
Extending Multicore Architectures to Exploit Hybrid Parallelism
in Single-thread Applications

Hongtao Zhong, Steven A. Lieberman, and Scott A. Mahlke
Advanced Computer Architecture Laboratory
University of Michigan, Ann Arbor, MI 48109

{hongtaoz,lieberm,mahlke}@umich.edu

Abstract

Chip multiprocessors with multiple simpler cores are
gaining popularity because they have the potential to drive
future performance gains without exacerbating the problems
of power dissipation and complexity. Current chip multi-
processors increase throughput by utilizing multiple cores
to perform computation in parallel. These designs provide
real benefits for server-class applications that are explic-
itly multi-threaded. However, for desktop and other sys-
tems where single-thread applications dominate, multicore
systems have yet to offer much benefit. Chip multiproces-
sors are most efficient at executing coarse-grain threads that
have little communication. However, general-purpose ap-
plications do not provide many opportunities for identifying
such threads, due to frequent use of pointers, recursive data
structures, if-then-else branches, small function bodies, and
loops with small trip counts. To attack this mismatch, this pa-
per proposes a multicore architecture, referred to as Voltron,
that extends traditional multicore systems in two ways. First,
it provides a dual-mode scalar operand network to enable
efficient inter-core communication and lightweight synchro-
nization. Second, Voltron can organize the cores for execu-
tion in either coupled or decoupled mode. In coupled mode,
the cores execute multiple instruction streams in lock-step
to collectively function as a wide-issue VLIW. In decoupled
mode, the cores execute a set of fine-grain communicating
threads extracted by the compiler. This paper describes the
Voltron architecture and associated compiler support for or-
chestrating bi-modal execution.

1 Introduction

Since the earliest processors came onto the market, the
semiconductor industry has depended on Moore’s Law to
deliver consistent application performance gains through
the multiplicative effects of increased transistor counts and
higher clock frequencies. However, power dissipation and
thermal issues have emerged as dominant design constraints
that severely restrict the ability to increase clock frequency
to improve performance. Exponential growth in transistor
counts still remains intact and a powerful tool to improve
performance. This trend has led major microprocessor com-
panies to put multiple processors onto a single chip. These
multicore systems increase throughput and efficiency by uti-
lizing multiple simpler cores to perform computation in par-
allel and complete a larger volume of work in a shorter pe-
riod of time. Such designs are ideal for servers where coarse
thread-level parallelism (TLP) is abundant. But for systems
where single-threaded applications dominate, multicore sys-
tems offer limited benefits.

One of the critical challenges going forward is whether
the available hardware resources in multicore systems can be
converted into meaningful single-thread application perfor-
mance gains. In the scientific domain, there is a long history
of successful automatic parallelization efforts [11, 9]. These
techniques target counted loops that manipulate array ac-
cesses with affine indices, where memory dependence anal-
ysis can be precisely performed. Loop- and data-level par-
allelism are extracted to execute multiple loop iterations or
process multiple data items in parallel. Unfortunately, these
techniques do not translate well to general-purpose applica-
tions.

Extracting TLP from general-purpose applications is dif-
ficult for a variety of reasons that span both the design lim-
itations of current multicore systems and the characteristics
of the applications themselves. On the hardware side, pro-
cessors in multicore systems communicate through memory,
resulting in long latency and limited bandwidth communi-
cation. Synchronization of the processors is also performed
through memory, thereby causing a high overhead for syn-
chronization. Finally, multicore systems do not support ex-
ploiting instruction-level parallelism (ILP) across multiple
cores in an efficient manner. In short, current multicores
are generally direct extensions of shared-memory multipro-
cessors that are designed to efficiently execute coarse-grain
threads. On the application side, the abundance of depen-
dences, including data, memory, and control dependences,
severely restrict the amount of parallelism that can be ex-
tracted from general-purpose programs. The frequent use of
pointers and linked data structures is a particularly difficult
problem to overcome even with sophisticated memory alias
analysis [18]. Coarse-grain parallelism often cannot be dis-
covered from general-purpose applications. Frequent com-
munication and synchronization along with modest amounts
of parallelism are dominant characteristics. Thus, there is a
distinct mismatch between multicore hardware and general-
purpose software.

To effectively deal with mapping general-purpose appli-
cations onto multicore systems, new architectural support
is needed that is capable of efficiently exploiting the diver-
sity of parallelism within these applications. These hybrid
forms of parallelism include ILP, memory parallelism, loop-
level parallelism, and fine-grain TLP. To accomplish this
goal, this paper proposes a multicore architecture, referred
to as Voltron. Voltron extends conventional multicore sys-
tems by providing architectural support to configure the or-
ganization of the resources to best exploit the hybrid forms
of parallelism that are present in an application. There are
two primary operation modes: coupled and decoupled. In
coupled mode, each core operates in lock-step with all other
cores forming a wide-issue VLIW processor. Through com-



piler orchestrated control flow, coupled mode exploits ILP
across multiple instruction streams that collectively function
as a single-threaded stream executed by a VLIW processor.
Although cores fetch independently, they execute instruc-
tions in the same logical location each cycle, and branch
to the same logical target. In decoupled mode, all cores
operate independently on separate fine-grain threads. The
compiler slices an application into multiple, communicat-
ing subgraphs that are initiated using a lightweight thread
spawn mechanism operating in the same program context.
Decoupled mode offers the opportunity to efficiently exploit
TLP and memory parallelism using fine-grain, communicat-
ing threads.

There are several key architectural features of Voltron that
enable efficient execution and flexible configurability. First,
a lightweight operand network provides fast inter-processor
communication in both execution modes. The operand net-
work provides a direct path for cores to communicate regis-
ter values without using the memory. Second, a compiler-
orchestrated distributed branch architecture enables multiple
cores to execute multi-basic block code regions in a com-
pletely decentralized manner. This enables single-threaded,
branch-intensive applications to be executed without exces-
sive thread spawning and synchronization barriers. Finally,
flexible memory synchronization support is provided for ef-
ficient handling of explicit memory communication and am-
biguous memory dependences.

A obvious alternative for exploiting hybrid forms of par-
allelism is a heterogeneous multicore system. In a heteroge-
neous design [12], one or more powerful cores execute sin-
gle thread applications to exploit ILP, while many simpler
cores execute explicitly threaded applications. In this man-
ner, different portions of the multicore system are designed
to exploit the best form of available parallelism. The major
problem of this approach is the manufacturing difficulty. The
more powerful core usually runs at a higher frequency and
has a different supply voltage. It is hard to fabricate cores
with different process requirements on the same die. Further,
wide-issue cores for ILP introduce design cost and complex-
ity into the overall system. On the other hand, Voltron uti-
lizes multiple homogeneous simpler cores whose execution
can be adapted to the available application parallelism for
both single and multi-thread applications. This approach re-
duces system complexity and increases hardware utilization.
Note that a heterogeneous multicore could also include spe-
cial purpose cores to accelerate multimedia, networking, or
encryption computations. Such accelerators provide good ef-
ficiency for the supported types of computation. We consider
accelerators an orthogonal issue as they offer similar benefits
to any multicore system.

The Voltron architecture is inspired by prior work on mul-
ticluster VLIW processors [3, 27, 21, 28] and the RAW
architecture [24]. This work shares the central concept
of software-controlled distributed ILP processing in prior
works. However, it provides the flexibility to configure the
processor resources in multiple modes to best extract the
available parallelism. Further, it provides new architectural
mechanisms for lightweight communication and synchro-
nization. This paper provides a description of the Voltron
architecture and the associated compiler support.

2 Parallelization Opportunities in Single-
thread Applications

The challenge with increasing single-thread application
performance on multicore systems is identifying useful par-
allelism that can be exploited across the cores. We examined
a set of applications from the MediaBench and SPEC suites
to identify forms of parallelism that are feasible to automati-
cally extract by a compiler. The parallelism consists of three
types: instruction level parallelism (ILP), fine-grain thread
level parallelism (fine-grain TLP), and loop-level parallelism
(LLP).

Instruction Level Parallelism. Modern superscalar and
VLIW architectures successfully exploit ILP in single-thread
applications to provide performance improvement. Most ap-
plications exhibit some ILP, but it is often highly variable
even within an application. We observed program regions
with high degrees of ILP (6-8 instructions per cycle), fol-
lowed by mostly sequential regions. Overall ILP results can
also be low due to frequent memory stalls.

Exploiting ILP in a multicore system requires low latency
communication of operands between instructions so the de-
pendences in the program can be satisfied quickly. Most
architectures pass operands through shared register file and
bypass networks, which are absent between cores in multi-
core systems. Multicluster VLIW [3, 27, 21, 28] exploits ILP
across multiple clusters with separate register files. Networks
connecting the clusters transmit operands between registers
with very low latency. Mechanisms similar to multicluster
VLIW must be provided in to efficiently exploit ILP in mul-
ticore architectures.

Fine-Grain Thread Level Parallelism. Parallelization
opportunities can also be created by slicing program regions
into multiple communicating sequential subgraphs or fine-
grain threads. Fine-grain TLP allows concurrent execution of
instructions as well as the overlapping of memory latencies.
The memory-level parallelism (MLP) achieved by overlap-
ping cache misses or misses with computation has large po-
tential to increase performance. Conventional superscalars
must create opportunities for such parallelism with large in-
struction windows. But, the compiler can expose opportuni-
ties across much larger scopes and with much simpler hard-
ware.

We investigated two forms of fine-grain TLP: decoupled
software pipelining (DSWP) and strand decomposition. Re-
cent research on DSWP [19] exploits fine-grain TLP in loop
bodies. The execution of a single iteration of a loop is sub-
divided and spread across multiple cores. When the com-
piler can create subdivisions that form an acyclic dependence
graph, each subpart can be independently executed forming
a pipeline. DSWP allows better utilization of cores and bet-
ter latency tolerance when such pipeline parallelism can be
extracted from the program.

Strand decomposition refers to slicing program regions
into a set of communicating subgraphs. These subgraphs are
overlapped to exploit ILP and MLP. A region decomposed
into strands is illustrated in Figure 1. Nodes in the graph are
instructions and edges represent register flow dependences.
The gray nodes represent load instructions. The dotted line
divides the instructions into two fine-grain threads. The com-
piler inserts communication/synchronization instructions to
transfer data between threads for all inter-thread dataflow.
One of the critical sources of speedup in the strands is MLP.
Strands must be carefully identified to allow overlap of mem-
ory instructions and any cache misses that result.



Figure 1: Example of fine-grain TLP.

iteration 0-7

iteration 0-1

DOALL 

initialization

iteration 2-3

DOALL 

initialization

DOALL 

finalization

iteration 4-5

DOALL 

initialization

iteration 6-7

DOALL 

initialization

core 0 core 2core 1 core 3

Figure 2: Example of loop-level parallelism.

Low latency asynchronous communication between cores
is required to exploit fine-grain ILP on multicore architec-
tures. High communication latency between cores can eas-
ily outweigh the benefit of fine-grain TLP. Traditional multi-
core systems do not support fine-grain ILP because the only
way to communication between cores is through the memory.
One of the main focuses of this paper is to enable execution
of such threads with a low latency communication network.

Loop-level Parallelism. Exploiting loop-level paral-
lelism has generally been utilized in the scientific comput-
ing domain. Most commonly, DOALL loops are identified
where the loop iterations are completely independent from
one another. Thus, they can execute in parallel without any
value communication or synchronization. When enough it-
erations are present, DOALL loops can provide substantial
speedup on multicore systems. Figure 2 illustrates the exe-
cution of a DOALL loop on a 4-core system. Automatic par-
allelization of DOALL loops has been widely studied [11, 9]
and shown a large degree of success on a variety of numerical
and scientific applications.

With general-purpose applications, the consensus is that
DOALL parallelism does not exist to any significant level.
Due to extensive use of pointers, complex control flow, and
recursive data structures, it is extremely difficult for compil-
ers to identify parallel loops. However, we found that a fair
amount of statistical DOALL parallelism [14] does exist in
general-purpose applications. Statistical DOALL loops are
loops that do not show any cross-iteration dependences dur-
ing profiling, although the independence cannot be proven
by the compiler. Such loops can be speculatively paral-
lelized with some lightweight hardware support to detect

0%

20%

40%

60%

80%

100%

0
5
2
.a

lv
in

n
 

0
5
6
.e

a
r 

1
3
2
.i
jp

e
g
 

1
6
4
.g

z
ip

 

1
7
1
.s

w
im

 

1
7
2
.m

g
ri
d
 

1
7
5
.v

p
r 

1
7
7
.m

e
s
a
 

1
7
9
.a

rt
 

1
8
3
.e

q
u
a
k
e
 

1
9
7
.p

a
rs

e
r 

2
5
5
.v

o
rt

e
x
 

2
5
6
.b

z
ip

2
 

c
jp

e
g
 

d
jp

e
g
 

e
p
ic

 

g
7
2
1
d
e
c
o
d
e
 

g
7
2
1
e
n
c
o
d
e
 

g
s
m

d
e
c
o
d
e
 

g
s
m

e
n
c
o
d
e
 

m
p
e
g
2
d
e
c
 

m
p
e
g
2
e
n
c
 

ra
w

c
a
u
d
io

 

ra
w

d
a
u
d
io

 

u
n
e
p
ic

 

a
v
e
ra

g
e

single core

LLP

fine-grain TLP

ILP

Figure 3: Breakdown of exploitable parallelism for a 4-core
system.

mis-speculation and rollback the execution if needed. Be-
sides, the loops in general purpose applications tend to be
smaller and have fewer iterations than scientific applications.
Thus, the overhead of spawning threads must be small to
make this parallelism profitable to exploit. Further, DOALL
parallelism is often hidden beneath the surface. The compiler
must utilize sophisticated pointer analysis to understand the
memory reference behavior [18] and new optimizations are
needed to untangle register dependences due to scalars, such
as induction or accumulator variables.

Parallelism Breakdown. To understand the availability
of each of the three types of parallelism, we conducted an
experiment to classify the form of parallelism that was best
at accelerating individual program regions for a set of single-
thread applications from the SPEC and MediaBench suites.
The experiment assumes a 4-core system where each core is
a single-issue processor. Further, the system is assumed to
contain mechanisms for fast inter-core communication and
synchronization as discussed in Section 3. Figure 3 shows
the fraction of dynamic execution that is best accelerated by
exploiting each type of parallelism. The benchmarks were
compiled to exploit each form of parallelism by itself. On a
region-by-region basis, we choose the method that achieves
the best performance and attribute the fraction of dynamic
execution covered by the region to that type of parallelism.

Figure 3 shows there is no dominant type of parallelism,
and the contribution of each form of parallelism varies
widely across the benchmarks. On average, the fraction of
dynamic execution that is attributed to each form of paral-
lelism is: 30% by ILP, 32% by fine-grain TLP (12% percent
by DSWP and 20% by strands), and 31% by LLP. 7% of the
execution doesn’t show any opportunities for all three types
of parallelism as it had the highest performance on a single
core.

The results show that no single type of parallelism is a
silver bullet in general-purpose applications. The types of
parallelization opportunities vary widely across the applica-
tions as well as across different regions of an application. To
successfully map these applications onto multicore systems,
the architecture must be capable of exploiting hybrid forms
of parallelism, and further the system must be adaptable on a
region-by-region basis. This finding is the direct motivation
for the Voltron architectural extensions that are presented in
the next section.



3 Voltron Architecture

To efficiently exploit the different types of parallelism
available in single-thread applications, including ILP, fine-
grain TLP, and LLP, Voltron extends a conventional mul-
ticore architecture with a scalar operand network and sup-
ports two execution modes. The scalar operand network sup-
ports low latency communication of operands between regis-
ter files of the cores to enable parallel execution and synchro-
nization across the cores. The Voltron processor can oper-
ate in two different modes: coupled and decoupled. Having
these two modes provides a trade-off between communica-
tion latency and flexibility. Depending on the type of par-
allelism being exploited, Voltron can execute in the coupled
mode and behave like a multicluster VLIW to exploit ILP, or
execute in the decoupled mode to exploit fine-grain TLP and
LLP.

Figure 4(a) shows an overall diagram of a four-core
Voltron system. The four cores are organized in a two-
dimensional mesh. Each core is a single-cluster VLIW pro-
cessor with extensions to communicate with neighboring
cores. Cores have private L1 instruction and coherent data
caches, and all four cores share a banked L2 cache and main
memory. The cores access a unified memory space; the co-
herence of caches is handled by a bus-based snooping pro-
tocol. The Voltron architecture does not limit the way in
which coherence between cores is maintained; any hardware
or software coherence protocol will suffice. A scalar operand
network connects the cores in a grid. The network includes
two sets of wires between each pair of adjacent cores to allow
simultaneous communication in both directions. The topol-
ogy of the cores and the latency of the network is exposed to
the compiler, which partitions the work of a single-threaded
program across multiple cores and orchestrates the execution
and communication of the cores. A 1-bit bus connecting all 4
cores propagates stall signals in the coupled execution mode
(discussed in section 3.2).

Figure 4(b) shows the datapath architecture of each core,
which is very similar to that of a conventional VLIW proces-
sor. Each core has a complete pipeline, including an L1 in-
struction and data cache, an instruction fetch and decode unit,
register files, and function units (FUs). The execution order
of instructions within a core is statically scheduled by the
compiler. A Voltron core differs from a conventional VLIW
processor in that, in addition to other normal functional units
such as an integer ALU, a floating-point ALU, and memory
units, each core has a communication unit (CU). The CU
can communicate with other cores in the processor through
the operand network by executing special communication in-
structions.

A low-cost transactional memory [7] is used to support
parallel execution of statistical DOALL loops. The iterations
of a DOALL loop are divided into several chunks, each form-
ing a transaction. The transactions speculatively execute in
parallel across multiple cores. The low cost transactional
memory detects cross-core memory dependences and rolls
back the memory state if memory dependence violation is
detected. The compiler is responsible for roll back of the
register state. More details on parallel execution of statistical
DOALL loops are discussed in [14].

3.1 Dual-mode Scalar Operand Network

The dual-mode scalar operand network supports two ways
to pass register values between cores to efficiently exploit

different types of parallelism. Although both ILP and fine-
grain TLP execution need low latency communication be-
tween cores, they have different requirements for the net-
work. ILP execution performance is very sensitive to the
communication latency, thus it is important to make the la-
tency as low as possible for ILP execution. On the other
hand, the execution of multiple fine-grain threads are decou-
pled, thus fine-grain threads are less sensitive to the latency.
However, fine-grain threads require asynchronous commu-
nication between cores; therefore, queue structures must be
used to buffer values. The Voltron scalar operand network
supports two modes to meet the requirement of ILP and fine-
grain TLP execution: a direct mode that has a very low la-
tency (1 cycle per hop) but requires both parties of the com-
munication to be synchronized, and a queue mode that has a
higher latency (2 cycles + 1 cycle per hop) but allows asyn-
chronous communication.

The scalar operand network in Voltron consists of com-
munication components in every core and links between
cores. Figure 4(c) shows the detail of the CU in a Voltron
core. A core performs communication with another core
through the scalar operand network by issuing special in-
structions to the communication unit. The operation of the
CU depends on the communication mode.

Direct mode. Direct mode communication allows two
adjacent cores to communicate a register value in one cycle.
Two new operations are added to the instruction set architec-
ture (ISA) to support direct mode communication: PUT and
GET. The PUT operation has two operands, a source regis-
ter identifier and a 2-bit direction specifier. A PUT reads the
value from source register and puts the value to the bus spec-
ified by the direction specifier (east, west, north or south).
The GET operation also has two operands, a destination reg-
ister id and a direction specifier. GET gets a value from the
bus specified by the direction specifier and directly writes it
into the destination register. A pair of adjacent cores com-
municate a register value by executing a PUT operation and
a GET operation on two cores at the same cycle. Jointly exe-
cuted PUT/GET operations function collectively as an inter-
cluster move in a traditional multicluster VLIW [3].

The direct mode bypass wires in Figure 4(c) allow the
communication unit to access the inter-core connections di-
rectly. Thus, the communication latency between two adja-
cent cores under direct mode is very low, only requiring one
cycle to communicate a register value between neighboring
cores. This mode of communication requires the cores to ex-
ecute in lock-step (discussed in the next section) to guarantee
PUT/GET operations are simultaneously executed. If a core
needs to communicate with a non-adjacent core, a sequence
of PUT and GET pairs are inserted by the compiler to move
the data to the final destination through multiple hops.

Queue mode. Queue mode allows decoupled communi-
cation between cores. Under this mode, the core that pro-
duces a register value does not need to remain synchronized
with the core that consumes the value. The send queue, re-
ceive queue, and the routing logic in Figure 4(c) are used to
support this mode of communication. Two operations are
added to the ISA to support queue mode communication:
SEND and RECV. A SEND operation takes two operands,
a source register number and a target core identifier. When a
SEND operation is executed, it reads the value in the source
register and writes a message to the send queue in that core.
The message contains the value from the sender core as
well as the target core identifier. A RECV operation anal-
ogously takes two operands, a destination register number



GPR FPR PR BTR

Register Files

FU
Mem
FU

. . .

To northTo west

L1
Instruction Cache

L1 Data Cache
with Transactional 
Memory Support

From Banked L2 To/From Banked L2

Instruction Fetch/Decode

Comm
FU

(a) (b) (c)

Core

Comm FU

Routing 

Logic

To west To north

To Register File

D
ir
e
ct

 M
o
d
e
 B

y
p
a
ss

D
ir
e
ct

 M
o
d
e
 B

y
p
a
ss

S
e
n
d
 Q

u
e
u
e

R
e
ce

iv
e
 Q

u
e
u
e

Core 0 Core 1

Core 2 Core 3

Banked L2 Cache

Banked L2 Cache

Stall Bus

Figure 4: Block diagram of the Voltron architecture: (a) 4-core system connected in a mesh topology, (b) Datapath for a single
core, and (c) Details of the inter-core communication unit.

and a sender core identifier. When a RECV operation is ex-
ecuted, it looks for the message from the specified sender in
the receive queue, and writes the data to the destination reg-
ister if such a message is found. It stalls the core if such a
message is not found. The receive queue uses a CAM struc-
ture to support fast sender identifier lookup.

The router gets items from the send queue and routes them
to the target core through one or more hops. In queue mode,
SEND and RECV operations do not need to be issued in the
same cycle. Data will wait in the receive queue until the
RECV is executed, and the receiver core will stall when a
RECV is executed and the data is not available. Only one
pair of SEND/RECV operations is required to communicate
between any pair of cores; the router will find a path from
the sender to the receiver. The latency of communication
between cores in the queued mode is 2+number of hops: it
takes one cycle to write the value to the send queue, one cycle
per hop to move the data, and one cycle to read data from
the receive queue. The operand network operating in queue
mode is similar to the RAW scalar operand network [25].

The two modes of communication provide a la-
tency/flexibility trade-off. The compiler can examine the
characteristics of an application to utilize direct mode when
communication latency is critical and queue mode when non-
deterministic latencies caused by frequent cache misses dom-
inate.

3.2 Voltron Execution Modes

Voltron supports two execution modes that are customized
for the form of parallelism that is being exploited: coupled
and decoupled. Coupled efficiently exploits ILP using the
direct mode operand network, while decoupled exploits LLP
and fine-grain TLP using the queue mode operand network.

Coupled mode. In coupled mode, all cores execute in
lock-step, collectively behaving like a wide-issue multiclus-
ter VLIW machine. The cores pass register values to each
other using the direct communication mode. The compiler
is responsible for partitioning computation, scheduling the

PBR  r10 = BB10

CMP p1 = (i>100)?

BR    r10 if p1

PBR  r10 = BB10

CMP p1 = (i>100)?

BCAST p1

BR    r10 if p1

PBR  r11 = BB10

GET  p2

BR    r11 if p2

PBR  r10 = BB10

CMP p1 = (i>100)?

BR    r10 if p1

PBR  r11 = BB10

CMP p2 = (i>100)?

BR    r11 if p2

(a) (b) (c)

core 0 core 1 core 0 core 1

Figure 5: Execution of a distributed branch: (a) Original
unbundled branch, (b) Branch with predicate broadcast, and
(c) Branch with the condition computation replicated.

instructions, and orchestrating the communication between
cores. In this mode, Voltron operates as a distributed VLIW
(DVLIW) machine, which differs from conventional multi-
cluster VLIW in that there is no centralized fetch unit; each
core maintains its own control flow [28]. The branch mech-
anism in Voltron is based on the unbundled branch in the
HPL-PD ISA [8]. In HPL-PD, the portions of each branch
are specified separately: a prepare-to-branch (PBR) opera-
tion specifies the branch target address, a comparison (CMP)
operation computes the branch condition, and a branch (BR)
transfers the control flow of the program based on the tar-
get address and the branch condition, as illustrated in Fig-
ure 5(a).

Figure 5(b) illustrates the branch mechanism in Voltron
coupled mode. To synchronize the control flow in all cores,
each core specifies its own branch target using separate PBR
operations. The branch target represents the same logical ba-
sic block, but a different physical block as the instructions for
each core are located in different memory spaces. The branch
condition is computed in one core and broadcast to all the
other cores using a BCAST operation. Other cores receive
the branch condition using a GET operation to determine if
the branch is taken or fall through. (Note, the branch con-
dition can alternatively be replicated on all cores as shown
in Figure 5(c)). BR operations are replicated across all cores
and scheduled to execute in the same cycle. When the BR op-
erations are executed, every core branches to its own branch
target (same logical target) keeping all cores synchronized.
In essence, separate instruction streams are executed on each



core, but these streams collectively function as a single logi-
cal stream on a conventional VLIW processor.

If one core stalls due to cache misses, all the cores must
stall to keep synchronized. The 1-bit stall bus is used to prop-
agate this stall signal to all 4 cores. For a multicore sys-
tem with more than 4 cores, propagating the stall signal to
all cores within one cycle may not be realistic. We solve
this problem using the observation that coupling more than 4
cores is rare as it only makes sense when there are extremely
high levels of ILP. Therefore, cores are broken down into
groups of 4 and coupled mode execution is restricted to each
group. Of course, decoupled mode can happen within the
groups or across groups when exploiting LLP and fine-grain
TLP.

To illustrate coupled mode execution, Figure 6(a) shows
the control flow graph (CFG) of an abstract code segment.
Each node in the graph represents a basic block in the single-
thread program. Figure 6(b) illustrates the code segment exe-
cuting in coupled mode on a two-core system. The compiler
partitions each block into two blocks, one for each core, us-
ing a multicluster partitioning algorithm [4]. For example,
the operations in block A are divided into A.0 and A.1 to ex-
ecute on core0 and core1, respectively. The schedule lengths
of any given block are the same across all the cores; if they
differ, the compiler inserts NO OPs to ensure they match. All
cores execute in lock-step and communicate through PUT
and GET operations (not shown in the figure). When core0
stalls due to a cache miss in A.0, both cores have to stall
to keep the execution synchronized. Similarly, when core1
stalls in D.1, both cores stall. Every branch in the original
code is replicated to all cores. For conditional branches, such
as the branch at the end of block A, the branch condition is
computed in one core and broadcast to the others.

The most important benefit of coupled mode is the low
communication latency of using the operand network in di-
rect mode. Coupled mode can handle frequent inter-core
communication without increasing the schedule length by a
large amount. The drawback is its lockstep execution. If one
core stalls, all cores stall. The stalling core prevents other
cores from making any progress even if parallelism exists.
Coupled execution mode is ideal for code with high ILP, pre-
dictable cache misses, and complicated data/memory depen-
dences, which require a large amount of inter-core communi-
cation and can benefit from the low communication latency.

Decoupled Mode. The second mode of execution is de-
coupled where each core independently executes its own
thread. As with a conventional multicore system, stalls on
one core do not affect other cores. However, fast commu-
nication of register values through the scalar operand net-
work allows Voltron to exploit a much finer grain of TLP
than conventional multicore systems, which communicate
through memory. The compiler automatically extracts fine-
grain threads from a single-thread program using mecha-
nisms described in Section 4. Multiple threads execute in-
dependently on multiple cores and communicate through the
scalar operand network. The network operates in queue
mode for decoupled execution.

A core initiates the execution of a fine-grain thread on an-
other core by executing a SPAWN operation, which sends
the starting instruction address of the fine-grain thread to be
executed to the target core. The target core listens to the
receive queue when it is idle. Upon the arrival of the instruc-
tion address, it moves the value to its program counter (PC)
and starts executing from that address. All fine-grain threads
share the same memory space and stack frame, thus there is

no setup for a separate context required. The live-in values
for the fine-grain thread are received through the operand net-
work during execution or are loaded from memory. When the
execution of a fine-grain thread finishes, it executes a SLEEP
operation, and the core listens to the queue for the starting
address of the next fine-grain thread. The register values in
a core remain unchanged after a fine-grain thread terminates.
The next fine-grain thread to execute on that core can use the
values in the register file as live-in values.

Multiple fine-grain threads can collectively and efficiently
execute the same multi-block region of the original single-
thread program. In this case, the branch operations in the
original code are replicated in all the fine-grain threads. The
branch condition for each branch can be computed in one
thread and broadcast to others, similar to the coupled mode.
The differences here are that the branch conditions are broad-
cast using queue mode, and that the branches do not need
to be scheduled in the same cycle. In decoupled mode, the
computation of the branch conditions can also be replicated
to other cores to save communication and reduce receive
stalls. The compiler uses a heuristic to decide if the branch
condition should be broadcast or computed locally for each
branch.

The right hand side of Figure 6 illustrates the differences
in partitioning and execution in decoupled mode. In decou-
pled mode, the compiler divides the application into fine-
grain threads. Figure 6(c) depicts the threads extracted from
the CFG shown in Figure 6(a). The first inner loop, which
includes blocks A, B, C, and D, is partitioned between the
cores. Block A is divided into two parts, A.0 and A.1 (simi-
lar to coupled mode), while all operations in block B are as-
signed to core0 and all operations in block C to core1. Block
D is split analogously to block A.

Figure 6(d) shows the execution of these fine-grain
threads in decoupled mode. Before core0 enters the first in-
ner loop, a SPAWN operation is executed, which sends the
start address of A.1 to core1. The execution of blocks A.0
and A.1 are independent; stalls that occur during A.0 do
not affect A.1. The cores communicate register values us-
ing SEND and RECV operations (not shown in the figure).
A.1 computes the branch condition for the block and broad-
casts it to core0 using the scalar operand network in queue
mode. After receiving the branch condition from core1,
core0 branches to block B. Since the compiler assigned all
operations in block B to core0, core1 directly jumps to block
D. The branch as well as the branch condition computation
is replicated across both cores in block D, thus broadcast and
receive are not needed for this block. After two iterations, the
execution exits the first inner loop, and the fine-grain thread
in core1 finishes, executing a SLEEP operation. Block E in
core0 will spawn another thread for the second inner loop to
execute on core1. In this example, core0 behaves as the mas-
ter, spawning jobs to core 1. This is the general strategy used
by our compiler.

The most important benefit of decoupled mode is its tol-
erance of unexpected stalls, such as cache misses. Each core
operates in its own stall domain and thus stalls independently.
Memory parallelism can be exploited by overlapping cache
misses on multiple cores or allowing other cores to make
progress on their own thread as long as dependences are not
violated. The fine-grain threads in Voltron provide a form of
macro out-of-order execution across the cores, without the
hardware and complexity of a wide-issue superscalar pro-
cessor. Additionally, decoupled mode allows execution of
traditional multithreaded programs.



A

B C

D

E

F

G

I

(a) (b) (d)(c)

time timecore0 core1

B.1B.0

D.0

A.0 A.0A.1
STALL

E.0

D.1

F.0

STALL

F.1

A.0 A.1

C.1

D.0

C.0

D.1

E.1

G.1G.0

I.0 I.0

F.0 F.1

I.0 I.0

br. cond.

br. cond.

br. cond.

br. cond.

br. cond.

br. cond.

br. cond.

br. cond.

core1

A.0
A.0A.1

STALL

core0

B

D.0

D.1
STALL

A.0

A.1

C

D.1

D.0 D.1

E

F.0
F.1

spawn

bcast

br

recv
ebr

jump

br

br’

if (condition) sleep
br

recv
ebr

bcast

br

jump

G

I.1

I.0

F.0

I.0
F.1

I.1

jump

bcast
br recv

ebr

recv

ebr

bcast
br

br

br’

jump

br

br’

spawn

br. cond.

br. cond.

br. 
cond.

br. 
cond.

core0 core1

A.0

B

D.0

E

F.0

I.0

A.1

C

D.1

F.1

G

I.1

Figure 6: Code execution under different modes. (a) Control flow graph of a code segment. (b) Execution of the code segment
under coupled mode. (c) Control flow graph of fine-grain threads extracted for decoupled mode. (d) Execution of the code
segment under decoupled mode.

Switching Between Modes. Voltron supports fast mode
switching by adding a new instruction MODE SWITCH.
MODE SWITCH takes one literal operand specifying the
new mode. When switching from coupled mode to decou-
pled mode, the compiler inserts MODE SWITCH instruc-
tions in all cores and makes sure they are issued in the same
cycle. The cores stop broadcasting stall signals and start us-
ing SEND/RECV instructions instead of PUT/GET to com-
municate register values after switching to decoupled mode.
To switch from decoupled to coupled mode, the compiler in-
serts MODE SWITCH instructions before the coupled code
region in all cores. The MODE SWITCH behaves as a bar-
rier, so all cores wait until the last core reaches the switch
to start synchronized execution. Note that the values in the
register files are unchanged during the mode switch. This
behavior facilitates running a single application in different
modes and transparently switching between modes for dif-
ferent program regions.

3.3 Memory Dependence Synchronization

Thus far, the only communication that has been discussed
has been the communication of register values. The cores
can also communicate values through memory. Stores and
loads that cannot be disambiguated by the compiler must ex-
ecute in program order to ensure correct execution. In cou-
pled mode execution, this simply requires the compiler to
enforce both intra-core and inter-core memory dependences
when the schedule is created. As long as dependent memory
are executed in subsequent cycles, the hardware will ensure
the correct data is obtained using the coherence mechanism.

In decoupled mode, the memory dependence problem is
more difficult. We take the simple approach of just us-
ing the operand network to enforce the dependence. A

SEND/RECV pair are used to send a dummy register value
from the source of the dependence to the sink. Mem-
ory synchronization using SEND/RECV has two drawbacks.
First, the SEND/RECV pair occupies the CUs and band-
width without passing any useful value, which could delay
other useful communication and consumes energy. Second,
the SEND/RECV goes through message queues and routing
logic, incurring a minimum latency of three cycles. Through
our experimental evaluation, these drawbacks are not that se-
rious. The compiler can perform sophisticated analysis to
remove as many false dependences as possible [18]. Fur-
ther, to reduce synchronization stalls, its important for the
compiler to place dependent memory operations on the same
core. Thus, in practice, the number of inter-core memory
dependences is not large.

4 Compiling for Voltron

The execution of programs on Voltron is orchestrated by
the compiler. We took advantage of advanced analysis, op-
timization, and transformation techniques and augmented
them with our own novel algorithms to exploit different types
of parallelism. We propose a strategy for classifying the
types of parallelism available in each region, and deciding
which to exploit. Section 4.1 describes several different com-
pilation strategies, and Section 4.2 explains how the Voltron
compiler selects which strategy to use for different regions
of code (which ultimately determines the architectural exe-
cution mode). Note that compilation for multicore systems
is a large research problem by itself and we can only provide
an overview of the techniques that we utilize in the scope of
this paper.



4.1 Compiler Techniques

Compiling for ILP. To exploit ILP, the compiler uses
algorithms to partition applications for multi-cluster VLIW
processors [6, 3]. Several effective partitioning algorithms
have been proposed for multicluster VLIW [4, 2, 13, 17,
20]. For Voltron coupled mode, we employ the Bottom-Up
Greedy (BUG) algorithm [4], which performs the partition-
ing before scheduling using heuristically-estimated schedul-
ing times. The Voltron compiler performs BUG, determin-
ing an initial assignment of operations to cores, then selec-
tive replication of branches is performed to reduce inter-core
communication. Finally, a second pass of BUG refines the
partitions.

Extracting TLP with DSWP. We use the algorithm pro-
posed in [19] to exploit pipeline parallelism. To perform
DSWP partitioning, a dependence graph G, including data
and control dependences, is created. The compiler detects
strongly connected components (SCCs) in the dependence
graph, and merges nodes in a SCC to a single node. As the
SCCs include all the recurrences within the loop, the merged
graph Gscc is acyclic. A greedy algorithm is employed to
partition Gscc. Instructions are assigned to cores according
to the partition.

Extracting strands using eBUG. The BUG partitioning
algorithm tries to partition the operations to achieve mini-
mum schedule length in all cores. When partitioning op-
erations for fine-grain TLP, minimum schedule length does
not necessarily guarantee minimum execution time. More
factors need to be considered in the partitioning process.
Through the analysis of programs and their execution on
Voltron, we identified several factors that a partitioning al-
gorithm must consider when identifying fine-grain strands:

• Likely missing loads: It is preferable to assign likely
missing LOADs and the operations that depend on it to
the same core. If the LOAD and its consumer are as-
signed to different cores, SEND/RECV operations must
be inserted to move the value. When the LOAD misses
in the cache, both the sender and the receiver must stall.
This hurts performance as one of the cores could be do-
ing useful work. Note that this issue does not occur
in coupled mode because a load miss always stalls all
cores.

• Memory dependences: If two memory operations can
potentially access the same memory address, and one
is a STORE, the second must be issued after the first.
If they are assigned to different cores, the cores must
be synchronized through SEND/RECV pairs. This syn-
chronization has the potential to stall a core, so it is
preferable to assign dependent memory operations to
the same core.

• Memory balancing: It is beneficial to balance the
data access on cores to effectively utilize the local
caches even if the balancing causes increases to sched-
ule length. Distributing independent memory accesses
across cores also provides more opportunity to overlap
stalls.

Taking these factors into account, we propose the En-
hanced Bottom-Up Greedy (eBUG) partitioning algorithm
for Voltron decoupled mode compilation. eBUG em-
ploys pointer analysis to identify dependent memory oper-
ations [18] and uses profiling information to identify loads
likely to miss in the cache. eBUG first processes the dataflow
graph, assigning a weight to each edge in the graph. Higher

weights indicate edges that should not be broken during par-
titioning. High weight edges are assigned between LOADs
that are likely to miss and the subsequent operations that con-
sume the data. Memory dependence edges are also assigned
higher weights to favor keeping dependent memory opera-
tions in the same strand.

After the edge weight assignment, eBUG performs the
bottom-up assignment of operations. This part is similar
to the original BUG algorithm [4]: the DFG is traversed
in depth-first order, with operations on critical paths vis-
ited first. For each operation, the algorithm estimates the
earliest possible completion time for each potential core as-
signment. The estimate considers the completion time of
the operation’s predecessors, possible communications to get
operands from other cores, and possible communications to
move results to the users. In eBUG, the weight on an edge
is also added to the estimated completion time of the oper-
ation if the source and destination of the edge are assigned
to different cores. eBUG also counts the number of memory
operations already assigned to each core. When consider-
ing assignment of a memory operation to a particular core, a
penalty is added to the estimated completion time if the core
already has a majority of the memory operations assigned to
it. This avoids capacity misses on heavily loaded cores and
allows possible overlap of memory stalls and computation
across different cores.

After partitioning is done, the compiler inserts SENDs
and RECVs when a data flow edge goes across cores.
Dummy SENDs and RECVs are also inserted to synchronize
dependent memory operations on different cores. The com-
piler then replicates branches to construct the control flow for
threads. Unlike the coupled mode, branches are only repli-
cated to cores that contains control dependent instruction of
the branch.

Extracting LLP from DOALL loops. The compiler per-
forms memory profiling to identify loops that contain no pro-
filed cross-iteration dependences, called statistical DOALL
loops. Transformations, such as induction variable replica-
tion and accumulator expansion, are performed to eliminate
false inter-iteration dependences. Once a statistical DOALL
loop is identified, the compiler divides the loop iterations into
multiple chunks, one for each core, to speculatively execute
in parallel. The hardware monitors the coherence traffic be-
tween cores and roll back memory states if memory depen-
dence violation is detected. The compiler is responsible for
the rollback of register states in case of memory dependence
violation [14].

4.2 Parallelism Selection

Parallelism can be extracted using the four methods de-
scribed in the previous section. Many regions are eligible for
multiple techniques, thus it is necessary to select a method
that we expect to maximally expose parallelism. The selec-
tion strategy is relatively straight-forward.

Our strategy first looks for opportunities to parallelize
loops with no profiled inter-iteration dependences, i.e., sta-
tistical DOALL loops. The compiler examines all loops in
the program from the outermost nest to the innermost nest.
If a loop is statistical DOALL and its trip count is greater
than a threshold, LLP is extracted from the loop. DOALL
loops are parallelized first because they provide the most ef-
ficient parallelism; neither communication nor synchroniza-
tion is needed between cores for the parallel execution of the
loop body.



for (i = 0; i < 8; ++i) {

uf[i]  = u[i];

rpf[i] = rp[i] * scalef;

}

for (i1 = 0; i1 < 4; ++i1) {

uf[i1]  = u[i1];

rpf[i1] = rp[i1] * scalef;

}

for (i2 = 4; i2 < 8; ++i2) {

uf[i2]  = u[i2];

rpf[i2] = rp[i2] * scalef;

}

(a) original C code

(b) LLP code for core0 (c) LLP code for core1

Figure 7: LLP from gsmdecode.

do {

} while (*(ush*)(scan+=2) == *(ush*)(match+=2) &&

*(ush*)(scan+=2) == *(ush*)(match+=2) &&

*(ush*)(scan+=2) == *(ush*)(match+=2) &&

*(ush*)(scan+=2) == *(ush*)(match+=2) &&

scan < strend);

do {

load r1 = *(ush*)(scan+=2);

load r2 = *(ush*)(scan+=2);

load r3 = *(ush*)(scan+=2);

load r4 = *(ush*)(scan+=2);

recv r5, core1;

recv r6, core1;

recv r7, core1;

recv r8, core1;

p1 = (r1==r5 && r2==r6 && 

r3==r7 && r4==r8 &&

scan < strend);

send p1, core1;

} while (p1)

(a) original C code

(b) fine-thread code for core0 (c) fine-thread code for core1

do {

load r11 = *(ush*)(match+=2);

load r12 = *(ush*)(match+=2);

load r13 = *(ush*)(match+=2);

load r14 = *(ush*)(match+=2);

send r11, core0;

send r12, core0;

send r13, core0;

send r14, core0;

recv p2, core0;

} while (p2)

Figure 8: Strands from 164.gzip.

for (i = 8; i--;) {

tmp1 = rrp[i];

tmp2 = v[i];

tmp2 =  ( tmp1 == MIN_WORD && tmp2 == MIN_WORD

? MAX_WORD

: 0x0FFFF & (( (longword)tmp1 * (longword)tmp2

+ 16384) >> 15)) ;

sri = GSM_SUB( sri, tmp2 );

tmp1  = ( tmp1 == MIN_WORD && sri == MIN_WORD

? MAX_WORD

: 0x0FFFF & (( (longword)tmp1 * (longword)sri

+ 16384) >> 15)) ;

v[i+1] = GSM_ADD( v[i], tmp1);

}

Figure 9: ILP from gsmdecode.

An example of such code is the loop shown in Figure 7 (a)
from the gsmdecode benchmark. When the Voltron compiler
encounters this loop, and it is compiling for a 2-core system,
it divides it into a two equal chunks, shown in Figure 7 (b)
and (c). We found this loop achieved a speedup of 1.9 over
the serial code.

The compiler then looks for opportunities to exploit
pipeline parallelism from loops using DSWP (i.e., unidirec-
tional dependences). For all loops that haven’t been paral-
lelized by DOALL, the compiler uses DSWP to tentatively
partition the flow graph. Speedup achieved from the partition
is estimated; if the speedup is greater than a threshold (1.25
is used for our experiments), fine-grain threads are extracted
from the partition. Otherwise the loop is left unchanged and
handled using eBUG or BUG. For DSWP loops, the execu-
tion time after parallelization is limited by the execution time
of the longest running partition. If a balanced DSWP parti-
tion is projected, we consider it superior to other fine-grain
TLP and ILP techniques because the decoupled execution al-
lows better overlapping of cache misses and communication
latencies.

For the rest of blocks in the program, the compiler esti-
mates cache miss stalls from profile information. If the time
spent on cache misses is larger than a certain percentage of
the estimated execution time of the block, fine-grain TLP will
be exploited in decoupled mode because the decoupled exe-
cution can tolerate memory latencies better. The loop seen
in Figure 8 (a) comes from the 164.gzip benchmark, is most
suitable for fine-grain TLP using strands. The loads to the
C array scan and match can be overlapped. Figure 8 (b)
and (c) show the code as partitioned by eBUG for a 2-core
system; this results in a speedup of 1.2.

If most instructions have predictable latencies and cache
misses are infrequent, ILP is exploited in the coupled
mode because it provides the lowest communication latency.
An example more suitable for traditional ILP comes from
gsmdecode. The code shown in Figure 9 has abundant ILP,
and achieves a speedup of 1.78 on a 2-core system.

5 Experimental Evaluation

5.1 Experimental Setup

Our experimental setup for evaluating the Voltron archi-
tecture includes a compiler and a simulator built using the
Trimaran system [26]. The compiler implements techniques
to exploit ILP, fine-grain TLP, and statistical LLP described
in Section 4. The multicore simulator models VLIW cores,

the dual-mode interconnect network, and coherent caches.
The processor model utilizes the HPL-PD instruction set [8]
and the latencies of the Itanium processor are assumed. The
dual-mode interconnect is modeled to simulate both direct
and queue mode communication. We assume a three cycle
minimum latency for queue mode (2 cycles plus 1 cycle per
hop) and a one cycle minimum latency for direct mode (1
cycle per hop). Large portions of the M5 simulator [1] are
utilized to perform detailed cache modeling, incorporating
the full effects of maintaining cache coherence. Voltron is
assumed to be a bus-based multiprocessor where coherence
is maintained by snooping on a shared bus using the MOESI
protocol.

We evaluate a two-core and a four-core Voltron system
against a single core baseline VLIW machine. In all exper-
iments, each core is a single-issue processor. Each core has
a 4 kB 2-way associative L1 D-cache, and a 4 kB 2-way as-
sociative L1 I-cache. They share a 128 kB 4-way associative
L2 cache.

Performance is evaluated on a subset of benchmarks from
the MediaBench and SPEC 2000 suites. Not all benchmarks
could be included due to compilation problems in Trimaran.

5.2 Results

Exploit types of parallelism individually. We first eval-
uate the speedup achieved by exploiting ILP, fine-grain TLP,
and LLP separately using the techniques presented in previ-
ous sections. ILP is exploited under coupled mode, while
LLP and fine-grain TLP are extracted for decoupled mode.

Figure 10 shows the speedup of benchmarks on a 2-core
Voltron system. The baseline, 1.0 in the figure, represents
the execution time of the benchmark on a single-core pro-
cessor. Three bars are shown for each benchmark. The first
bar represents the speedup achieved by exploiting ILP under
coupled mode. The second bar shows the speedup achieved
by exploiting fine-grain TLP, using both eBUG and DSWP,
under decoupled execution mode. The third bar shows the
speedup for benchmarks by exploiting statistical LLP. On
average, we achieved speedups of 1.23, 1.16 and 1.18 by
individually exploiting ILP, fine-grain TLP and LLP, respec-
tively. As can be seen from the figure, each benchmark best
exploits different types of parallelism. 12 out of 25 bench-
marks achieved best speedup by exploiting ILP; those bench-
marks benefit most from the low latency inter-core commu-
nication and synchronized execution. 6 of 25 benchmarks
perform best by exploiting fine-grain TLP. They are gener-
ally benchmarks with a large number of cache misses. The



1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0
5
2
.a

lv
in

n
 

0
5
6
.e

a
r 

1
3
2
.i
jp

e
g
 

1
6
4
.g

z
ip

 

1
7
1
.s

w
im

 

1
7
2
.m

g
ri
d
 

1
7
5
.v

p
r 

1
7
7
.m

e
s
a
 

1
7
9
.a

rt
 

1
8
3
.e

q
u
a
k
e
 

1
9
7
.p

a
rs

e
r 

2
5
5
.v

o
rt

e
x
 

2
5
6
.b

z
ip

2
 

c
jp

e
g
 

d
jp

e
g
 

e
p
ic

 

g
7
2
1
d
e
c
o
d
e
 

g
7
2
1
e
n
c
o
d
e
 

g
s
m

d
e
c
o
d
e
 

g
s
m

e
n
c
o
d
e
 

m
p
e
g
2
d
e
c
 

m
p
e
g
2
e
n
c
 

ra
w

c
a
u
d
io

 

ra
w

d
a
u
d
io

 

u
n
e
p
ic

 

a
v
e
ra

g
e

ILP fine-grain TLP LLP

Figure 10: Speedup on 2-core Voltron system exploiting
ILP, fine-grain TLP and LLP separately.

1

1.2

1.4

1.6

1.8

2

2.2

0
5
2
.a

lv
in

n
 

0
5
6
.e

a
r 

1
3
2
.i
jp

e
g
 

1
6
4
.g

z
ip

 

1
7
1
.s

w
im

 

1
7
2
.m

g
ri
d
 

1
7
5
.v

p
r 

1
7
7
.m

e
s
a
 

1
7
9
.a

rt
 

1
8
3
.e

q
u
a
k
e
 

1
9
7
.p

a
rs

e
r 

2
5
5
.v

o
rt

e
x
 

2
5
6
.b

z
ip

2
 

c
jp

e
g
 

d
jp

e
g
 

e
p
ic

 

g
7
2
1
d
e
c
o
d
e
 

g
7
2
1
e
n
c
o
d
e
 

g
s
m

d
e
c
o
d
e
 

g
s
m

e
n
c
o
d
e
 

m
p
e
g
2
d
e
c
 

m
p
e
g
2
e
n
c
 

ra
w

c
a
u
d
io

 

ra
w

d
a
u
d
io

 

u
n
e
p
ic

 

a
v
e
ra

g
e

ILP fine-grain TLP LLP

3.13 3.04 3.03

Figure 11: Speedup on 4-core Voltron system exploiting
ILP, fine-grain TLP and LLP separately.

decoupled execution allows stalls on one core to overlap with
computation or stalls on other cores, thus providing the bene-
fit of coarse-grain out-of-order execution. The 179.art bench-
mark is representative of this type. The remaining 7 bench-
marks have highest speedups when exploiting statistical LLP.
Note that many SpecInt and Mediabench programs that tra-
ditionally do not show any meaningful loop level parallelism
now achieve speedup in Voltron. This is because Voltron
supports speculative parallelization of loops that cannot be
proven as DOALL. Besides, the low latency communication
and synchronization allow parallelization of loops with small
trip counts.

Figure 11 shows the same data for a 4-core Voltron sys-
tem. Similar trends can be observed from this figure. Bench-
marks with frequent memory stalls perform better by ex-
ploiting fine-grain TLP, benchmarks with statistical DOALL
loops benefit from exploiting LLP, and other benchmarks
benefit from the low inter-core communication latency of
coupled mode by exploiting ILP. In general, the performance
gains going from two to four cores is larger for benchmarks
that can take advantage of decoupled mode. On average, the
speedup for exploiting ILP is 1.33, fine-grain TLP is 1.23,
and LLP is 1.37. As can be seen from the data, the speedup
achieved from a single execution mode is limited. Many ap-
plications cannot be efficiently accelerated by exploiting a
single type of parallelism exclusively. Rather, they contain
significant code regions that are best suited to each type of
parallelism, so the architecture needs to support efficient ex-
ploitation of all three types of parallelism.

Memory and communication stalls. Figure 12 shows
the relative execution time each benchmark spends on stalls
under coupled and decoupled mode when executing on a 4-
core Voltron system.1 Stall cycles are normalized to the total
serial execution time. Two bars are shown for each bench-
mark. The first bar shows the stall cycles when exploiting
ILP across all 4 cores (under coupled mode), and the sec-
ond shows the average stall cycles when exploiting fine-grain
TLP (under decoupled mode). Each bar in the graph has sev-
eral parts representing the various reasons the cores can stall.
The bottom-most two parts of each bar show the average
stalls due to instruction and data cache misses. For decou-

1Note, for this experiment, the data for decoupled mode only includes
fine-grain TLP (i.e., it excludes LLP) as there is virtually no synchronization
when executing statistical DOALL loops.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0
5
2
.a

lv
in

n
 

0
5
6
.e

a
r 

1
3
2
.i
jp

e
g
 

1
6
4
.g

z
ip

 

1
7
1
.s

w
im

 

1
7
2
.m

g
ri
d
 

1
7
5
.v

p
r 

1
7
7
.m

e
s
a
 

1
7
9
.a

rt
 

1
8
3
.e

q
u
a
k
e
 

1
9
7
.p

a
rs

e
r 

2
5
5
.v

o
rt

e
x
 

2
5
6
.b

z
ip

2
 

c
jp

e
g
 

d
jp

e
g
 

e
p
ic

 

g
7
2
1
d
e
c
o
d
e
 

g
7
2
1
e
n
c
o
d
e
 

g
s
m

d
e
c
o
d
e
 

g
s
m

e
n
c
o
d
e
 

m
p
e
g
2
d
e
c
 

m
p
e
g
2
e
n
c
 

ra
w

c
a
u
d
io

 

ra
w

d
a
u
d
io

 

u
n
e
p
ic

 

call return sync

predicate recv

recv stall

D-stalls

I-stalls

Figure 12: Breakdown of synchronization stalls by type on
a 4-core system. Each benchmark has two bars: the left bar
is for ILP (coupled mode) and the right for fine-grain TLP
(decoupled mode).

pled mode, they are followed by stalls due to receive instruc-
tions and synchronization before function calls and returns.
The receive stalls are further separated into data receives and
predicate receives to study how much stalling is caused by
control synchronization.

As the data indicates, decoupled mode always spends less
time on cache miss stalls because different cores are allowed
to stall separately. On average, the number of stall cycles un-
der decoupled mode is less than half of that under coupled
mode. This explains why it is beneficial to execute mem-
ory intensive benchmarks in decoupled mode. However, de-
coupled mode suffers from extra stalls due to scalar commu-
nication and explicit synchronization, which hurts the per-
formance if such communication and synchronization is fre-
quent.

Exploiting hybrid parallelism on Voltron. Figure 13
shows the speedup for benchmarks exploiting all three types
of parallelism utilizing both coupled and decoupled modes.
The compiler selects the best type of parallelism to exploit
for each block in the code. The results show that the hybrid
parallelism is much more effective at converting the available
resources into performance gain than any individual type of
parallelism. For example, the speedup achieved for cjpeg is
1.3 for ILP, 1.08 for fine-grain TLP and 1.21 for LLP on a



1

1.5

2

2.5

3

3.5

0
5
2
.a

lv
in

n
 

0
5
6
.e

a
r 

1
3
2
.i
jp

e
g
 

1
6
4
.g

z
ip

 

1
7
1
.s

w
im

 

1
7
2
.m

g
ri
d
 

1
7
5
.v

p
r 

1
7
7
.m

e
s
a
 

1
7
9
.a

rt
 

1
8
3
.e

q
u
a
k
e
 

1
9
7
.p

a
rs

e
r 

2
5
5
.v

o
rt

e
x
 

2
5
6
.b

z
ip

2
 

c
jp

e
g
 

d
jp

e
g
 

e
p
ic

 

g
7
2
1
d
e
c
o
d
e
 

g
7
2
1
e
n
c
o
d
e
 

g
s
m

d
e
c
o
d
e
 

g
s
m

e
n
c
o
d
e
 

m
p
e
g
2
d
e
c
 

m
p
e
g
2
e
n
c
 

ra
w

c
a
u
d
io

 

ra
w

d
a
u
d
io

 

u
n
e
p
ic

 

a
v
e
ra

g
e

2 core 4 core

Figure 13: Speedup on 2-core and 4-core Voltron exploiting
hybrid parallelism.

0%

20%

40%

60%

80%

100%

0
5
2
.a

lv
in

n
 

0
5
6
.e

a
r 

1
3
2
.i
jp

e
g
 

1
6
4
.g

z
ip

 

1
7
1
.s

w
im

 

1
7
2
.m

g
ri
d
 

1
7
5
.v

p
r 

1
7
7
.m

e
s
a
 

1
7
9
.a

rt
 

1
8
3
.e

q
u
a
k
e
 

1
9
7
.p

a
rs

e
r 

2
5
5
.v

o
rt

e
x
 

2
5
6
.b

z
ip

2
 

c
jp

e
g
 

d
jp

e
g
 

e
p
ic

 

g
7
2
1
d
e
c
o
d
e
 

g
7
2
1
e
n
c
o
d
e
 

g
s
m

d
e
c
o
d
e
 

g
s
m

e
n
c
o
d
e
 

m
p
e
g
2
d
e
c
 

m
p
e
g
2
e
n
c
 

ra
w

c
a
u
d
io

 

ra
w

d
a
u
d
io

 

u
n
e
p
ic

 

a
v
e
ra

g
e

decouple

coupled

Figure 14: Breakdown of the time spent in each execution
mode.

4-core Voltron. As a hybrid of different types of parallelism
are efficiently exploited in different parts of the program, a
speedup of 1.79 on cjpeg is achieved with dual-mode execu-
tion. Overall, the speedup for a 2-core system ranges from
1.13 to 1.98, with an average of 1.46, and the speedup for 4
cores ranges from 1.15 to 3.25, with an average of 1.83.

During hybrid execution, the architecture spends signifi-
cant amounts of time in both coupled and decoupled modes.
Figure 14 shows the percentage of time spent in each mode.
Applications such as epic, which has abundant fine-grain
TLP, spends most of its time in decoupled mode. Other ap-
plications, such as cjpeg, truly take advantage of the mixed
modes. As shown earlier in Figure 3, cjpeg has quite a bit
of LLP, but another significant portion of the program is best
suited for ILP. Hybrid execution allows this and other bench-
marks to achieve better speedup than they would in either
mode.

6 Related Work

Several architectures have been proposed to exploit
fine-grain parallelism on distributed, multicore systems.
RAW [24] is the most similar to this work and is a general-
purpose architecture that supports instruction, data and
thread-level parallelism. In RAW, a set of single-issue cores
are organized in a two dimensional grid of identical tiles.
Scalar operand networks are used to route intermediate reg-
ister values between tiles [25]. Both the execution on tiles

and the routing on the network are software controlled by
the compiler. A dynamic routing network also exists to route
memory values. The central difference between Voltron and
RAW is the dual execution mode capability and its associ-
ated effects on the architecture. The two execution modes
allow Voltron to exploit fine-grain TLP like RAW as well as
VLIW-style ILP.

The M-Machine [5] is a multiprocessor system that fo-
cuses on exploiting fine-grain parallelism. One unique fea-
ture of the M-Machine is the direct inter-processor commu-
nication channels. Processors communicate intermediate re-
sults by directly writing values into the register files of other
processors. The M-Machine can exploit both ILP and TLP
using these mechanisms. Voltron assumes a more traditional
organization of the individual cores and layers on top of that
the dual-mode operand network. Further, the lack of com-
munication queues in the M-Machine limits the amount of
decoupling between threads. The M-Machine also requires
explicit synchronization between processors to exploit ILP,
while coupled mode in Voltron allows implicit synchroniza-
tion for lower-latency communication. The J-Machine [16]
is a multicomputer that supports fast message passing and
synchronization between nodes. It showed that fine-grain
parallel computing is feasible on multiprocessors and serves
as strong motivation for this work.

Distributed processing has also been investigated in the
context of superscalar processors, including Multiscalar [23],
Instruction Level Distributed Processing (ILDP) [10], and
TRIPS [22]. In the Multiscalar processor, a single program
is divided into a collection of tasks by a combination of
software and hardware. The tasks are distributed to multi-
ple parallel processing units at runtime and execute specu-
latively. Recovery mechanisms are provided if the specula-
tion is wrong. The ILDP architecture contains a unified in-
struction fetch and decode; the front-end distributes strands
of dependent operations to multiple distributed PEs. An in-
terconnection network connects the PEs and routes register
values. TRIPS supports explicit data graph execution, which
is similar to dataflow execution, to exploit ILP from single
thread programs. The execution units on TRIPS are hyper-
blocks. At runtime, the cores fetch blocks from memory,
execute them and commit the results to architectural state.
Decoupled execution in Voltron is different from these archi-
tectures in that program execution is fully orchestrated by the
compiler. The compiler partitions the code, assigns code to
cores, schedules the execution within each core and inserts
communication between cores. The compiler orchestrated
execution allows the hardware to be simple and efficient.

Multicluster VLIW architectures utilize distributed regis-
ter files and processing elements to exploit ILP. The Multi-
flow TRACE/500 VLIW architecture [3] contains two repli-
cated sequencers, one for each 14-wide cluster. The two
clusters can execute independently or rejoin to execute a sin-
gle program. MultiVLIW [21] is a distributed multicluster
VLIW with architecture/compiler support for scalable dis-
tributed data memories. The XIMD is a VLIW architec-
ture that can partition its resources to support the concurrent
execution of a dynamically varying number of instruction
streams [27]. Voltron extends these works with decoupled
execution to exploit LLP and fine-grain TLP.

Dual-core execution [29] proposes mechanisms to ac-
celerate single thread application through runahead execu-
tion [15] on two cores. In dual-core execution, a front pro-
cessor runs ahead to warms up caches and fixes branch mis-
predications for a back processor. This approach provides



benefit for memory intensive applications but is not very
scalable to multiple cores.

7 Conclusion

This paper proposes a multicore architecture, referred to
as Voltron, that is designed to exploit the hybrid forms of par-
allelism that can be extracted from general-purpose applica-
tions. The unique aspect of Voltron is the ability to operate in
one of two modes: coupled and decoupled. In coupled mode,
the cores execute in lock-step forming a wide-issue VLIW
processor. Each core executes its own instruction stream and
through compiler orchestration, the streams collectively ex-
ecute a single thread. In decoupled mode, the cores operate
independently on fine-grain threads created by the compiler.
Coupled mode offers the advantage of fast inter-core com-
munication and the ability to efficiently exploit ILP across
the cores. Decoupled mode offers the advantage of fast syn-
chronization and the ability to overlap execution across loop
iterations and in code regions with frequent cache misses.

The performance evaluation shows that the dual mode ca-
pabilities of Voltron are highly effective. Voltron achieves an
average performance gain of 1.46x on a 2 core system and
1.83x on 4 core system over a single core baseline. Dual-
mode execution is significantly more effective than either
mode alone. The ability to switch between coupled and de-
coupled modes across different code regions allows the ar-
chitecture to adapt itself to the available parallelism. This
behavior reflects the disparate application characteristics, in-
cluding cache miss rates and forms of available parallelism,
that are common in general-purpose applications.

8. Acknowledgments

We thank Mike Schlansker for his excellent comments
and suggestions for this work. Much gratitude goes to the
anonymous referees who provided helpful feedback on this
work. This research was supported by the National Sci-
ence Foundation grant CCR-0325898, the MARCO Gigas-
cale Systems Research Center, and equipment donated by
Hewlett-Packard and Intel Corporation.

References
[1] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt. Network-oriented

full-system simulation using M5. In 6th Workshop on Computer Archi-
tecture Evaluation using Commercial Workloads, pages 36–43, Feb.
2003.

[2] M. Chu, K. Fan, and S. Mahlke. Region-based hierarchical operation
partitioning for multicluster processors. In Proc. of the SIGPLAN ’03
Conference on Programming Language Design and Implementation,
pages 300–311, June 2003.

[3] R. Colwell et al. Architecture and implementation of a VLIW super-
computer. In Proc. of the 1990 International Conference on Super-
computing, pages 910–919, June 1990.

[4] J. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press,
Cambridge, MA, 1985.

[5] M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang, Y. Gure-
vich, and W. S. Lee. The m-machine multicomputer. In Proc. of
the 28th Annual International Symposium on Microarchitecture, pages
146–156. IEEE Computer Society Press, 1995.

[6] J. Fisher. Very Long Instruction Word Architectures and the ELI-52.
In Proc. of the 10th Annual International Symposium on Computer
Architecture, pages 140–150, 1983.

[7] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proc. of the 20th Annual Inter-
national Symposium on Computer Architecture, pages 289–300, May
1993.

[8] V. Kathail, M. Schlansker, and B. Rau. HPL-PD architecture specifica-
tion: Version 1.1. Technical Report HPL-93-80(R.1), Hewlett-Packard
Laboratories, Feb. 2000.

[9] K. Kennedy and J. R. Allen. Optimizing compilers for modern archi-
tectures: A dependence-based approach. Morgan Kaufmann Publish-
ers Inc., 2002.

[10] H. Kim and J. Smith. An instruction set and microarchitecture for in-
struction level distributed processing. In Proc. of the 29th Annual In-
ternational Symposium on Computer Architecture, pages 71–81, June
2002.

[11] D. J. Kuck. The Structure of Computers and Computations. John
Wiley and Sons, New York, NY, 1978.

[12] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen. Single-ISA Heterogeneous Multi-Core Architectures: The
Potential for Processor Power Reduction. In Proc. of the 36th Annual
International Symposium on Microarchitecture, page 81, 2003.

[13] R. Leupers. Code Optimization Techniques for Embedded Proces-
sors - Methods, Algorithms, and Tools. Kluwer Academic Publishers,
Boston, MA, 2000.

[14] S. A. Lieberman, H. Zhong, and S. A. Mahlke. Extracting statisti-
cal loop-level parallelism using hardware-assisted recovery. Technical
report, Department of Electrical Engineering and Computer Science,
University of Michigan, Feb. 2007.

[15] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead Execution:
An Alternative to Very Large Instruction Windows for Out-of-Order
Processors. In Proc. of the 9th International Symposium on High-
Performance Computer Architecture, page 129, 2003.

[16] M. D. Noakes, D. A. Wallach, and W. J. Dally. The j-machine mul-
ticomputer: an architectural evaluation. In Proc. of the 20th Annual
International Symposium on Computer Architecture, pages 224–235.
ACM Press, 1993.

[17] E. Nystrom and A. E. Eichenberger. Effective cluster assignment for
modulo scheduling. In Proc. of the 31st Annual International Sympo-
sium on Microarchitecture, pages 103–114, Dec. 1998.

[18] E. Nystrom, H.-S. Kim, and W. Hwu. Bottom-up and top-down
context-sensitive summary-based pointer analysis. In Proc. of the 11th
Static Analysis Symposium, pages 165–180, Aug. 2004.

[19] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread
extraction with decoupled software pipelining. In Proc. of the 38th An-
nual International Symposium on Microarchitecture, pages 105–118,
2005.

[20] E. Özer, S. Banerjia, and T. Conte. Unified assign and schedule: A
new approach to scheduling for clustered register file microarchitec-
tures. In Proc. of the 31st Annual International Symposium on Mi-
croarchitecture, pages 308–315, Dec. 1998.

[21] J. Sanchez and A. Gonzalez. Modulo scheduling for a fully-distributed
clustered VLIW architecture. In Proc. of the 33rd Annual Interna-
tional Symposium on Microarchitecture, pages 124–133, Dec. 2000.

[22] K. Sankaralingam, R. Nagarajan, H. Liu, J. Huh, C. Kim, D. Burger,
S. Keckler, and C. Moore. Exploiting ILP, TLP, and DLP using poly-
morphism in the TRIPS architecture. In Proc. of the 30th Annual Inter-
national Symposium on Computer Architecture, pages 422–433, June
2003.

[23] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors.
In Proc. of the 22nd Annual International Symposium on Computer
Architecture, pages 414–425, 1995.

[24] M. Taylor et al. Evaluation of the Raw microprocessor: An exposed-
wire-delay architecture for ILP and streams. In Proc. of the 31st An-
nual International Symposium on Computer Architecture, pages 2–13,
June 2004.

[25] M. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal. Scalar operand
networks: On-chip interconnect for ILP in partitioned architectures. In
Proc. of the 9th International Symposium on High-Performance Com-
puter Architecture, pages 341–353, Feb. 2003.

[26] Trimaran. An infrastructure for research in ILP, 2000.
http://www.trimaran.org/.

[27] A. Wolfe and J. Shen. A variable instruction stream extension to the
VLIW architecture. In Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
pages 2–14, Oct. 1991.

[28] H. Zhong, K. Fan, S. Mahlke, and M. Schlansker. A distributed con-
trol path architecture for VLIW processors. In Proc. of the 14th Inter-
national Conference on Parallel Architectures and Compilation Tech-
niques, pages 197–206, Sept. 2005.

[29] H. Zhou. Dual-Core Execution: Building a Highly Scalable Single-
Thread Instruction Window. In Proc. of the 14th International Con-
ference on Parallel Architectures and Compilation Techniques, pages
231–242, 2005.


