory can
end up limiting the throughput of the application.
However, when the set of addresses being accessed is
data-independent, it is not necessary for this round-trip
latency to impact performance. In particular, if we separate
address generation into a separate operator (i.e., thread of
control) from data consumption, these two can run inde-
pendently with arbitrary delay between address generation
and data consumption, keeping round-trip latency from
impacting throughput. Furthermore, with QUEUES WITH

BACK PRESSURE between the address generator, the
memory, and the consumer, the queues cover stalls in data
access (e.g., on DRAM refresh or row access) and allow
operators to run at the average data throughput from
memory. For common, special memory patterns (e.g.,
strided access), the address generator may be implemented
in custom hardware as part of the memory controller (e.g.,
Section 5.2, [9]).

4.10. Sequential vs. parallel

When the platform contains both processors and recon-
figurable logic, it is possible to assign some operators to the
processor(s) and some to the reconfigurable fabric (this is
often called ‘‘hardware-software’’ partitioning; however,
since both our spatially parallel reconfigurable fabric and
our sequential processor run software, that term can be
misleading). We can map operators from our source
language either to processor instructions or to reconfigura-
ble implementations, and we can even save both implemen-
tations as part of the program executable. At load-time or
run-time, low throughput operators can be assigned to the
sequential processors, while high throughput logic can be
assigned to the reconfigurable fabric. As the size of the
reconfigurable fabric grows, more operators can be imple-
mented spatially on the reconfigurable fabric.

As noted above, COARSE-GRAINED TIME MULTIPLEXING

can be ineffective when mutually dependent cycles are large
compared to the size of the platform. Processors are
designed to time-multiplex their hardware at a fine granu-
larity. Consequently, one way to get large cycles to fit onto
the platform is to push lower throughput operators onto
the processor until the cycle is contained.

5. Hardware microarchitecture

A SCORE platform contains compute pages (CPs), con-
figurable memory blocks (CMBs), and a control processor
embedded in a uniform, scalable network (Fig. 5).

5.1. Compute pages

Compute Pages (CPs) are the FIXED-SIZED AND STANDARD

IO PAGES that contain the reconfigurable fabric elements.
Using conventional, LUT-based FPGA elements, a CP
might be a modest array containing N 4-LUTs where N

is around 100-1000. The CP is the unit of run-time config-
uration management. In addition to containing the recon-
figurable computing units, the CP also contains an
interface to the network, including FIFOs to buffer the
input streams and perform BACK PRESSURE handshaking
with the network (Fig. 6). The CP also contains control
logic to control the firing of the reconfigurable datapath
based on TAGGED DATA PRESENCE and output BACK PRES-

SURE, along with control logic for reconfiguration.
In the compute model, CPs perform the same role as

operators, communicating via streams and consuming
and producing data based on state. The difference is that
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the CPs are of fixed size to simplify run-time management.
The compiler is responsible for mapping between abstract
operators with unlimited size and physical operators with
finite size; this will include merging multiple, small opera-
tors into a single CP as well as splitting large operators into
multiple CPs (Section 7.2).

From bottom up implementation consideration, if we
make the reconfigurable datapath large enough, the area
contribution of the input FIFOs, firing, and control logic
will be small compared to the reconfigurable datapath.
We expect the area of this control logic to be only a few
tens of 4-LUTs, such that compute pages with datapaths
on the order of hundreds of 4-LUTs would amortize the
control overhead to a modest level.

In concept, CPs can be realized with any kind of pro-
grammable or reconfigurable fabric. The visible interaction
between CPs and CMBs is the data sent on the connected
streams. Consequently, a sequential processor could be a
CP. Similarly, a coarse-grained datapath array could be a
CP as well (e.g., [18,77,29,55,31,12]). The Application
Binary Interface (ABI) for a platform family will need to
have compiled versions of each operator for each kind of
CP that may appear in the platform family.

5.2. Configurable memory block

A Configurable Memory Block (CMB) is a memory
with stream interfaces and a modest amount of local con-
trol (Fig. 7). CMBs can hold (1) random access data seg-
ments, (2) stream buffers, and (3) state and configurations
for CMBs, CPs, and the network. A single CMB may hold
many of these things simultaneously based on its capacity
(e.g., Fig. 7). However, only one such unit may be active
at a time and occupying the CMB’s stream interface.

5.2.1. Fast, local reconfiguration

CMBs are physically interleaved with the CPs and the
number of CMBs will typically scale with the number of
CPs. Consequently, each CP can be associated with a local
CMB. When reconfiguration occurs during execution, the
CP is loaded from the associated CMB. This provides high
bandwidth access to dense configuration memory and
allows many CPs to reconfigure in parallel. By scaling the
number of CMBs with CPs, reconfiguration time need
not increase as the capacity of a SCORE chip grows.
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We designed a prototype, DRAM-based CMB with a
2 Mb DRAM macro and 2 GB/s of data bandwidth in a
0.4 lm embedded DRAM process [61,60]. The CMB could
provide 64b of data every 4 ns cycle. This allowed us to
reconfigure a 64 5-LUT CP in less than 350 cycles; that
is, less than 1.5 ls. A larger CP would take correspondingly
longer; e.g., a 512 5-LUT CP might take around 3000
cycles to reconfigure.

5.2.2. Operating modes

The CMB can be configured as

• random access read-write memory, with stream connec-
tions for address, r/w control, data input, and data
output

• FIFO, with stream connections for data input and
output

• sequential data source
• sequential data sink

Local address logic in the CMB allows it to act as a source,
sink, or FIFO without an external address stream. When
sourcing CP configurations or storing or loading CP state,
the CMB acts as a sequential source or sink on the memory
block containing the configuration data or state. As part of
the configuration of the active segment, a bounds register
tracks the limits of the buffer it is serving. When the bound
is reached (e.g., FIFO empty or FIFO full), the CMB
asserts BACK PRESSURE to the data streams, and it signals
to the control processor that it needs attention. Otherwise,
the CMB operates as an independent thread of control like
a Direct Memory Access (DMA) engine.

5.2.3. CMB size and balance

As with CPs, by making the memory bank large enough,
we can amortize out the interfacing and control overhead.
If we then design CPs and CMBs to take up about the same
area and build devices with an equal number of CPs and
CMBs, we will have a balanced device that is never more
than a factor of two away from the optimal ratio of CPs
and CMBs. That is, even in unbalanced cases where mostly
CPs or mostly CMBs are needed, we never waste more than
half of our resources.

5.3. Scalable network

CPs and CMBs are interconnected through a common
on-chip network. The network routes data streams which
include TAGGED DATA PRESENCE and BACK PRESSURE signals.
Conventionally, we consider using a Fat-Tree style config-
urable network [67,33] which is reconfigured along with
CPs and CMBs to provide direct links between producers
and consumers. However, the exact nature of the network
does not impact the logical computation. The network
could use time-multiplexed [23,49] or packet-switched rout-
ing [21,51] and could be organized as a mesh (e.g., [6,28]) or
Mesh-of-Trees [47,46,27].
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5.4. Stream interfacing for processor compute pages

When using a processor as a CP, it is efficient and con-
venient to augment the processor with streaming opera-
tions. To support the streaming operations efficiently, we
add a Stream Lookaside Buffer (SLB) (see Fig. 8) which
performs a similar role for streams that a TLB performs
for virtual memory.

5.4.1. Stream Ops

The two key instructions to add are stream read and
stream write.

• STRMWR SRC,SID – Place the value in register SRC
onto the stream specified by SID

• STRMRD SID,DST – Read a value from the stream
specified by SID and place it in register DST

This allows the processor to transfer data to/from the array
in single instructions. With persistent stream links and
these instructions added to the processor’s ISA, there is
no need to spend extra cycles setting up a communication,
specifying the destination, or formating a packet (for con-
trast, compare e.g., [35,20]). This approach integrates
streaming communication into the processor abstraction,
allowing it to be supported efficiently with hardware.

5.4.2. SLB

On a STRMWR, the processor sends the stream ID and
data element to the SLB. The SLB translates the stream to
a physical port or a memory address. When the consumer
is co-resident in the array, a stream can be configured
directly between the CP and the consumer; in this case, if
BACK PRESSURE is not asserted, the SLB switches the data
item onto the appropriate physical network wires. If BACK

PRESSURE is asserted, the processor can be stalled. When
the consumer is not co-resident, the SLB will instead turn
the operation into a write into the appropriate memory
buffer and increment the buffer’s tail pointer. Since the
streaming operation can be specified with a single instruc-
tion, it is possible to provide hardware that handles the
operation in a single cycle. In contrast, when the processor
must manipulate the buffer pointers for a memory buffer
           Array 
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itself, it will usually take several instructions to specify a
stream write.

Like a page-table scheme, each process can have its own
stream table to provide task isolation. Just as a TLB can
enforce access privileges inside an address space, the SLB
can enforce permissions on stream access. The SLB will
fault to map in streams that have not been loaded or have
been evicted due to capacity misses.

Reads have similar mapping to writes, stalling the pro-
cessor like a memory read when no data is present. If
stalled for too long, the scheduler may choose to swap
operators; when the operator is mapped back to the proces-
sor, it can resume execution by reissuing the stalled stream
operation, just as a process that takes a VM page miss will
resume by reissuing the faulting memory operation.

5.5. Control processor/array management

Array reconfiguration is handled by privileged, supervi-
sor mode instructions which instruct the array to stop/start
CPs and CMBs and which direct state storage/restoration
and configuration loading for CPs, CMBs, and the net-
work. The run-time kernel uses these operations to imple-
ment the COARSE-GRAINED TIME MULTIPLEXING. As noted
above (Section 5.2.1), the control processor will typically
initiate an operation, such as a CP reconfiguration, which
will then run autonomously for thousands of cycles. In this
way, the control processor can issue a sequence of com-
mands to various CPs and CMBs and have them reconfig-
ure in parallel.

In modest implementations, there may be a single pro-
cessor to run user operators as well as the run-time kernel.
As SCORE chips get larger, it may make sense to dedicate
a processor simply to running the kernel scheduler and
array reconfiguration. As we scale into the future, there will
be a point where it takes more time to issue instructions to
initiate reconfigurations from a single control processor
than each of the reconfiguration operations; in these cases,
it may ultimately make sense to allocate one control
processor for every cluster of P CPs and CMBs and to
distribute the control among these processors.

6. Design capture

SCORE designs can be captured in a number of
ways. For our experimentation, we developed Task
Description Format (TDF), a dataflow RTL [16,15].
In hindsight, the key requirements are to capture oper-
ators with appropriate dataflow IO interfaces and to
allow compositions of operators. One could use Sys-
temC [58] as long as one used a communication library
with suitable semantics. Similarly, one could even use
Java with a suitable set of class libraries for operators,
CMBs, and streams. Other options include YAPI with-
out the probe primitive [22] and Ptolemy designs using
domains which provide deterministic process network
semantics [42].



Fig. 10. Sample, generated RTL (Verilog) for an SFSM state that
consumes from stream i and produces to stream o.
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7. Compilation

7.1. Operator mapping to FPGAs

We have developed a complete compilation flow from
TDF to a commercial FPGA, using Verilog as an interme-
diate form (Fig. 9) [14]. This flow serves a dual purpose, (1)
to map an entire application to a stand-alone FPGA for
single context execution, and (2) to evaluate a hypothetical,
FPGA-based CP for time-shared execution. The TDF
compiler, tdfc, automatically generates RTL to efficiently
implement the streaming constructs of the TDF language,
including flow control checking, stream buffering in
queues, and stream pipelining. The compiler then emits a
netlist of pages for compilation by a commercial back-
end. For the data presented in this article, we used Synplify
Pro 8.0 and Xilinx ISE 6.3i. Each page contains one or
more SFSMs and queues.

We implement a synchronous stream protocol with
TAGGED DATA PRESENCE and BACK PRESSURE. A stream is a
tuple of unidirectional binary signals (D, E, V, B), where
D is the multi-bit data payload, V (valid) indicates the pro-
ducer is ready, and B (backpressure) indicates the consumer
is not ready. At each clock edge, a token of value D is
transmitted from producer to consumer if V � �B. The
stream data type is normally extended with an end of

stream value, encoded out-of-band in signal E, to handle
termination conditions. A stream implemented this way
may be pipelined in several ways, discussed below.

In an SFSM, each state specifies a set of desired stream
inputs and outputs which must be ready before the state
action can evaluate, or fire. Accordingly, the RTL generat-
ed for each state includes a firing guard to check for stream
readiness. While the guard is false, the SFSM spins in the
same state and emits flow control to stall all streams. When
the guard becomes true, the SFSM commits stream pro-
duction and consumption, evaluates the state action, and
transitions to a next state. Fig. 10 shows sample Verilog
code generated for an SFSM state. In practice, flow control
handling and state actions are generated in separate RTL
modules to support separate synthesis. Thus an SFSM is
comprised of an FSM module and a datapath module.
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Fig. 9. Compilation flow targeting FPGA.
Note that an SFSM always waits for incoming flow con-
trol before deciding to fire and asserting outgoing flow con-
trol. Using this mechanism, two SFSMs cannot be directly
connected, since they would wait for each other and dead-
lock. Instead, SFSMs are separated by assertive, intermedi-
ate elements, namely queues.

7.1.1. Inter-operator queuing

One of the key features distinguishing SCORE from
RTL models is the use of abstract streams to connect
operators. The timing independence of streams allows
freedom in the implementation to change the relative
timing of operators and of the communication between
them. A compiler can exploit that freedom to perform
a number of optimizations not possible in a standard
RTL model.

Each stream is implemented with one or more queues.
Queues are required for correctness of the process network
model (Section 2.2). They also abstract communication
delays and absorb dynamic variations in consumption/pro-
duction rates (Section 4.4). Queues serve additional pur-
poses specific to our synthesis methodology, including (1)
asserting flow control for the SFSMs at stream endpoints,
(2) combinationally decoupling the stream endpoints, (3)
pipelining long distance streams, and (4) providing retim-
able registers to pipeline SFSM datapaths.

A queue may have one of several implementations,
depending on the desired capacity and intended purpose.
The simplest queue is an enabled register for D, E, and
V, with one AND gate for BACK PRESSURE. Despite having
only unit capacity, this queue is sufficient for (1), (2), and
(4), and it can be cascaded for additional capacity. A queue
of medium capacity (for depths up to one to two hundred)
can be constructed from shift registers, with data shifting in
at one end and out at a dynamic address corresponding to
queue occupancy. Our shift register queues use the efficient
SRL16 mode on Xilinx Virtex/Spartan series FPGAs
[74,76,75], achieving at least 200MHz (XC2VP70-7) with
capacities and bit widths up to 128, e.g., a 16-bit wide,
16-element deep, SRL16 queue requires 56 LUTs, or 28
Virtex-II Slices. Higher capacity queues may be construct-
ed as circular buffers using the embedded RAM on modern
FPGAs. Fig. 11 shows our general implementation of a
stream using multiple, cascaded queues for different
purposes.

When we connect co-resident operators with a stream,
we must be careful in selecting the capacity of the stream
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queue. To save area, we prefer to minimize the queue
capacity. However, a queue with insufficient capacity may
create unnecessary stalls in the presence of dynamic data
rates or cause the computation to deadlock. As noted in
Section 4.5, the general case of queue sizing for process net-
works with dynamic data consumption and production is
undecidable. Nonetheless, in practice, most applications
do have meaningful bounds.

Many queue capacities can be bounded by a user anno-
tation or by static analysis. Analysis of queue bounds can
be performed using state space exploration, composing
automata for SFSMs and queues of particular capacities,
and checking for deadlock states [14]. Queues that cannot
be statically bounded may still be supported with dynamic
allocation using BUFFER LOCK DETECTION and HANDLING.

7.1.2. Interconnect pipelining

Long interconnects will need to be pipelined in order to
achieve high throughput operation (e.g., [67,65,69]). We
consider two main implementations.

Relaying. Streams spanning long distances may be
pipelined by inserting two-element queues to relay the
tokens. These two-element queues support registered flow
control between operators, to avoid accumulated
combinational delays. In the normal case, each relay
behaves like a pipeline stage, receiving one input token
and sending one output token per clock cycle. When
the downstream operator stalls, the two-element queue
absorbs the input token like a worm-hole router [57],
then asserts B to stall further data from the upstream
relay or producer.

Pipelining. Rather than adding relays, we might prefer
to add simple registers on all stream wires, including the
flow control bits (B,V). Simple registers are much less
expensive than two-element queues, both in area and cycle
time. However, if we use oblivious registers like this, we
must deal with the fact that the flow control bits (B,V)
on each side of a W-deep pipelined interconnect become
2W cycles stale. That is, if a consumer wishes to stall a pro-
ducer, it will take W cycles for the consumer’s B signal to
reach the producer, and when it does, the producer may
have placed W additional tokens into the interconnect
pipeline. We can accommodate this control staleness by
using a WINDOWED ACKNOWLEDGMENT pattern (e.g., [62]);
that is, we modify the downstream queue to assert B when
it has 2W or fewer empty memory slots.
7.1.3. Operator pipelining

Since SCORE streams abstract the number of clock
cycles between operators, we can also accommodate delay
for pipelining operator datapaths. The stream implementa-
tion allows the addition of registers on the streams, as
described above, and subsequent retiming of those registers
into the operator logic.

Relaying. We can add an enabled register queue (unit
capacity) to a stream and retime its registers into the stream
producer or consumer.

Pipelining. Using the WINDOWED ACKNOWLEDGMENT

pattern introduced above, we can add registers with no
flow control directly to the forward wires D, E, V, and
retime them backwards into the stream producer. We
accommodate this as before by modifying the downstream
queue to assert B early. Adding L levels of logic pipelining
creates L stale flow control bits on the V path, so the down-
stream queue is modified to assert back-pressure whenever
it has L or fewer empty slots. Interconnect pipelining and
datapath pipelining may be used together, provided the
downstream queue is modified to reserve 2W + L empty
slots. These stream enabled forms of pipelining are partic-
ularly convenient in a synthesis flow since they require no
modification of the producer’s or consumer’s RTL, only
a modification of the stream and stream queue.

7.1.4. Mapping results

We have compiled several multimedia applications to
the Xilinx Virtex-II Pro XC2VP70 FPGA (speed grade 7)
[76]. The applications, listed in Table 1, include an IIR
filter, JPEG and wavelet image coders, and an MPEG
video coder. They range in size from 8 to 80 SFSMs, and
in connectivity from 9 to 238 streams. Mapped to the
FPGA, application clock rates range from 87 to
175 MHz. For these results, every stream was implemented
identically, using an SRL16-based queue of capacity 16 and
pipelining parameters Li + Lp + Lr + Wp = 1 + 1 + 0 + 0
as per Fig. 11. Application area and performance may be
improved further by tailoring each stream with its own
optimized parameters for queuing and pipelining.

By separately compiling application subcomponents, we
can estimate the cost of stream support. Table 1 summariz-
es those costs for the XC2VP70 target. FSM modules,
which contain SFSM firing guards and flow control, com-
prise only 6.1% of total application area. Stream buffer
queues, implemented in Xilinx Slices, comprise 34% of
total area. Stream enabled logic pipelining accounts for
7.0% of total area, while providing an average application
speedup of 1.5 over unpipelined operators. The remaining
area is in SFSM datapaths.

The area for stream buffer queues is non-trivial and thus
bears further consideration. Queue area may be reduced by
choosing lower queue capacities and by merging connected
SFSMs where possible to eliminate queues. Queue area
may also be reduced by providing architectural support
for queues, e.g., as part of the CP in a SCORE architecture
as detailed in Section 5.2.



Table 1
Applications mapped to XC2VP70

Application SFSMs Segs Strms Clock (MHz) Area (LUTs) % Area FSM % Area queue % Area pipelining Speedup pipelining

IIR 8 0 9 175 1984 3.3 27 3.1 1.1
JPEG decode 9 1 50 107 7812 6.6 27 4.7 2.3
JPEG encode 11 4 51 105 7080 7.2 35 5.0 1.8
MPEG encode IP 80 16 238 87 45,602 5.0 36 9.1 1.9
Wavelet encode 30 6 58 132 8580 9.8 31 3.0 1.3
Wavelet decode 27 6 57 127 9112 8.1 28 4.4 1.2
Average 6.1 34 7.0 1.5
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7.2. Page mapping

Fig. 12 shows the distribution of SFSM sizes for the
operators of the applications used in the previous section.
The wide range of operator sizes underscores the need to
perform operator packing and splitting in order to target
any particular, fixed CP size. We see that most of the oper-
ators require less than 512 4-LUTs. This means that page
packing will be adequate to reshape most applications.
The specific computations which make up the large opera-
tors are almost all feed-forward pipelines (e.g., DCT,
IDCT) that can be easily decomposed using directional
cuts in the dataflow.

For the general case, it will be necessary to decompose
large state machines in order to fit them onto small CPs.
This could be done by starting with individual states and
clustering state logic and datapaths together, obeying the
CP area and IO bound. To minimize delay, the goal would
be to group together states which typically execute togeth-
er, so as to minimize the frequency of state transitions that
cross the CP boundary. In their work on configuration
caching, Li et al. [48] developed a clustering operation
which attacks a problem very close to the area- and
IO-bound state packing problem that would be necessary
for the general CP mapping case.

An important area of future work is to explore the
relative benefits of various CP datapath sizes, and a key
enabler for that work will be a general operator partition-
ing scheme. Nonetheless, working with 512+ 4-LUT pages,
Fig. 12. Operator area distribution.
so far, we have been able to use the simpler, pipeline extrac-
tion and dataflow partitioning to decompose operators, so
that the page packing problem can be attacked with
clustering.

8. Dynamic runtime support

To support the late-bound task and platform mapping
integral to SCORE’s power and scalability, we must per-
form scheduling, placement, and routing no earlier than
load time. In this section, we show that these tasks can
all be contained to milliseconds, even when using modest
platform clock rates of 100 MHz. Further, we show that
we can allow this reconfigurability without undermining
the isolation and security normally provided by an operat-
ing system.

8.1. Operating system security architecture

Since reconfiguration of the physical hardware occurs
below the model level, multiple SCORE task graphs can
be allocated to the same physical hardware platform and
be isolated from each other, just as multiple tasks are iso-
lated from each other on a conventional computer with vir-
tual memory (e.g., multitasking). Operators can only
communicate through streams. If an operator does not
have a stream link to another operator, it cannot commu-
nicate with it. Stream identifiers live in a virtual address
space unique to each process, so there is no way to address
a stream in another process.

The instructions which reconfigure the array and the
SLB are kernel-mode, privileged instructions, just like
instructions that modify processor configuration mode reg-
isters and TLB contents. Consequently, no user-level oper-
ator can directly change the logic configuration on other
tasks. Tasks to logically reconfigure the graph (e.g., stream
allocation, stream exit, operator instantiation, memory seg-
ment instantiation) all go through the operating system the
same way that primitive allocations (e.g., sbrk) and process
creation/modification/deletion go through the operating
system. This can work efficiently, because allocation
requests are infrequent compared to use of the allocated
resources. Strategic hardware like the SLB avoids the need
to have the OS software handle data on a word-by-word
basis during operation of an instantiated operator and
stream.



Table 2
Schedule table for JPEG image encoding on a SCORE platform with
4 CPs and 16 CMBs

Resource Time slice

1 2 3� � �
CP 0 DCT Fan Bits
CP 1 Tran Fan Huff
CP 2 DCT’ ZLE Mix
CP 3 Zig Quant —

CMB 0 Stitch[1,0] Stitch[1,0] Stitch[3,0]
CMB 1 Stitch[0,0] Stitch[2,0] Stitch[2,0]
CMB 2 Stitch[0,1] Table 1 —
CMB 3 Stitch[0,2] Table 2 —
..
.

Table 3
Schedule generator load-time overhead (millions of cycles): application-
specific costs for three device sizes: minimum feasible (min), quarter spatial
(25%), half spatial (50%)

App name |V| |E| Min size Min 25% 50%

JPEG encode 20 54 4 0.6 0.7 0.7
JPEG decode 16 56 3 0.3 0.3 0.3
Wavelet encode 36 56 6 0.5 0.5 0.5
Wavelet decode 33 51 6 0.3 0.3 0.3
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8.2. Scheduling

To support SCORE’s virtualization model in the pres-
ence of late-bound platform mapping, we must have a
load-time and run-time scheduler. We do not know the
capacity of the platform until load time; consequently,
we cannot partition the graph into sets of pages that
fit on the platform until load time. Further, since opera-
tors have dynamic execution times and dynamic con-
sumption and production rates, the relative execution
time of each operator cannot be known with certainty
until execution. In order to support SCORE efficiently,
we must be able to:

• quickly partition the page graph into platform-feasible
components (within milliseconds)

• produce a high-quality schedule, i.e., one that minimizes
the time to run the task (minimizes the makespan)

• minimize the sequential handling required for managing
reconfiguration and advancing the schedule

In the simplest cases, we partition the graph once at load
time when the program starts and never partition it again.
In this way, we amortize the cost of partitioning across the
entire application runtime (Fig. 13). If the application will
run for seconds, then we can afford tens of milliseconds for
this scheduling operation while keeping the overhead small.
If we can make the scheduling time smaller, then it will be
possible to run even shorter jobs efficiently. In more
advanced cases, the graph may change during execution,
or the execution rates of operators may change in a data
dependent way. In such cases, it might be useful to re-par-
tition and re-schedule the graph during execution. The
smaller we can make the partitioning time, the more fre-
quently we can afford to invoke the partitioner without
paying a large overhead.

In Section 5.2.1 we showed how architectural support
could bring configuration down to a few thousand cycles.
To fully exploit this fast reconfiguration time, the reconfig-
uration management time for swapping pages and advanc-
ing the schedule should be in the same ballpark. The
combination of reconfiguration time and schedule manage-
ment time determine the duration each configuration
should run in order to avoid thrashing (Fig. 13):

T run�before�reconfig � ðT config þ T advance scheduleÞ
We have developed a series of schedulers to address these
issues, as previously reported [19,53,52]. In this section,
we highlight the lessons from those exercises.
Run A

Page Execution

Ru

Reconf

Run-timGenerate
Schedule

Application
Load Time

Fig. 13. Application e
8.2.1. Partitioning and scheduling

To fit a large SCORE graph onto a smaller platform, we
must first temporally partition the graph into subgraphs
that fit on the device. Once the partition is created, the
scheduler adds a buffer for each stream that crosses a tem-
poral reconfiguration boundary. Within the temporal par-
titions, the schedule must also assign buffers to physical
resources. As addressed in the next section (Section 8.3),
the run-time system will then place the CPs and CMBs in
each partition. The results of the partitioning and assign-
ment can be visualized as a schedule table. Table 2 shows
what this table looks like for the partitioned JPEG applica-
tion shown in Fig. 4.

To compute schedules quickly, we use a heuristic based
on graph topology. It yields makespans that are within
17% of the optimal single-appearance schedule [53], yet it
consumes only 300–700 thousand processor cycles (mea-
sured on a Pentium III using on-chip time-stamp counter;
see Table 3). Even on a 100 MHz processor, this means
schedule generation time would be only 3–7 ms.

The scheduler uses feedback from previous runs to esti-
mate operator production/consumption rates to compute
high quality schedules. For a given data set, operator pro-
duction/consumption rates do not change when the size of
Timeslice
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the platform changes. If the production and consumption
rates are consistent across data sets, then this can be a good
approximation of operator behavior.

8.2.2. Advancing the schedule

During execution, the scheduler must reconfigure the
device and handle dynamic events. In the simplest case,
we employ a static schedule that simply allows each parti-
tion to run for a specified length of time, the timeslice. At
the end of the timeslice, the scheduler will perform BUFFER

LOCK DETECTION and HANDLING (Section 4.5). We were
able to design this simple, static case so that the scheduler
handling only required about ten thousand cycles per time-
slice (See Fig. 14).

A potential weakness of a strict, timeslice-based, static
scheduler is that it is oblivious to dynamics in produc-
tion/consumption rates. If input buffers drain or output
buffers fill at an unexpected rate, all resident operators
may stall before the end of the timeslice, resulting in signif-
icant under-utilization of the hardware.

This inspired us to create a quasti-static scheduler to
improve schedule quality. The quasti-static scheduler adds
a small amount of additional hardware that can detect
when the resident pages are all stalled. When this dynamic
stall event is detected, the current timeslice is immediately
terminated, triggering BUFFER LOCK DETECTION and HAND-

LING and reconfiguration. By simply watching when all CPs
and CMBs are stalled for a number of successive cycles that
exceeds the network latency, we know that data has
drained from the network, and no more operations can
be performed in this timeslice. This simple and inexpensive
detection scheme does cause us to lose tens of cycles during
the network drain and detection, but since that delay is
small compared to the reconfiguration time, it has minor
impact on overall performance.

In the extreme, we could use a fully dynamic scheduler.
The dynamic scheduler can decide independently
which operators should be run in each timeslice. Here,
we have the potential to look at fullness and emptiness
of queues and schedule the operators that will run for
Fig. 14. Wavelet encoder: comparison of average timeslice overhead.
the longest amounts of time. Our dynamic scheduler
[19] used a priority-list scheduler to handle data-depen-
dent variations in token flow rates; node priorities were
based on input token and output buffer space availabili-
ty. The computation time associated with each reconfig-
uration was quite high, on the order of 50,000–150,000
cycles (See Fig. 14) – almost an order of magnitude high-
er than the handling required by the static and quasi-
static schedulers.

8.2.3. Schedule quality

Fig. 15 shows the total execution time of the wavelet-
based encoder application for various array sizes, using
the dynamic, static, and quasi-static schedulers. This
encoder application requires 30 physical pages for a fully
spatial implementation. The graph vertical axis shows the
total time to compress a 512 · 512 image. The horizontal
axis shows the device size in compute page and configura-
ble memory block pairs. Performance was measured on a
cycle-level fabric simulator.

All curves exhibit the expected performance scaling
behavior: more hardware results in an equal or lower exe-
cution time. Minor non-monotonicity with respect to the
device size is due to anomalous scheduler effects. The
static and quasi-static curves demonstrate that the static
schedulers yields higher quality schedules than the
dynamic approach. The execution time reduction from
the dynamic to quasi-static approach is a factor of four
on average. Comparing execution times for the quasi-
static and static schedulers, we find that the stall-detect
feature contributes on average a factor of two in
improved performance.

The static schedulers outperform the dynamic scheduler,
because they evaluate the graph globally rather than per-
forming greedy graph analysis. The perceived advantages
of the fully dynamic scheduler, such as its ability to adapt
its scheduling decisions to match data-flow patterns, are
not realized at a feasible scheduling granularity. Its time-
slice size is constrained by the large scheduling overhead
of 50–150 thousand cycles per time-slice.
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8.2.4. Summary of results

The schedulers were evaluated with JPEG and wavelet-
based codecs [52], which represent a typical workload for a
SCORE platform. The applications combine static-rate
operators and data-dependent, dynamic-rate operators.
Table 4 shows that the quasi-static scheduler reduces the
fraction of the execution time attributable to scheduling
overhead from 30–40% down to 5–10% relative to the
dynamic scheduler. Application performance improves
under the quasi-static scheduler by around 3–5·. Notice
that the speedups are greater on smaller reconfigurable
devices with limited resources, where the improved
scheduling quality and efficiency are more critical.

The quasi-static scheduling strategy reaches key perfor-
mance objectives without restricting the dynamic computa-
tion model of SCORE. Inner scheduling loop overhead is
contained under ten thousand processor cycles per time-
slice (100 ls on 100 MHz core), allowing the scheduler to
react quickly to changes in a computation. The load-time
overhead is contained under 700,000 cycles (7 ms). The
quasi-static scheduler achieves the highest scheduling
quality and device utilization through simple yet effective
scheduling heuristics and responds to the gross dynamic
behavior of the application using simple hardware
feedback.
Table 4
Execution time and scheduling overhead summary: execution time
reported in millions of cycles

Array size Dynamic Quasi-static Speedup

Exec time % Ovhd Exec time % Ovhd

Wavelet encoder (30 pages)

6 7.324 18.5 0.859 7.5 8.52

8 5.400 22.9 0.683 9.3 7.91

14 2.754 32.0 0.513 9.3 5.37

18 1.757 38.2 0.503 8.6 3.50

24 1.378 43.7 0.461 11.8 2.99

26 1.410 45.1 0.453 8.9 3.12

Wavelet decoder (30 pages)

6 11.631 17.0 0.846 4.0 13.75

8 9.137 19.0 0.753 4.3 12.13

14 6.887 25.6 0.553 4.1 12.46

18 2.803 29.0 0.534 4.3 5.25

24 1.717 34.4 0.520 4.1 3.30

26 1.167 36.7 0.539 4.0 2.17

JPEG encoder (13 pages)

4 6.368 24.1 2.341 7.3 2.72

5 9.086 21.5 1.479 5.3 6.15

8 2.349 29.6 1.360 6.0 1.73

9 2.406 30.5 1.052 3.8 2.29

12 3.678 28.7 0.991 3.3 3.71

13 0.939 15.1 0.879 1.6 1.07

JPEG decoder (12 pages)

3 13.312 19.8 3.004 5.6 4.43

4 8.010 26.0 1.701 7.1 4.71

7 2.589 28.2 1.192 3.3 2.17

8 2.196 24.8 0.979 3.4 2.24

11 2.518 35.5 0.965 3.4 2.61

12 0.910 12.6 0.869 1.5 1.05
8.3. Placement

Using the FIXED-SIZED and STANDARD IO PAGES pattern
introduced above, we immediately reduce the magnitude of
the placement task by 2–3 orders of magnitude. Nonethe-
less, the placement task may still take too long when run
using conventional single-processor-based placers for
reconfiguration-time or even load-time placement. Fortu-
nately, once we have a spatially parallel reconfigurable
computing platform, we can use the reconfigurable plat-
form itself to perform placement substantially faster. In
[72,71], we show how to perform simulated annealing spa-
tially with reconfigurable logic; we can place a graph with
1000 movable elements in roughly one million cycles. Even
if we only ran the placement engine at 100 MHz, this would
mean we can perform placement in 10 ms. If each CP held
512 4-LUTs, then this would correspond to platforms with
half a million 4-LUTs.

The key idea for spatial simulated annealing is to build a
placement engine on top of the reconfigurable platform. If
we make the CP large enough, then each CP can act as a
systolic placement cell. As a placement cell, it holds a
candidate, logical page and negotiates exchanges with its
nearest neighbors. A pair of adjacent CPs will swap logical
pages if they estimate that the swap will produce a superior
placement (e.g., shorter wire lengths) or if the randomness
in the simulated annealing process suggests attempting the
swap anyway. All CPs can be paired up and negotiate
swaps in parallel, allowing many moves per swap epoch.
By pairing up only neighbors, we can guarantee to require
minimal interconnect for this placement engine and keep
the cycle times short. Since there is one systolic placement
cell for every page site on the device, the hardware and
parallelism in the placement engine scale exactly as the size
of the placement problem that needs to be solved. In [72],
we estimate that 400 4-LUTs is adequate to implement a
100 MHz systolic placement cell on Xilinx Virtex-II [73]
generation hardware; this suggests that SCORE platforms
with 512 LUT CPs will certainly be able to perform their
own placement.

8.4. Routing

Once the pages have been placed, we must perform
inter-page routing. Again, we can exploit the fact that we
have a spatially parallel computing platform to route tasks
in 100,000 to a million cycles (Table 5) [26]; that is, the
Table 5
Spatial routing for SCORE applications (from [26])

Application Compute
pages

Array size IOs Channel
width

Cycles

MPEG encode 92 128 18 25 110,567
JPEG encode 13 16 16 18 21,917
JPEG decode 12 16 16 18 17,186
Wavelet encode 30 32 6 8 16,118
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route task can be performed in 1–10 ms assuming only
100 MHz operation. Here, we augment the inter-page net-
work with additional logic to allow the network itself to
identify all free paths between a source node and a sink
node in parallel. This allows a flooding search to find a free
path in the time it takes to propagate a signal across the
network rather than the time it takes to perform a sequen-
tial search on a large graph structure in memory. Conse-
quently, each new path can be added in tens of cycles
rather than the tens of thousands of cycles required by
the best software routers. Using randomization, rip-up,
and multiple restarts, this approach can even perform con-
gestion negotiation and achieve comparable quality to
Pathfinder [54], the state-of-the-art software routing algo-
rithm for FPGAs [37]. Using word-wide (e.g., 16-bit) data-
paths for the inter-page network, the additional area
overhead for this augmented network is less than 30%
when network routing channels are switch-area limited;
the augmented network adds only control wires, so it has
almost no area overhead when network routing channels
are wire dominated.

An alternate approach is to employ a packet-switched
network for inter-page routing (e.g., [51]) to avoid the need
to compute and configure the network. Packet switches are
generally much larger and higher latency than configured
switches, but they may be able to handle multirate and
dynamic traffic more efficiently.

9. Lessons

For reconfigurable computing systems to fully deliver
their potential as flexible, programmable systems with high
computational capacity, we must develop suitable models
for developing scalable and reusable applications and
application components. As such, we need models that
provide stable interfaces for software that abstract out
cycle-by-cycle timing, platform capacity, and microarchi-
tectural details of the computing fabric. Further, to make
it possible for a wider range of developers to understand
and exploit reconfigurable computing platforms, we need
system architectures that embody our best practices and
understanding of how to properly organize and manage
computations for these platforms.

SCORE provides one such model. It guides developers
to an efficient pipe-and-filter organization which exploits
the ability of reconfigurable fabrics to efficiently support
pipelined datapaths that perform the same computation
repeatedly at high throughput. It provides a timing-inde-
pendent model to allow automated scaling of the platform
hardware. In so doing, it tackles system-level issues, includ-
ing runtime management and allocation, which are not
standardized when one simply deals with raw hardware.

We have shown that we can support the SCORE model
efficiently with suitable execution patterns, hardware sup-
port, and lightweight runtime software. We describe these
patterns here in the context of the SCORE model, but they
are by no means unique to SCORE and are useful in other
contexts. We can engineer reconfiguration to occur in
microseconds, and we can develop quasi-static schedulers
that drive reconfiguration in microseconds. For late-bound
platform mapping, we can schedule computations to the
platform in milliseconds and use the device itself to com-
pute placements and routes in milliseconds. Using coarse-
grained pages (512 4-LUT capacity or larger), the added
logic overhead to support the SCORE model can be
modest (10–20%).

While virtualization has been a key focus in the design
of SCORE, the SCORE model proves useful even when
designing static, spatial designs for conventional FPGAs
[14]. As suggested in Section 7.1, the model allows us to
separately compile operators and to pipeline both opera-
tors and interconnect. One could use the FIXED-SIZED AND

STANDARD IO PAGES pattern as a discipline to speed design
assembly and mapping to FPGAs.

10. Future directions

The abstractions and mechanisms reviewed and devel-
oped in the article do have their limitations, and those lim-
itations suggest some important directions for further
development.

10.1. Platform dependent graph size

What happens once the platform can implement a graph
fully spatially? For many of the applications considered,
the data is blocked, and it would be possible to exploit even
further parallelism by instantiating parallel data paths
(e.g., different datapaths for alternate rows or blocks in
an image compression). One could simply build this larger,
more parallel operation graph, but it is then less efficient to
time-multiplex this large graph onto smaller hardware. Ide-
ally, we should generate the appropriate graph structure
based on load-time information about the size of the plat-
form. This requires a richer run-time model and the ability
to algorithmically capture the freedom and alternatives for
implementing operators. With the inexpensive reconfigura-
tion, scheduling, placement, and routing developed to
enable SCORE, it is viable to consider this kind of run-time
graph construction.

10.2. Alternate execution patterns

While COARSE-GRAINED TIME-MULTIPLEXING and SEQUEN-

TIAL vs. PARALLEL are powerful patterns for scaling, if we
really want to scale across the orders of magnitude more
device capacity that we will see in the next several decades,
it is clear that we need to enable an even larger set of tech-
niques for scaling. Further, if we can more efficiently handle
large graphs on modest platforms, we can expand the set of
applications where the SCORE model is viable. Techniques
such as FINE-GRAINED TIME MULTIPLEXING and COMMON

OPERATING SHARING might allow modest platforms to run
graphs with large cyclic dependencies without thrashing.
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Future runtime systems might choose between the execu-
tion pattern based on the characteristic of the application
graph and platform.

10.3. Develop reconfigurable system architectures

The pipe-and-filter system architecture is not the natural
or appropriate way to implement many computations. For
example, data-centric operations are more naturally viewed
as repositories [64]. Consequently, we need to explore and
develop a set of reconfigurable system architectures which
cover the space of applications which reconfigurable com-
puting systems can implement efficiently. These architec-
tures can be the basis for developing compilation tools
and run-time support to ease the task of developing recon-
figurable solutions. The architecture disciplines will further
serve as the basis for guiding designers to good reconfigu-
rable application design, building on the growing body of
engineering knowledge.
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Yeh, John Wawrzynek, André DeHon, Stream Computations Orga-
nized for Reconfigurable Execution (SCORE): Introduction and
Tutorial. <http://www.cs.berkeley.edu/projects/brass/documents/
score_tutorial.html>, short version appears in FPL’2000 (LNCS
1896), 2000.

[17] E. Caspi, M. Chu, R. Huang, N. Weaver, J. Yeh, J. Wawrzynek,
A. DeHon, Stream computations organized for reconfigurable
execution (SCORE): extended abstract, in: Proceedings of the
International Conference on Field-Programmable Logic and
Applications LNCS, Springer-Verlag, 2000, pp. 605–614.

[18] D.C. Chen, J.M. Rabaey, A reconfigurable multiprocessor ic for
rapid prototyping of algorithmic-specific high-speed dsp data
paths, IEEE Journal of Solid-State Circuits 27 (12) (1992)
1895–1904.

[19] Michael Chu. Dynamic Runtime Scheduler Support for SCORE.
Master’s thesis, University of California, Berkeley, December 2000.

[20] W.J. Dally, S.J.A. Fiske, J.S. Keen, R.A. Lethin, M.D. Noakes, P.R.
Nuth, R.E. Davison, G.A. Fyler, The message-driven processor: A
multicomputer processing node with efficient mechanisms, IEEE
Micro (1992) 23–39.

[21] William J. Dally, Brian Towles. Route packets, not wires: on-chip
interconnection networks, in: Design Automation Conference, 2001,
pp. 684–689.

[22] E.A. de Kock, G. Essink, W.J.M. Smits, P. van der Wolf, J.-Y.
Brunel, W.M. Kruijtzer, P. Lieverse, K.A. Vissers. Application
modeling for signal processing systems, in: Proceedings of the
ACM/IEEE Design Automation Conference, 2000, pp. 402–405.
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