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Abstract
Chip Multiprocessors (CMPs) are flexible, high-frequency platforms
on which to support Thread-Level Speculation (TLS). However, for
TLS to deliver on its promise, CMPs must exploit multiple sources of
speculative task-level parallelism, including any nesting levels of both
subroutines and loop iterations. Unfortunately, these environments
are hard to support in decentralized CMP hardware: since tasks are
spawned out-of-order and unpredictably, maintaining key TLS basics
such as task ordering and efficient resource allocation is challenging.
While the concept of out-of-order spawning is not new, this paper

is the first to propose a set of microarchitectural mechanisms that, al-
together, fundamentally enable fast TLS with out-of-order spawn in a
CMP. Moreover, we develop a fully-automated TLS compiler for ag-
gressive out-of-order spawn. With our mechanisms, a TLS CMP with
4 4-issue cores achieves an average speedup of 1.30 for full SpecInt
2000 applications; the corresponding speedup for in-order-only spawn
is 1.04. Overall, our mechanisms unlock the potential of TLS for the
toughest applications.

1 Introduction
Chip Multiprocessors (CMPs) with Thread-Level Speculation
(TLS) are being proposed as flexible, high-frequency engines
to extract the next level of parallelism from hard-to-analyze
programs (e.g. [10, 11, 12, 14, 20, 21, 22, 23, 29]). Under
TLS, irregular sequential codes are divided into tasks that are
executed in parallel, optimistically assuming that sequential
semantics will not be violated. As the tasks run, the archi-
tecture tracks their control flow and data accesses. If a cross-
task dependence is violated, the offending tasks are destroyed
(squashed). Then, a repair action is initiated and the offending
tasks are re-executed.
While these architectures have shown good potential, often

due to sophisticated compiler support [2, 5, 13, 24, 25, 28], the
speedups obtained for non-numerical applications have typi-
cally been modest. For example, for full SpecInt 2000 appli-
cations, the geometric mean speedups are 1.05 [28]. Part of
the reason is that most designs have typically focused (often
implicitly) on limited types of task structures: iterations from
a single loop level (e.g. [4, 12, 28]); the code that follows (i.e.,
the continuation of) calls to subroutines that do not spawn other
tasks (e.g. [3]); or some execution paths out of the current task
(e.g. [25]). In the cases mentioned, correct tasks are spawned
in-order, namely in the same order as they would execute se-
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quentially1. While exploiting only these task structures may
simplify the CMP hardware, it cripples its potential.
High-level performance evaluation studies have pointed out

that there is a sizable amount of other parallelism avail-
able [15, 16, 26, 27]. One could execute in parallel all sub-
routines and their continuations irrespective of their nesting,
and iterations from multiple loop levels in a nest. If this addi-
tional parallelism is harvested, the speedups are predicted to be
significantly higher.
In practice, exploiting these additional sources of parallelism

requires supporting out-of-order task spawning. For example,
consider nested subroutines. When a task finds a subroutine
call, it spawns a more speculative task to execute the continu-
ation, while it proceeds to execute the subroutine. Inside the
subroutine, the task can then find other subroutine calls, there-
fore spawning speculative tasks that are less speculative (i.e.,
less ahead in a sequential execution) than the one spawned first.
The same occurs for nested loops, and for combinations of loop
and subroutine nesting.
With out-of-order spawning, the application offers unpre-

dictable shapes of parallelism that are hard to manage by TLS
at run time. Specifically, how do we manage task ordering,
which is required to identify violations and to ensure correct
commit and squash? How do we balance resource alloca-
tion between highly-speculative tasks that have been running
for a long time, and less speculative tasks that have just been
spawned? To address these challenges with minimal overhead
in a CMP, we need special microarchitecture.
The concept of out-of-order spawn is not new. In fact, there

is a lot of related work in this area, which we detail in Sec-
tion 9. However, no previous work has proposed a set of imple-
mentable microarchitectural mechanisms that, altogether, fun-
damentally enable high-speed tasking with out-of-order spawn
in a TLS CMP. This paper is the first to do it. We view it as our
main contribution.
Our simple mechanisms address the two main challenges

posed by out-of-order spawning: correct and efficient task or-
dering and resource allocation. Task ordering is enabled with
Splitting Timestamp Intervals for low-overhead order manage-
ment, and the Immediate Successor List for efficient task com-
mit and squash. Efficient resource allocation is enabled with
Dynamic Task Merging, which directs speculative parallelism
to the most beneficial code sections.
We have developed a complete, fully-automated TLS com-

piler for aggressive out-of-order spawn. With our mechanisms,
a TLS CMP with 4 4-issue cores delivers an average speedup
of 1.30 for full SpecInt 2000 applications; without out-of-order
spawn, we obtain an average speedup of 1.04, in line with past

1Correct tasks do not include those that are in wrong branch paths.
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Figure 1: Example task trees. In the figure, Cont and Iter denote continuation and iteration.
TLS CMP work on the same codes (e.g., 1.05 in [28]). Overall,
our mechanisms unlock the potential of TLS for the toughest
applications, namely irregular integer codes.
This paper is organized as follows: Section 2 gives back-

ground on out-of-order spawning and why is needed; Sec-
tions 3 and 4 present our microarchitecture; Section 5 de-
scribes our compiler; Section 6 addresses complexity issues;
Sections 7 and 8 present our evaluation; and Section 9 dis-
cusses related work.

2 Background: Out-of-Order Spawn
In most proposed TLS systems, tasks are formed with itera-
tions from a single loop level (e.g., [4, 12, 28]), the contin-
uation of calls to subroutines that do not spawn other tasks
(e.g., [3]), or some execution paths out of the current task
(e.g., [25]). In these proposals, an individual task can at most
spawn one correct task in its lifetime. A correct task is one that
is in the sequential execution of the program, rather than in the
wrong path of a branch. As a result, correct tasks are spawned
in-order, namely, in the same order as in sequential execution.
Figures 1-(a) and (b) show examples. Figure 1-(a) shows

the task tree when parallelizing a loop. Each task spawns the
next iteration. In the figure, the leftmost task is safe (or non-
speculative); the more a task is to the right, the more specula-
tive it is. Figure 1-(b) shows the tree when a task finds a leaf
subroutine. The original task continues execution into the sub-
routine, while a more speculative task is spawned to execute
the continuation.
There is consensus that for TLS to deliver on its promise,

it has to exploit more parallelism. Several high-level perfor-
mance evaluation studies [15, 16, 26, 27], typically simulating
simplified architectures, have pointed to the need to support
nested subroutines and loop iterations.
Figures 1-(c) and (d) show the two cases. In Figure 1-(c), the

safe task first spawns a task for the continuation of subroutine
S1. Then, it enters S1, spawns a new task for the continuation
of S2, and executes S2 until its end. In Figure 1-(d), the safe
task executes outer iteration 0. As it executes, it spawns outer
iteration 1, enters the inner loop to execute inner iteration 0,
and spawns inner iteration 1. When it completes inner iteration
0, it ends.
With these two task choices, an individual task can spawn

multiple correct tasks. If so, correct tasks are spawned in strict
reverse order compared to sequential execution. For example,
in Figures 1-(c) and (d), the safe task spawns two correct tasks,
and does so out of order, most speculative first. Figure 1-(e) is

a more complex example: the time-line for task creation pro-
ceeds from top to bottom (1-2-3-4-5-6-7), while sequential or-
der is from left to right (1-6-7-4-3-5-2).
In this paper, to discuss out-of-order spawning, we give ex-

amples of tasks built out of any nesting of subroutines and loop
iterations, as they are an obvious source of TLS parallelism.
Our analysis also applies to any other task structure that main-
tains two conventions. First, if a task spawns multiple tasks,
the compiler inserts the spawns in strict reverse task order (last
task is spawned first, etc). Second, the spawned tasks are less
speculative than any task that was more speculative than their
parent. These conventions are followed to make the spawn
structure like that of nested loops and subroutines. Intuitively,
these conventions are unlikely to affect task selection much,
while they simplify the microarchitecture.
Out-of-order spawning enables more task parallelism: two

code sections that are far-off in sequential execution can be
executed in parallel before some of their intervening code sec-
tions have even been spawned.

3 Novel Microarchitectural Mechanisms
We propose three novel and simple microarchitectural mech-
anisms to enable high-speed tasking with out-of-order spawn
in a TLS CMP. These mechanisms support task ordering and
efficient resource allocation in an environment that is statically
unpredictable (due to out-of-order spawn) and decentralized
(due to the CMP architecture). We enable task order manage-
ment with Splitting Timestamp Intervals (Section 3.1) and the
Immediate Successor List (Section 3.2). We enable efficient re-
source allocation with Dynamic Task Merging (Section 3.3). In
the following, when we use the terms successor and predeces-
sor task, we refer to sequential execution order.
3.1 Splitting Timestamp Intervals for Task Order

Management
In any TLS system, tasks have a relative order, which they ex-
plicitly or implicitly embed in the CMP protocol messages they
issue and the cached data they own. Such order is most ob-
viously needed when two tasks communicate. For example,
consider a task reading cached data produced by a second task.
The relative order of the tasks is assessed, and the data is pro-
vided only if the former task is a successor of the latter. Simi-
larly, consider an invalidation message from a task to data read
by a second task. The task order is considered and, if the reader
is a successor, a dependence violation is triggered.
Under in-order task spawn, recording task order is easy:
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since tasks are created in order, it suffices to assign monotoni-
cally increasing timestamps to newer tasks. A parent gives to
its child its timestamp plus one. With this support, tasks with
higher timestamps are successors of those with lower ones.
Such an approach does not work when tasks are created out

of order. Consequently, we propose to represent a task with a
Timestamp Interval, given by a Base and a Range timestamp
({B,R}). On a task spawn, the parent splits its timestamp in-
terval in two pieces: the higher-range subinterval is given to
the child (since it is more speculative), while the lower-range
subinterval is kept by the parent. With this support, protocol
messages and cached data are directly (or indirectly) associ-
ated with the base timestamp. Specifically, when tasks com-
municate, the base timestamps of the two tasks are compared
exactly as in the in-order case.
As an example, Figure 2-(a) shows a program with a call to

subroutine S1, which in turn calls S2. Assume that we use three
tasks: task i executes the non-speculative code, j executes the
continuation of S1, and k executes the continuation of S2. The
resulting task tree is shown in Figure 2-(b), while Figure 2-(c)
shows the timestamp intervals of each task.
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Figure 2: Changes in the base and range timestamps when
tasks are spawned.
The example assumes that the initial interval for task i is

{B,R}, and that intervals are partitioned in half. When i spawns
j, i keeps {B,R2 } and j obtains {B+

R
2 ,

R
2 }. When i later spawns

k, i retains {B,R4 } and k obtains {B+
R
4 ,

R
4 }. With this scheme,

as we move from safe to most speculative task following se-
quential order (i, k, and j), we encounter increasing base times-
tamps (B, B+R

4 , B+
R
2 ).

In general, a simple approach is to give 1
2 of the current in-

terval to the child. However, since a task rarely spawns more
than a few other tasks, it makes sense to give a larger fraction
of the interval to the child. In addition, there are two cases
where we can be more efficient. The first one is when the par-
ent knows that the child will not spawn any task; in this case,
the parent can give it a single timestamp. The second case is
when the parent knows that this is its last child; in this case, the
parent can keep a single timestamp. These efficiencies may be
obtainable with information gathered by the compiler or hard-
ware predictors.
Our scheme assigns no R to the most speculative task, which

implicitly takes the maximum possible value representable by
the R range (Rmax). This allows the system to automatically
and dynamically expand the range of used timestamps. Indeed,
when the most speculative task spawns a child, it keeps the
range {B,Rmax} for itself, and sets the base of the child to
B+Rmax. The child is now the new most speculative task, and
implicitly takes the range {B+Rmax,Rmax}.
Note that, it is possible that a program causes the timestamps

to wrap around. In addition, in rare cases, a task may reach a
point where it needs to spawn a child and its interval has size
1. These cases are discussed in Section 4.1.
Our scheme resembles Cleary et al.’s virtual sequences [7]

without the implementation limitations (Section 9).

3.2 Immediate Successor List for Task Squash and
Commit

In TLS, a task must be able to find its immediate successor very
quickly, to perform the time-critical operations of commit and
squash. Specifically, when the safe task commits, it passes the
commit token to its immediate successor, which may be wait-
ing for it to commit. As for squash, a task is squashed when
it is found that it read data prematurely (data violation) or was
spawned in the wrong branch path (control violation). In ei-
ther case, the squashed task sends a kill signal to its immediate
successor, which is propagated up to the most speculative task.
This ensures that all possible side effects of the squashed task
are erased.
Under in-order task spawn, it is easy for a task to find its im-

mediate successor: the task spawned its immediate successor
and it only needs to remember it. Alternatively, consecutively
spawned tasks are often allocated on contiguous processors,
making it trivial to identify the immediate successor. In other
designs, a table with immediate successor information is used,
which is easy to maintain because only one task can spawn at
a time [6]. Overall, any scheme used is likely to be largely free
of protocol races, as only one task spawns at a time.
Under out-of-order task spawn, identifying the immediate

successor and all the more speculative tasks is not straightfor-
ward. For example, in Figure 1-(e), if task 7 is killed, it is
not trivial for it to identify and kill tasks 4, 3, 5, and 2, which
were created before and independently of 7. Moreover, any so-
lution has to be carefully crafted to avoid inducing races in
the TLS protocol of the distributed CMP if multiple opera-
tions happen concurrently. Finally, since commit and squash
are time-critical, we cannot use a solution based on repeated
comparison of timestamps.
To support efficient and race-free commit and squash, we

propose that the tasks dynamically link themselves in hard-
ware in a list according to their sequential order. We call this
list the Immediate Successor (IS) list. To build the IS list, we
add a hardware pointer called the IS pointer to each task struc-
ture. We leverage the fact that, at the time of the spawn, (i)
the child becomes the immediate successor of its parent, and
(ii) the child inherits the parent’s previous immediate succes-
sor. Consequently, on a spawn, the child receives the parent’s
IS pointer, and the parent sets its IS pointer to point to the child.
In the example of Figure 1-(e), the IS list links 1 to 6, 6 to 7, 7
to 4, and so on.
When a task kills all its successors, its IS is set to nil. Con-

sequently, Task 2’s IS pointer in Figure 1-(e) is nil.
With this support, when a task needs to pass the commit to-

ken, it uses the IS list. Moreover, when a squashed task needs
to kill all its successors, it sends a kill signal with its own iden-
tity downstream the IS list. All successors are killed in turn.
When the kill signal reaches a task with a nil IS, an acknowl-
edgment is sent to the originating task, which sets its IS to
nil. The result is very fast commit and squash. In addition,
the TLS protocol implementation is simplified in a major way:
even when multiple kill signals occur concurrently, since all
signals are serialized along the same path, protocol races are
minimized.
3.3 Dynamic Task Merging for Efficient Resource

Allocation
In TLS systems, tasks compete for CMP resources such as
CPUs or cache space. Under out-of-order task spawn, such
competition is harder to manage. The reason is that highly-
speculative tasks may hog resources and starve more critical
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(less speculative or even safe) tasks that are spawned later. For
example, in Figure 1-(e), when safe task 1 is about to spawn
6, all the CPUs in the CMP may be in use by more speculative
tasks 4, 3, 5, and 2.
To allocate chip resources efficiently, we propose a new

CMP microarchitectural technique that we call Dynamic Task
Merging. It consists of transparent, hardware-driven merging
of two or more consecutive tasks at run time. In effect, it en-
ables the CMP to prune some branches of the task tree based
on dynamic load conditions.
Task merging increases execution efficiency in several ways.

First, highly-speculative tasks can be merged, therefore freeing
resources for more critical tasks. Second, with large, merged
tasks, the spawn overhead is less noticeable, and both caches
and branch predictors work better. Finally, given that the hard-
ware can adjust the number of tasks at run time, the TLS com-
piler can be more aggressive at creating tasks, which may ulti-
mately lead to higher performance.
Under task merging, a task skips the spawn instruction for a

child, and its own task-end instruction. Figure 3 illustrates it.
When task 1 finds the spawn for 3 (Chart a), it can either spawn
(Chart b) or merge (Chart c). In the rest of this section, we
discuss the microarchitecture support and the heuristics used
for task merging. Some compiler issues are discussed in Sec-
tion 5.2. Some related, but less flexible proposals are discussed
in Section 9.
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Figure 3: Examples of task merging.

3.3.1 Microarchitecture
A task initiates a merge by skipping a spawn instruction. After
that, in the simplest case, the task will also have to skip the first
task-end instruction that it finds, and finish only when it finds
the second task-end. In general, if a task initiates N merge
operations by skipping N spawns, it will have to also skip N
task-ends and finish only when it finds the N+1 one.
Consider now a task that skipped a spawn and later, because

load conditions have changed, it wants to spawn a child. Since
the child is more speculative than the parent, the parent passes
the responsibility to complete the task merge to the child: the
child will skip the first task-end that it finds and finish only at
the second one. As for the parent, it simply finishes at the first
task-end that it finds.
As an example, consider Figure 3-(d), which shows a new

task tree without merging. In Figure 3-(e), we show the same
tree except that task 1 merged with 3 and then spawned 4. We
see that task 4 is given the responsibility of completing the
merge.
The microarchitecture needed to support task merge is a

counter in each task structure called Number of Ends to Skip
(NES). When a task skips a spawn, its NES is incremented.
When a task finds a task-end instruction, its NES is checked.
If it is non-zero, it is decremented and the end instruction is
skipped. Otherwise, the task ends. Moreover, when a task
spawns a child, the parent’s NES is copied to the child’s and is
then cleared. The child now owns the merges.
When a task becomes the most speculative one (its IS pointer

becomes nil), its NES ceases to matter — the task always skips

any task-end instruction that it finds. This is the appropriate
behavior for the most speculative task, which should not be
stopped by end instructions. Indeed, the most speculative task
may be the only task in the system, possibly the result of a task
killing all its successors on a violation; if it were allowed to
end on a task-end instruction, progress would stop. Aside from
this case, the most speculative task handles the NES as usual.
In particular, it sets its NES to zero on child spawn.
To reduce overhead, the NES is checked and modified in

hardware. A software implementation is also feasible, al-
though it can be shown to need 5-7 instructions on task spawn
and end.
3.3.2 Heuristics
To understand our merge heuristics, note that we rely on squash
information to reduce useless work. Specifically, if a given task
has been squashed and restarted repeatedly due to violations,
it is preempted and not allowed to get a CPU anymore. It re-
mains stalled in one of the several on-chip task containers (Sec-
tion 4.3) until it becomes safe. This policy prevents highly-
speculative, frequently-squashed tasks from clogging CPUs.
On the other hand, if a CPU is running, we will assume that
it is doing useful work.
With this support, we use CPU usage to decide whether or

not to perform task merge. Specifically, every time that a task
finds a spawn instruction, it performs a merge if all CPUs are
busy. In addition, every NumMNext merges, we skip one to
prevent tasks from becoming so large that a squash would dis-
card a lot of work.

4 Implementation Issues
This section discusses some related implementation aspects.
Of those, only the first two are specific to out-of-order spawn-
ing.
4.1 Special Cases in Timestamp Intervals
There are two special cases when handling timestamp intervals.
The first one is when the timestamps are about to wrap around.
Our solution is to recycle old timestamps in chunks. For that,
we divide the whole representable timestamp range into four
chunks, based on the two most significant bits of B. When all
the tasks with intervals in the lowest chunk (e.g., the 00 chunk)
have committed, we recycle that chunk. This involves sending
a reprogramming signal to the logic of the timestamp compara-
tors so that timestamps in the recycled chunk are now the high-
est (i.e. 00, is more speculative than 11). Then, timestamps
from that chunk become available for reassignment to newer
tasks.
The reprogramming signal is automatically triggered when a

task with an interval that straddles two chunks commits. With
this approach, the tasks in the CMP can at most use 3

4 of the
whole timestamp range at a time. To see how many tasks can
be concurrently supported, assume that B and R have b and r
bits, respectively. If, in the worst case, each task has a single
child, and the child is given the maximum timestamp range
possible (2r), the maximum number of tasks is then 3

4 × 2b−r.
Consequently, if we want to support about 20 concurrent tasks,
b− r should be at least 5.
The second, infrequent case, is when a task wants to spawn

a child and has no interval to assign. In this case, the task
simply sends a kill signal down the IS list, as in a task squash
(Section 3.2). This operation kills all successors, making the
task the most speculative one. At that point, the task obtains
Rmax timestamps (Section 3.1). This operation, however, is
very rare, thanks to our support for automatic dynamic times-
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tamp expansion (Section 3.1) and timestamp wrap around. In
our experiments, it rarely occurs at all.
4.2 Scheduling Tasks to CPUs
While all the tasks that have been spawned have their state
loaded on on-chip task containers (Section 4.3), only as many
tasks as CPUs can be running at a time. In practically all TLS
proposals, tasks are scheduled strictly based on how specula-
tive they are. Specifically, a less speculative task always pre-
empts more speculative ones.
In practice, our experiments show that such a policy is an

overkill, given our new task merging support. Consequently,
we use a simpler policy: we assign a high priority to the safe
task, and a fixed, low priority to all speculative tasks.
4.3 Other Aspects
All the other aspects of a TLS CMP largely remain the same as
we move from an in-order to an out-of-order spawning frame-
work. Each processor has a table of task containers, which
keeps state for the tasks that are loaded on the processor. Of
these tasks, only one is running at a time. Each container
stores the start PC of the task, a pointer to a stack location with
saved-register state, and a local ID associated to the task. The
state saved in the stack is not read at the beginning of the task.
Rather, it is read as registers are needed. As in many TLS sys-
tems, the ID is a short ID used to tag the cache lines accessed
by the task. It acts as a form of indirection [21] that avoids the
need to tag the cache lines with the B timestamp of the task.
For the out-of-order spawn framework, a task container also
contains the B, R, IS pointer and NES.
Our CMP uses a TLS coherence protocol with lazy com-

mit inspired in [18] to detect memory-based data dependence
violations. No special support for register communication be-
tween CMP cores is present. Cache lines with speculative state
cannot be evicted. If the space taken by one such line is needed,
the owner speculative task is squashed. Context switches and
exceptions also cause squashes.

5 Compilation for Out-of-Order Spawn
We have developed a fully automated TLS compiler that gen-
erates in-order and out-of-order tasking out of sequential, in-
teger applications. The compiler adds several passes to a de-
velopment branch of gcc 3.5. The branch uses a static sin-
gle assignment tree as the high-level intermediate representa-
tion [9]. Building on this software allows us to leverage a com-
plete compiler infrastructure. Also, working at this high level
is better than using a low-level representation such as RTL:
we have better information and it is easier to perform pointer
and dataflow analysis. At the same time, our transformations
are much less likely to be affected by unwanted compiler opti-
mizations than if we were working at the source-code level.
5.1 Task Generation and Hoisting
Our compiler uses the following modules as potential tasks for
both the in-order and out-of-order environments: subroutines
from any nesting level, their continuations, and loop iterations
from multiple loops in a nest. All subroutines are potentially
chosen unless they are very small. Recursion is handled seam-
lessly. In loop nests, the compiler makes decisions based on
loop iteration size, which has to be larger than a certain mini-
mum.
The actual tasks that make it to the final binary are differ-

ent in the in-order and out-of-order environments. The out-of-
order pass can select all the tasks mentioned, subject to some
pruning heuristics, without worrying about the number of chil-

dren per task. The in-order pass has to be more careful, since
a task can only have a single child. Consequently, the in-order
pass has an initial step where it analyzes all the files in the
program and generates a complete task call graph. Then, us-
ing heuristics about task size and overheads, it eliminates tasks
from the graph until each task only has a single child. We trust
the quality of our heuristics based on the fact that the resulting
in-order TLS code obtains speedups comparable to previous
work [28].
Once the tasks and their parents are selected, the compiler

inserts spawn instructions, and tries to hoist them to boost par-
allelism. A spawn is hoisted as far up as we can, as long as the
new position is execution equivalent with the start of the task
to spawn. We do not hoist above statements that can cause data
or control dependence violations. Under out-of-order spawn,
we make sure that the tasks are spawned in reverse order. Un-
der in-order spawn, a spawn cannot be hoisted above the caller
task.
A final task clean-up pass looks for spawns that were hoisted

only a handful of instructions. In this case, the spawn is elim-
inated, and the two corresponding tasks integrated into one.
This reduces overheads.
As an example, Figure 4 shows how the compiler gener-

ates out-of-order tasks out of a subroutine and its continuation.
Chart (a) shows the dynamic execution in and out of the sub-
routine. The compiler marks the subroutine and continuation
as tasks, and inserts two spawn instructions in the caller (Chart
(b)). Then, it hoists the spawn for the continuation (Chart (c))
and subroutine (Chart (d)). In Chart (e), the clean-up pass elim-
inates the subroutine spawn because it had little hoisting.

(a) (b) (c)

Caller

Subroutine

ContinuationD
yn

a
m

ic
 E

xe
cu

tio
n

Spawn

Spawn

Caller

Subroutine

Continuation

(e)

Spawn

Caller

Subroutine Continuation

Spawn

Spawn

Caller

Subroutine

Continuation

(d)

n

More Speculative Task

Spawn

Spawn

Caller

Subroutine

Continuatio

Figure 4: Generating tasks out of a subroutine and its contin-
uation.

5.2 Task Merging
With task merging, as a task completes its code, it goes on exe-
cuting the code of its immediate successor. This means that the
task must have a way of obtaining the live-in register values for
its continuation code. With our compiler, this is possible: all
register values changed by a task that may be used by succes-
sors are stored in memory when the task finishes. Moreover,
all the live-ins of a task are read from memory. Consequently,
as a task merges with its successor, it automatically reads from
memory the live-ins of the successor.
5.3 Offline Profiling Support
The compilation process for in- and out-of-order tasking in-
cludes running a simple profiler. The profiler takes the TLS
executable and identifies those task spawn points that should
be removed because they are likely to induce harmful squashes
according to our models. The profiler returns the list of such
spawns to the compiler. Then, the compiler generates the final
TLS executable by removing these spawns
The profiler takes a few minutes to run. It executes the bina-

ries sequentially, using the Train data set of the SpecInt codes.
As the profiler executes a task, it records the variables written.
As it executes tasks that would be spawned earlier, it compares
the addresses read against those written by predecessor tasks.
With this, it estimates potential violations. The profiler also
models a cache to estimate the number of misses in the ma-
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chine’s L2. For speed, the cache model is timeless.
The profiler identifies those spawns where the ratio of

squashes per task commit is higher than Rsquash. For each of
those spawns, it estimates the performance benefit that a task
squash brings. Some benefit comes from the data prefetching
provided by cache misses recorded before the task is squashed
(Msquashed). Other benefit comes from true overlap of the in-
structions in the task with other tasks, as the task is re-executed
after the squash (Ioverlap). With these measurements, the pro-
filer requests spawn removal if TI×Ioverlap +T0×Msquashed

is less than a threshold Tperf . In the formula, T0 is the esti-
mated stall per L2 miss, and TI is the estimated execution time
per instruction.

6 Complexity of Supporting Out-of-Order
Spawn

Adding support for out-of-order spawn to a TLS CMP that al-
ready supports in-order spawn does not introduce much hard-
ware complexity. The reason is that our mechanisms only add
modest-sized, decentralized logic structures. No core-to-core
interconnections are added. Finally, out-of-order spawn sim-
plifies our TLS compiler. In the following, we discuss these
issues.
Splitting Timestamp Intervals.
The memory hierarchy and protocol of the TLS CMP is

oblivious to the fact that tasks use timestamp intervals rather
than single timestamps. The reason is that all operations use
B (the base timestamp), which remains unchanged for a task’s
lifetime, exactly like under in-order spawn. Intervals are only
operated on at a task spawn, where they are split in hardware.
This operation is very simple, as it involves one shift, two in-
teger additions and two selection operations (multiplexers), as
shown in Figure 5(a). Moreover, it is performed locally in each
processor.
The case of comparator reprogramming because of times-

tamp wrap around is too infrequent to deserve any complicated
implementation. The comparator in each cache is prompted
to change how it orders the values of the two most-significant
bits of timestamps, illustrated in Figure 5(b). When the com-
parators are being reprogrammed, tasks temporarily use merge
rather than spawn.
Finally, if a task wants to spawn and has no interval to assign,

it squashes its successors. This operation is already present in
in-order spawn systems.
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Figure 5: Possible implementation of out-of-order mecha-
nisms.

Immediate Successor List.
The IS list is a decentralized structure that is maintained with

simple hardware operations performed locally in each proces-
sor. Specifically, on task spawn, the parent’s IS pointer register
is read and written, while the child’s is written. On a task com-
mit or kill, the IS pointer is read and maybe cleared. There is
no global, centralized operation, as shown in Figure 5(c).

Dynamic Task Merging.
The NES register is potentially read and written at task-

spawn and task-end instructions. These are simple operations
that are performed locally in each processor. We support them
in hardware, as shown in Figure 5(d), although they can be
supported with 5-7 instructions.
To decide on task merging at a spawn instruction, a CPU

uses information about the state of the other CPUs (busy or
not). This information does not need to be cycle accurate, since
it is only used as a heuristic. Consequently, CPUs use normal
links to regularly inform other CPUs of their busy or idle state.
Out-of-Order Spawn Simplifies our TLS Compiler.
Hardware support for out-of-order spawn simplifies our TLS

compiler because it eliminates the checks necessary to ensure
that tasks are only spawned in order. To guarantee the latter,
our in-order-spawn pass has to identify the tasks that may be
spawned at run time, and ensure that each task has at most one
child. It does so with inter-procedural analysis. In contrast,
our out-of-order spawn pass has many fewer checks to make.
In particular, it just performs intra-procedural analysis.
Finally, with our dynamic task merging, a TLS compiler

does not need to be as careful in creating load-balanced tasks;
the hardware will prune the excess of tasks through merging.

7 Evaluation Methodology
To evaluate TLS with out-of-order spawn, we use execution-
driven simulations with detailed models of out-of-order super-
scalars and memory systems. The proposed architecture is a
four-core CMP with TLS support called TLS4. Each proces-
sor in TLS4 is 4 issue and has a private L1 cache that can hold
speculative state. The chip also has a shared L2 that only holds
safe data. The 4 L1 caches and the L2 are connected through
a switch that can support up to 2 concurrent connections. The
CMP uses a TLS coherence protocol with lazy commit inspired
in [18] to detect memory-based data dependence violations. To
keep the hardware simple, there is no special support for regis-
ter communication between CMP cores. For a similar reason,
there is no dependence predictor to alleviate the impact of de-
pendence violations.
In our experiments, we also model three other chips. Two

of them are architectures built out of the 4-issue cores in TLS4:
4issue and TLS2. 4issue is a chip with a single core, one L1,
and one L2. TLS2 is like TLS4 but with only 2 cores; for sim-
plicity, all other parameters are the same as in TLS4. TLS4 and
TLS2 use the microarchitecture introduced in Sections 3 and 4.
Finally, we also model a chip with a single 6-issue processor,
one L1, and one L2. We call this architecture 6issue. The pa-
rameters used for the architectures are shown in Table 1.
To compare the TLS chips (TLS4 and TLS2) to the non-TLS

ones (4issue and 6issue), we make the following assumptions.
First, we increase the L1 access time in the TLS chips one ex-
tra cycle to 3 cycles. We do it to account for any time overhead
that TLS may add. We think that such overhead is correctly
modeled with 1 cycle. To see why, recall that TLS extends a
line’s tag with (i) a small task ID (6 bits in our case) and (ii)
two read/write access bits per word in the line. The task ID bits
can be considered part of the address tag, as a hit requires ad-
dress and ID match. When a processor accesses its L1, it sends
the address plus the ID of the running task. ID comparison oc-
curs in parallel with tag comparison, and adds no extra delay.
Moreover, in our protocol, the read/write access bits are not
checked before providing the data to the processor; they may
be updated after that. Consequently, the time overhead added
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Processor Parameters TLS4 [TLS2] 4issue [6issue]
Cores/chip 4 [2] 1
Running tasks/core 1 1
TLS hardware? Yes No
Frequency, technology 5 GHz, 70 nm 5 GHz, 70 nm
Fetch, issue, retire width 4, 4, 4 4, 4, 4 [6, 6, 6]
ROB, I-window size 152, 80 152, 80 [204, 104]
LD, ST queue 54, 46 54, 46 [66, 54]
Mem, int, fp units 2, 3, 1 2, 3, 1 [2, 5, 2]
Branch predictor:
Penalty 14 cycles 14 cycles
BTB 2 K, 2 way 2 K, 2 way
global gshare(11) entries 16 K 16 K
local 2 bit entries 16 K 16 K

L1 cache:
size, assoc, line 16 KB, 4, 64 B 16 KB, 4, 64 B
OC, RT 1, 3 1, 2

Tasking Parameters Common Memory System
Task containers/processor: 8 L2 cache
B, R timestamp size: 32, 22 bits size, assoc, line : 1 MB, 8, 64 B
NumMNext : 8 OC, RT : 1, 11
Latencies in cycles (min):
From spawn to new thread: 14 Memory
From violation to full kill notification: 20 bandwidth : 10 GB/s
Drain proc pipeline: 14 RT : 500 cycles

Fraction of interval given to child: 3/4
Rsquash: 0.8, T0: 200 cycles, RT to neighbor’s L1 (min) : 8 cycles
TI : 1 cycle, Tperf : 100 cycles

Table 1: Architectures considered. In the table, OC and RT
stand for occupancy and minimum-latency round trip from the
processor, respectively. All cycle counts are in processor cy-
cles. In our comparison, we use the same processor frequency
for all architectures.

by TLS is very small.
Secondly, we set all the L1 caches to the same size, to ensure

that they all have the same cycle time. Although, as a result,
the TLS chips have 4 or 2 times as much L1 as the non-TLS
chips, increasing the size of the L1 in the non-TLS chips could
hurt their performance because the cycle time would increase.
In reality, the miss rate of each L1 in the TLS chips is higher
than in the L1 of the non-TLS chips due to TLS effects.
Finally, we assume the same processor frequency in all

chips. In a real implementation, the frequency of 6issue would
probably be lower than the that of TLS4. However, this paper
makes its point without considering frequency effects.
We drive our simulated architectures with the SpecInt 2000

applications running the Reference data set. We run all the
SpecInt 2000 codes except eon (we cannot compile because
it is in C++) and gcc and perlbmk (our compiler infrastruc-
ture does not compile them). We compare the SpecInt bina-
ries of Table 2: unmodified binaries (BaseApp), TLS with in-
order spawning (InOrder), and TLS with out-of-order spawn-
ing (OutOrder). All the binaries in Table 2 are compiled with
the same compiler options; BaseApp is compiled with our TLS
passes disabled.

Name TLS? Description of Binary

BaseApp N Out-of-the-box, sequential version compiled
with O2. No TLS instrumentation.

OutOrder Y Out-of-order task spawning. Spawns: subroutines,
subroutine continuations, and loop iterations

InOrder Y
In-order task spawning. Same tasks as OutOrder. However,
it uses interprocedural analysis pass to eliminate tasks
that (may) violate the in-order spawning requirement.

Table 2: Versions of the SpecInt 2000 binaries executed.

These binaries are different. The TLS passes re-arrange code
into tasks and add spawn and commit instructions. Such trans-
formations obfuscate some conventional compiler optimiza-
tions, sometimes rendering them less effective. Consequently,
to accurately compare the performance of the different bina-

ries, we cannot simply time a fixed number of instructions. In-
stead, we insert “simulation markers” in the code, and simulate
for a given number of them. After skipping the initialization
(several billion instructions), we execute up to a certain num-
ber of markers for all binaries, so that BaseApp graduates more
than 750 million instructions.

8 Evaluation
8.1 Overall Execution Speedups
To evaluate out-of-order spawn for TLS, we compare the exe-
cution time of the InOrder and OutOrder binaries running on
the TLS4 architecture. For comparison purposes, we also mea-
sure the execution times of the BaseApp binary running on the
4issue and 6issue architectures. The comparisons to 4issue and
6issue show the speedup of TLS relative to a single processor
of the same width and a wider one, respectively, always under
the same frequency. Finally, we also run OutOrder on TLS2, to
assess the effect of the number of processors in the CMP.
Figure 6 shows the speedups of the different binary-

architecture combinations relative to BaseApp running on 4is-
sue. The figure shows speedups for each application and the
geometric mean. On top of some bars, we show the speedups.
The dots on some bars will be discussed later. The average IPC
of each application for 4issue and TLS4OutOrder is shown in
Columns 2 and 3 of Table 3, respectively.
Compare first TLS4OutOrder to 4issue. For every single ap-

plication, TLS execution is faster. The speedups are always
over 1.08, and reach about 2.4 for mcf. We will see that the mcf
speedups are mostly due to prefetching. The geometric mean
is 1.30 including mcf, and 1.20 not including mcf. For the two-
core TLS CMP (TLS2OutOrder), the geometric mean of the
speedup is 1.20. These results make TLS an attractive feature,
especially given that these speedups are obtained with a fully-
automated TLS compiler, on a decentralized CMP architecture
and, importantly, on full SpecInt applications.
Note that the IPC numbers in Table 3 do not exactly correlate

with the relative height of the 4issue and TLS4OutOrder bars
because the binaries running on the two platforms differ.
Since the contribution of this paper is support for out-of-

order spawning, we compare TLS4OutOrder to TLS4InOrder.
The bars show that TLS4InOrder is much slower in all appli-
cations. TLS4InOrder only obtains a geometric mean speedup
of 1.04 over 4issue. The magnitude of this figure is in line
with previous compiler-driven TLS evaluations of SpecInt2000
codes on CMPs [28], if we weight the speedups reported by the
coverage of the regions that were sped up.
We conclude, therefore, that out-of-order spawn is a key en-

abler to boost TLS speedups. The gains come from being able
to exploit the additional sources of parallelism.
Finally, we compare TLS4OutOrder to 6issue. The bars

show that, except for bzip2 and gzip, the TLS architec-
ture outperforms the wider superscalar. Looking at the ge-
ometric mean, we see that TLS4OutOrder’s speedup is 20%
higher. Therefore, a TLS CMP architecture compares favor-
ably against a wider superscalar for SpecInt, even assuming
that the wider superscalar cycles at no lower frequency. This
is significant, given that the CMP has a natural advantage on
truly parallel codes, such as many numerical applications.
8.2 Understanding TLS Speedups
To understand the speedups of TLS4OutOrder, we break down
the execution time of 4issue and TLS4OutOrder into the prod-
uct of committed instructions times average CPI. In the for-
mula, CPITLS corresponds to the combined CPI of all the
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Figure 6: Speedups of different binary-architecture combinations relative to BaseApp running on 4issue. The figure also shows
the geometric mean. The TLS results are obtained with a fully-automated TLS compiler on full SpecInt applications.

cores in the chip.
SpeedupTLS = T4issue

TT LS
= I4issue×CPI4issue

IT LS×CPIT LS

As we go from 4issue to TLS4OutOrder, the number of com-
mitted instructions in a program increases. The reasons are
the additional spawn, commit and memory instructions, and
the lower effectiveness of conventional compiler optimizations
(Section 7). Therefore, we define an instruction bloat factor
fbloat = IT LS

I4issue
.

We can put CPITLS as a function of the average CPI per
core, which we callCPITLScore. For that, we need to measure
the time each CPU is busy executing instructions (ti) and add
it up across all the CPUs in the TLS chip as follows:

ITLS = TT LS
CPIT LS

=
Pnumcores

i=1 ti

CPIT LScore

Intuitively, if no two CPUs are busy at the same time, there
is no parallelism, and the two CPIs are the same. If all 4
CPUs completely overlap their busy time, parallelism is 4, and
CPITLScore is 4 times CPITLS . We express parallelism as:

fparallel =
Pnumcores

i=1 ti

TT LS
= CPIT LScore

CPIT LS

Consequently, the TLS speedup above is:
SpeedupTLS = I4issue×CPI4issue

IT LS×CPIT LS
= fparallel×CPI4issue

fbloat×CPIT LScore

Table 3 shows the values of some of these parameters for
TLS4OutOrder running each of the applications. Column 4
shows the instruction bloat factor fbloat. Its average value
is 1.15, which indicates that TLS execution increases the dy-
namic instruction count significantly. This effect hurts TLS
speedups. Column 5 shows the parallelism factor fparallel,
which helps TLS speedups. On average, its value is 1.53.
fparallel is small because of the limited parallelism present in
SpecInt codes. Note that fparallel reports the average num-
ber of CPUs that are busy at a given time executing tasks that
will not be squashed. In reality, a higher number of CPUs is
busy, but some of them execute tasks that will eventually be
squashed. The true number of busy CPUs is shown in Column
6. Its average value is 1.96. We can see, therefore, that task
squashing is not negligible. In fact, Column 7 shows the frac-
tion of busy cycles that correspond to squashed tasks. On av-
erage, such number is 20.5%. Overall, TLS4OutOrder wastes
many cycles to squashed tasks, which also limits its speedups2.
We can now go back to the SpeedupTLS equation and as-

sume that CPI4issue = CPITLScore. In this case, the TLS
speedups would be given by fparallel

fbloat
. We have computed this

ratio and shown it as dots in Figure 6 for TLS2OutOrder and
TLS4OutOrder.
If these dots are not equal to the real speedups, it is be-

cause CPI4issue $= CPITLScore. In particular, if a dot is
2In all this discussion, we have only counted graduated instructions. There

is an additional waste in both TLS and non-TLS chips caused by misspeculated
branches.

lower than the TLS bar (e.g. in parser), it means CPI4issue >
CPITLScore. This is largely due to prefetching effects. In
particular, tasks that eventually get squashed bring data and in-
structions into the caches, which are later reused by other tasks.
If, instead, the dot is higher than the TLS bar (e.g. vortex), it
means CPI4issue < CPITLScore. In this case, TLS execu-
tion is largely impaired by the higher average memory latency
induced by cache-coherence invalidations, higher instruction
cache miss rate, and slower cache hierarchy speed. It is also
hurt by lower branch predictor accuracy due to code partition-
ing. We call these effects TLS overheads.
Figure 6 shows that in TLS2OutOrder, the prefetching ef-

fect typically dominates (most of the dots are lower than the
TLS bars). It often adds a net 5-10% to the potential speedup
from parallelism, represented by the dots. However, as we add
more cores to the chip (TLS4OutOrder), the TLS overheads
dominate, and often the potential speedup from parallelism is
higher than the real speedup by a net 10-30%. The obvious
exceptions are mcf and parser, where prefetching always dom-
inates, and vortex, where the TLS overheads dominate. mcf
benefits significantly from prefetching into the L2. Its L2 miss
rate decreases by 27% from 4issue to TLS4OutOrder. vortex
hurts from higher data and instruction L1 miss rates.
Overall, we conclude that our full SpecInt speedups are a

combination of several factors. Our TLS machinery is fre-
quently able to overlap execution of the CPUs (Column 6 of
Table 3), although a non-trivial fraction of the work is use-
less (Column 7). However, even after producing useful overlap
(Column 5), TLS needs to offset significant code bloat (Col-
umn 4) to deliver speedups. Finally, while prefetching helps
TLS, Figure 6 shows that prefetching’s good effect can be over-
whelmed by the opposite effects of the TLS overheads.
8.3 Characterization of TLS4OutOrder
The remaining columns of Table 3 further characterize
TLS4OutOrder’s execution. Column 8 shows the frequency of
task merges per task commit. We can see that task merge oc-
curs frequently in all codes. On average, there are 0.37 merges
per commit. This operation boosts TLS performance, as it in-
creases task size and, as a result, reduces TLS overheads.
Column 9 shows the resulting average number of graduated

instructions in the tasks that commit. On average, a task con-
tains 541 instructions.
Finally, the last column shows the percentage of commit-

ted dynamic instructions from tasks spawned out of order. It
varies noticeably across applications with all codes having a
large percentage of dynamic instructions in tasks spawned out-
of-order except bzip2 and gzip. Those with a large percent-
age are the ones responsible for the speedups of TLS4OutOrder
over TLS4InOrder in Figure 6. Generally, the fraction of dy-
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Busy Squashed Tasks/ # Merges Task Out of Order
App IPC4issue IPCT LS fbloat fparallel CPUs Total Tasks per Task Size Dyn. Inst.

(% Cycles) Commit (Instr) (%)
bzip2 1.71 2.01 1.06 1.25 1.35 7.4 0.42 744 5.6
crafty 1.50 1.91 1.06 1.45 1.95 25.5 0.28 931 38.6
gap 1.09 1.33 1.04 1.34 1.96 31.5 0.88 1249 88.1
gzip 1.08 1.28 1.07 1.26 1.47 14.1 0.02 626 0.3
mcf 0.04 0.14 1.47 1.69 2.42 30.1 0.20 50 26.3
parser 0.65 0.94 1.22 1.30 1.86 29.8 0.51 165 81.8
twolf 0.78 1.07 1.07 1.57 1.64 4.0 0.28 402 23.7
vortex 1.55 1.97 1.08 1.53 1.80 14.9 0.16 489 77.2
vpr 1.00 1.79 1.27 2.33 3.20 27.2 0.59 212 61.4
Avg 1.05 1.38 1.15 1.53 1.96 20.5 0.37 541 44.8

Table 3: Characterizing the run-time behavior of TLS4OutOrder.

namic instructions is correlated with the difference between
TLS4OutOrder and TLS4InOrder in Figure 6: crafty, gap,
parser, twolf, vpr, and vortex have high fractions and large
differences, while bzip2 and gzip have a small fraction and a
small difference. mcf is a special case with 26% of the com-
mited dynamic instructions in mcf spawned out-of-order and a
very large difference. If we consider the dots for mcf, we re-
alize that the speed up is largely delivered by the prefetching
provided by squashed tasks that were spawned out-of-order.
Overall, on average, 45% of the commited dynamic instruc-
tions are in tasks spawned out-of-order.
8.4 Architecture Sensitivity Analysis
We have performed other architecture analyses that are not in-
cluded due to lack of space. Our experiments show that us-
ing unlimited size timestamp intervals yields negligible perfor-
mance gains. Our experiments also show that adding support
for dynamic task merging in TLS4InOrder barely makes any
difference: the average speedup increases by 1%. However,
eliminating dynamic task merging from TLS4OutOrder causes
the average speedup to fall by 29%. This suggests that the po-
tential of our task merging is best exploited when there is more
task parallelism, such as in out-of-order spawn environments.

9 Related Work
Out-of-Order Spawning.
Hammond et al. [11] propose a TLS CMP where each

processor has a co-processor that controls TLS mechanisms
with software handlers. They support both subroutine and
loop-iteration tasks and, therefore, out-of-order spawn. Co-
processors are told what task is running where. They snoop
on two broadcast buses and, based on message source, they
can tell the relative ordering. Since caches contain state from
a single task, no task ID is necessary. Squash signals are also
broadcast. Commits require access to a centralized software
data structure in shared memory. The most speculative task
is killed if there is no space in the CMP. Overall, this is a
broadcast-based, relatively centralized architecture. The au-
thors conclude that their scheme has too much software over-
head to support subroutine tasks. Their findings motivate our
search for hardware-based mechanisms.
There are several high-level performance-evaluation studies

of environments that need out-of-order spawn [15, 16, 26, 27].
They often assume an ideal architectural feature, such as an
infinite number of processors or perfect value prediction, and
compare the performance to more realistic environments. Of
those, [15, 16] examine a variety of sources of parallelism, in-
cluding iterations from multiple loop levels and nested sub-
routines. [26, 27] examine subroutine-level nested parallelism.
None of these papers describe microarchitectural structures to
support the tasks used. Consequently, they have not addressed
the problems we cover. Our paper is the first microarchitectural

design of high-speed out-of-order tasking on a CMP.
DMT is a centralized, SMT-like processor whose hardware

can extract out-of-order tasks from unmodified binaries [1].
The design uses centralized structures that are unusable in a
CMP. Specifically, DMT has a centralized hardware tree that
records which tasks are successors of which. To determine the
order of two tasks, the hardware walks the tree when: (1) there
is a collision in the centralized LD/ST queue, or (ii) a task com-
mits and needs to verify the register predictions for successor
tasks. This centralization means that DMT does not need our
IS list and timestamp intervals. DMT kills the most speculative
task if there is no space in the processor, while we merge tasks
to dynamically manage the resources in the system.
Dubey et al.’s SPSM [8] is an architecture where tasks are

spawned in order. Interestingly, a task can spawn multiple
other tasks, but these other tasks cannot further spawn, which
guarantees in-order spawn. Our proposed spawning model is
more flexible and enables more parallelism.
Littin et al.’sWarpEngine [19] is a compute engine where in-

structions are grouped into 16-instruction branch-less frames.
Frames are fetched and executed out of order. The machine
appears closer to an aggressive dynamic superscalar that ex-
ploits control continuations. For example, it cannot be used as
a multiprocessor for parallel applications.
In Multiscalar [20], a task may have multiple exit points.

However, only one is correct. Since a task can only spawn a
single other correct task in its lifetime, Multiscalar supports
in-order spawn only.
Related Mechanisms: Timestamping and Merging.
Cleary et al. [7] propose several timestamp representations

for virtual sequences organized in a tree. They bear some re-
semblance to our splitting timestamp interval. However, while
some of Cleary et al.’s schemes are more efficient than others,
they all need periodic re-scaling. Re-scaling occurs when se-
quences run out of timestamps. In that case, new timestamps
need to be reassigned to all the tasks on the fly. This is a very
costly operation, which would entail synchronizing the whole
machine, and walking all the cache tags, changing all the times-
tamps. Our splitting timestamp interval scheme is designed
for efficient hardware implementation. Once a base timestamp
is assigned to a task, it never changes. The scheme does not
need re-scaling. Thanks to the support for automatic dynamic
timestamp expansion (Section 3.1) and timestamp wrap around
(Section 4.1), we practically never have to kill a task.
Dubey et al.’s SPSM [8] can perform conditional spawns.

This is somewhat similar to our dynamic task merging. A key
difference is that their mechanism does not allow a parent who
initiated a merge to pass the responsibility of completing the
merge to a child. Moreover, their mechanism works with in-
order spawn only, while ours is for out-of-order spawn, which
increases complexity. In addition, in SPSM only the safe task
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can perform conditional spawn, while in our mechanism any
task can perform task merging. Overall, our mechanism is
more flexible. However, it needs a NES counter per task, which
may be passed between tasks.
Multiscalar [20] introduces the concept of suppress register.

When a task suppresses a section of code (typically a func-
tion) the task ignores all the Multiscalar instrumentation in the
code. In addition, it increments a counter. Suppressions can be
nested, in which case the counter keeps increasing. However,
the task cannot spawn a successor until all its (nested) sup-
pressed sections are completed and the counter reaches zero.
This optimization is typically used to avoid code replication.
Our mechanism for dynamic task merging is more flexible.
A task can start a merge operation and then, as load condi-
tions change, decide to spawn successors that will complete
the merge. This is done by passing the parent’s NES counter to
its successors. As a result, dynamic task merging is a powerful
tool to manage dynamically-changing resources efficiently.
Park et al. [17] propose multiplexing a number of in-

program-order threads into a single hardware context of IMT.
This is very different from our dynamic task merging. In IMT,
each of the threads multiplexed in a context still keeps a PC
and a rename table pointer. The technique appears similar to
recursively applying SMT to each hardware context of an SMT.
Our proposal keeps a single PC and a single set of architectural
registers for all the merged tasks.

10 Conclusion
This paper has been the first to identify and design a set of mi-
croarchitectural mechanisms that, taken together, fundamen-
tally enable high-speed tasking with out-of-order spawn in a
TLS CMP. The three mechanisms are Splitting Timestamp In-
tervals, Immediate Successor List, and Dynamic Task Merg-
ing. They address the two main challenges posed by out-of-
order spawning: correct and efficient task ordering and re-
source allocation. With this support and our fully-automated
TLS compiler for out-of-order spawn, we unlock the poten-
tial of TLS for hard-to-speedup integer codes. Specifically, a
TLS CMP with 4 4-issue cores delivers an average speedup of
1.30 for full SpecInt 2000 applications; without out-of-order
spawn, we obtain an average speedup of 1.04, in line with past
TLS CMP work on the same codes. Moreover, our resulting
CMP significantly outperforms a 6-issue superscalar, even at
the same clock frequency.
These results make TLS a compelling feature, given that

they are obtained with a fully-automated TLS compiler, on
a decentralized CMP architecture and, importantly, on full
SpecInt applications. Moreover, we feel that these results can
be improved, as the opportunities for out-of-order spawn in
these most challenging applications become better understood.
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