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ABSTRACT 

In high-performance computer systems, performance losses 
due to conditional branch instructions can be minimized by 
predicting a branch outcome and fetching, decoding, and/or 
issuing subsequent instructions before the actual outcome is 
known. This paper discusses branch prediction strategies with 
the goal of maximizing prediction accuracy. First, currently 
used techniques are discussed and analyzed using instruction 
trace data. Then, new techniques are proposed and are shown 
to provide greater accuracy and more flexibility at low cost. 

INTRODUCTION 

It is well known 1-3:° that in a highly parallel computer 
system, branch instructions can break the smooth f low 
of instruction fetching and execution. This results in 
delay, because a branch that is taken changes the 
location of instruction fetches and because the issuidg 
of instructions must often wait until conditional branch 
decisions are made. 

To reduce delay, one can attempt to predict the 
direction that a branch instruction wil l  take and begin 
fetching, decoding, or even issuing instructions before 
the branch decision is made. Unfortunately, a wrong 
prediction may lead to more delay if, for example, 
instructions on the correct branch path need to be 
fetched or partially executed instructions on the wrong 
path need to be purged. The disparity bet~veen the 
delay for a correctly predicted branch and an incorrectly 
predicted branch points to the need for accurate branch 
prediction strategies. 

This paper discusses branch prediction strategies with 
the goal of maximizing the likelihood of correctly 
predicting the outcome of a branch. First, previously 
suggested branch prediction techniques are discussed. 
Owing to the large number of variations and 
configurations, only a few representative strategies have 
been singled out for detailed study, although several are 
mentioned. Then, new techniques are proposed that 
provide more accuracy, less cost, and more flexibil ity 
than methods used currently. 

Because of the wide variation in branching behavior 
between different applications, different programming 
languages, and even individual programs, there is no 
good analytic model for studying branch prediction. For 
this reason, we used instruction trace data to measure 
experimentally the accuracy of branch prediction 
strategies. 

Originally, ten FORTRAN programs, primarily scientific, 
were chosen. It was found, however, that several were 
heavily dominated by inner loops, which made them very 
predictable by every strategy considered. Two 
programs, SCI2 and ADVAN, were chosen from this 
inner-loop-dominated class. Four other programs were 
not as heavily dominated by inner loops and were less 
predictable. All were chosen for the study. 

The six FORTRAN programs used in this study were: 

1. ADVAN : Calculates the solution of three 
simultaneous partial differential 
equations 

2. SCI2: Performs matrix inversion 

3. SINCOS: Converts a series of points from 
polar to Cartesian coordinates 

4. SORTST: Sorts a list of 10,000 integers using 
the shell sort algorithm 9 

5. GIBSON: An artificial program that compiles 
to instructions that roughly satisfy 
the so called GIBSON mix 5 

6. TBLLNK: Processes a linked list and contains 
a variety of conditional branches 

The programs were compiled for a CDC CYBER 170 
architecture. 

Note that other than ADVAN and SCI2, the test 
programs were chosen for their unpredictability, and that 
a more typical scientific mix would contain more 
programs like ADVAN and SCI2. 
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Because of the method used for evaluating prediction 
strategies, any conclusions regarding their relative 
performance must be considered in light of the 
application area and the language used here. 
Nevertheless, the basic concepts and the strategies are 
of broader interest, because it is relatively 
straightforward to generate instruction traces and to 
measure prediction accuracy for other applications or 
languages. 

Results published previously in this area appear in 
Shustek 8, who used instruction trace data to evaluate 
strategies for the IBM System 360/370 architecture. 
Ibbett 7 described the instruction pipeline of the MU5 
computer and gave experimental results for a particular 
branch prediction strategy. A rather sophisticated 
branch predictor has been described for the $1 
processor, 8 but as of this writing, no information 
appears to have been published regarding its accuracy. 
Branch prediction strategies have also been used in 
other high performance processors, but, again, 
experimental results have not been published. 

Our study begins in the next section, with two branch 
prediction strategies that are often suggested. These 
strategies indicate the success that can reasonably be 
expected. They also introduce concepts and terminology 
used in this paper. Strategies are divided into two basic 
categories, depending on whether or not past history 
was used for making a prediction. In subsequent 
sections, strategies belonging to each of the categories 
are discussed, and further refinements intended to 
reduce cost and increase accuracy are presented. Levels 
of confidence are attached to branch predictions to 
minimize delay when there are varying degrees to which 
branch outcomes can be anticipated (for example, 
prefetching instructions is one degree, preissuing them 
is another). Conclusions are given in the final section. 

TWO PRELIMINARY PREDICTION STRATEGIES 

Branch instructions test a condition specified by the 
instruction. If the condition is true, the branch is taken: 
instruction execution begins at the target address 
specified by the instruction. If the condition is false, the 
branch is not taken, and instruction execution continues 
with the instruction sequentially fol lowing the branch 
instruction. An unconditional branch has a condition that 
is always true (the usual case) or is always false 
(effectively, a pass). Because unconditional branches 
typically are special cases of conditional branches and 
use the same operation codes, we did not distinguish 

them when gathering statistics, and hence, unconditional 
branches were included. 

A straightforward method for branch prediction is to 
predict that branches are either always taken or always 
not taken. Because most unconditional branches are 
always taken, and loops are terminated with branches 
that are taken to the top of the loop, predicting that all 
branches are taken results typically in a success rate of 
over 50%. 

Strategy 1 

• Predict that all branches will be taken. 

Figure 1 summarizes the results of using strategy 1 on 
the six FORTRAN benchmarks. 

From Figure 1, it is evident that the majority of branches 
are taken, although the success rates vary widely from 
program to program. This points to one factor that must 
be considered when evaluating prediction strategies: 
program sensitivity. The algorithm being programmed, 
as well as the programmer and the compiler, can 
influence the structure of the program and, 
consequently, the percentage of branches that are taken. 
High program sensitivity can lead to widely different 
prediction accuracies. This, in turn, can result in 
significant differences in program performance that may 
be diff icult for the programmer of a high-level language 
to anticipate. 

Strategy 1 always makes the same prediction every time 
a branch instruction is encountered. Because of this, 
strategy 1 is called static. It has been observed and 
documented, 8 however, that the likelihood of a 
conditional branch instruction at a particular location 
being taken is highly dependent on the way the same 
branch was decided previously. This leads to dynamic 
prediction strategies in which the prediction varies, 
based on branch history. 

Strategy 2 

Predict that a branch wil l  be decided the same way 
as it was on its last execution. If it has not been 
previously executed, predict that it wil l  be taken. 

The results (Figure 2) of using strategy 2, indicate that 
strategy 2 generally provides better accuracy than 
strategy 1. Unfortunately, strategy 2 is not physically 
realizable, because theoretically, there is no bound on 
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the number on individual branch instructions that a 
program may contain. (In practice, however, it may be 
possible to record the history of a limited number of 
past branches; such strategies are discussed in a 
subsequent section.) 

Strategies 1 and 2 provide standards for judging other 
branch prediction strategies. Strategy 1 is simple and 
inexpensive to implement, and any strategy that is 
seriously being considered for use should perform at 
least at the same level as strategy 1. Strategy 2 is 
widely recognized as being accurate, and if a feasible 
strategy comes close to (or exceeds) the accuracy of 
strategy 2, the strategy is about as good as can 
reasonably be expected. 

Strategy 1 is apparently more program sensitive than 
strategy 2. Evidence of this is the wide variation in 
accuracy for strategy 1 and the much narrower variation 
for strategy 2 (Figures 1 and 2). Strategy 2 has a kind 
of second-order program sensitivity, however, in that a 
branch that has not previously been executed is 
predicted to be taken. Lower program sensitivity for 
dynamic prediction strategies is typical, as results 
throughout this paper show. 

Finally, it is interesting that one aspect of branch 
behavior leads occasionally to better accuracy with 
strategy 1 than strategy 2. Often, a particular branch 
instruction is predominately decided one way (for 
example, a conditional branch that terminates a loop is 
most often taken). Sometimes, however, it is decided 
the other way (when "fal l ing out of the loop"). These 
anomalous decisions, are treated differently by strategies 
1 and 2. Strategy 1, if it is being used on a branch that 
is most often taken, leads to one incorrect prediction for 
each anomalous not taken decision. Strategy 2 leads to 
two incorrect predictions; one for the anomalous 
decision and one for the subsequent branch decision. 
The handling of anomalous decisions explains those 
instances in which strategy 1 outperforms strategy 2 
and indicates that there may exist some strategies that 
consistently exceed the success rate of strategy 2. 

attempts to exploit program sensitivities by observing, 
for example, that certain branch types are used to 
terminate loops, while others are used in 
IF-THEN-ELSE-type constructs. 

Strategy l a  

Predict that all branches with certain operation codes 
wil l  be taken; predict that the others will not be 
taken. 

The six CYBER 170 FORTRAN programs were 
examined, and it was found that "branch if negative", 
"branch if equal", and "branch if greater than or equal'" 
are usually taken, so they are always predicted to be 
taken. Other operation codes are always predicted to be 
not taken. This strategy is somewhat tuned to the six 
benchmarks, because only the benchmarks were 
analyzed to determine which opcodes should be 
predicted to be taken. For this reason, the results for 
strategy la  may be slightly optimistic. 

Figure 3 shows the results for strategy la  when it was 
applied to the CY170 programs. Generally, greater 
accuracy was achieved with strategy la  than with 
strategy 1. The largest increase was in the GIBSON 
program in which the prediction accuracy was improved 
from 65.4% to 98.5%. The only program showing a 
decrease in accuracy was the SINCOS program in which 
there was a drop from 80.2% to 65.7%. The changes 
in both the GIBSON and SINCOS programs can be 
attributed to predicting that "branch if plus" was not 
taken. If it had been predicted as taken, the accuracy of 
the GIBSON program would have dropped nearly to its 
original value, and the accuracy of the SINCOS program 
would have risen nearly to its original value. 

Other static strategies are possible. For example, 
predictions based on the direction of the potential 
branch or on the distance to the branch target can be 
made. Following is a detailed description of one of 
these strategies. 

STATIC PREDICTION STRATEGIES 

Strategy 1 (always predict that a branch is taken) and its 
converse (always predict that a branch is not taken) are 
two examples of static prediction strategies. A further 
refinement of strategy 1 is to make a prediction based 
on the type of branch, determined, for example, by 
examining the operation code. This is the strategy used 
in some of the IBM System 360/370 models 9 and 

Strategy 3 

Predict that all backward branches (toward lower 
addresses) will be taken; predict that all forward 
branches will not be taken. 

The thought behind strategy 3 is that loops are 
terminated with backward branches, and if all loop 
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branches are correctly predicted, the overall accuracy 
will be high. 

Figure 4 indicates that strategy 3 often worked well, 
sometimes exceeding strategy 2 (probably because of 
the anomalous decision case). There is, however, one 
program in which its performance was poor: in the 
SlNCOS program, the accuracy for strategy 3 was about 
35%. This indicates that program sensitivity is 
significant and that performance can suffer considerably 
for some programs. 

A disadvantage of strategy 3, and of other strategies 
using the target address, is that the target address may 
need to be computed or compared with the program 
counter before a prediction can be make. This tends to 
make the prediction process slower than for other 
strategies. 

DYNAMIC PREDICTION STRATEGIES 

Some strategies base predictions on past branch history. 
Strategy 2 is an idealized strategy of this type, because 
it assumes knowledge of the history of all branch 
instructions. The strategies discussed in this section are 
actually realizable, because they use bounded tables to 
record a limited amount of past branch history. 

Branch history can be used in several ways to make a 
branch prediction. One possibility is to use the outcome 
of the most recent execution of the branch instruction; 
this is done by strategy 2. Another possibility is to use 
more than one of the more recent executions to predict 
according to the way a majority of them were decided; 
this is done by strategy 7. A third possibility is to use 
only the first execution of the branch instruction as a 
guide; a strategy of this type, although accurate, has 
been found to be slightly less accurate than other 
dynamic strategies. 

First, strategies are considered that base their 
predictions on the most recent branch execution 
(strategy 2). The most straightforward strategy is to use 
an associative memory that contains the addresses of 
the n most-recent branch instructions and a bit 
indicating whether the branch was taken or not taken. 
The memory is accessed with the address of the branch 
instruction to be predicted, and the taken or not taken 
bit is used to make the prediction. 

If a branch instruction is not found in the table, two 
issues must be considered: (1) the prediction that is to 
be made, and (2) the table entry that should be replaced 

to make room for the new branch instruction. First, if a 
branch instruction is not in the table, some static 
strategy must be reverted to for a default prediction. A 
good choice is to predict that the branch is taken as in 
strategy 2. 

A more complex default strategy could be used (strategy 
la, for example), but using the simpler always predict 
taken strategy has a positive side effect. In particular, 
only branch instructions that are not taken need to be 
put into the table; then, the existence of a branch in the 
table implies ,it was previously not taken. Branches that 
were recently taken are given the proper prediction by 
default. One bit of memory is saved, but more 
importantly, histories of more branch instructions are 
effectively remembered. For example, if two out of the 
eight most-recent branch instructions executed are not 
taken, then all eight consume only two table entries, 
although all are predicted to have the same outcome as 
on their previous executions. A dual strategy is to use a 
default prediction of branch not taken and to maintain a 
table of branches most recently taken. Because most 
branch instructions are taken, however, this strategy is 
generally less accurate. 

As far as replacement strategies, f i rst- in f i rst-out (FIFO) 
and least-recently used (LRU) seem to be two 
reasonable alternatives. For the application here, in 
which the sequence of branch instructions tends to be 
periodic because of the iterative structure of most 
programs, there is actually little difference between the 
FIFO and LRU strategies as far as prediction accuracy. 
The LRU strategy does appear to be more compatible 
with the scheme mentioned previously in which only 
branches that were not taken are recorded. Then, if a 
branch in the table is taken, it is purged from the table, 
and that table location is recorded as being least 
recently used. A branch that is taken subsequently fills 
the vacancy in the table rather than replacing a good 
table entry. Such a scheme for fill ing vacancies in the 
table fits naturally with the LRU replacement strategy. 

Strategy 4 

Maintain a table of the most recently used branch 
instructions that are not taken. If a branch instruction 
is in the table, predict that it wil l  not be taken; 
otherwise predict that it wil l  be taken. Purge table 
entries if they are taken, and use LRU replacement to 
add new entries. 

Figure 5 indicates the accuracy of strategy 4 for tables 
of 1, 2, 4, and 8 entries. In some cases, the accuracy 
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was close to strategy 1 for small table sizes and became 
close to strategy 2 as the table size grew. This is 
because small table sizes are not big enough to contain 
all active branch instructions, and they keep replacing 
each other. As a result, few branch instructions are ever 
found in the table, and most branches are predicted as 
taken. As the table size becomes large enough to hold 
all active branches, they are all predicted as in strategy 
2. 

A variation 7 allows earlier predictions than with the 
strategies discussed thus far. In this variation, 
instruction words being fetched are compared with an 
associative memory to see whether the fol lowing word 
was in sequence or out of sequence the last time the 
word was accessed. If it is out of sequence, a memory 
alongside the associative memory gives the address of 
the out-of-sequence word, and instruction fetching can 
begin at the out-of-sequence location. In this way, the 
prediction is, in effect, made before decoding an 
instruction as a branch and even before decomposing 
the instruction word into separate instructions. The 
accuracy of this strategy (75%) 7 is lower than many of 
the strategies given here, partly because the default 
prediction is effectively that the branch will not be 
taken. The prediction, however, can be made earlier in 
the instruction-fetching sequence, and can therefore 
lead to a smoother stream of prefetched instructiohs. 

Another possibility for implementing a dynamic strategy 
when the system contains cache memory is to store 
previous branch outcomes in the cache, s, s 

Strategy 5 

Maintain a bit for each instruction in the cache. If an 
instruction is a branch instruction, the bit is used to 
record if it was taken on its last execution. Branches 
are predicted to be decided as on their last execution; 
if a branch has not been executed, it is predicted to 
be taken (implemented by initializing the bit cache to 
taken when an instruction is first placed in cache). 

Figure 6 shows the result of using strategy 5 when there 
is a 64-word instruction cache with 4 blocks of 16 
words each; replacement in the cache is the LRU 
strategy. The results are close to strategy 2, as 
expected, because an instruction cache hit ratio is 
usually at least 90%. 

There is also a strategy that is similar to strategy 5 
except in its implementation, s A bit is maintained for 
each instruction in the cache, but the bit is not directly 

used to make a branch prediction. First, a static 
prediction based on the operation code is made. Then, 
the prediction is exclusive ORed with the cache 
prediction bit. This changes the prediction if the bit is 
set. Whenever a wrong prediction is made, the cache 
prediction bit is complemented. In this way, branches 
are predicted as in strategy 5, but the prediction 
memory only needs to be updated when there is a 
wrong prediction. This is an advantage if there is a time 
penalty for updating the memory. 

IMPROVED DYNAMIC STRATEGIES 

Several dynamic strategies in the preceding section are 
quite accurate. In this section, they are refined to (1) 
use random access memory instead of associative 
memory and (2) deal with anomalous decisions more 
effectively. 

In any of the strategies, there is always the possibility 
that a prediction may be incorrect, and there must be a 
mechanism for reversing a wrong prediction. This 
implies that there is room for error, and this fact can be 
used to replace associative memory with random access 
memory. 

Instead of using the entire branch instruction's address 
for indexing into a table, it can be hashed down to a 
small number of bits. More than one branch instruction 
might hash to the same index, but at worst, an incorrect 
prediction would result, which could be compensated 
for. 

The hashed address can be used to access a small 
random access memory that contains a bit indicating the 
outcome of the most recent branch instruction hashing 
to the same address. Hashing functions can be quite 
simple; for example, the low-order m bits of the 
address can be used, or the low-order m bits can be 
exclusive ORed with the next higher m bits. With these 
methods, branch instructions in the same vicinity will 
tend to hash to different indices. 

Strategy 6 

Hash the branch instruction address to m bits and 
use this index to address a random access memory 
containing the outcome of the most recent branch 
instruction indexing the same location. Predict that 
the branch outcome wil l  be the same. 
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Although it contr ibutes negl igibly to the results, the 
default  prediction (when a location is accessed the first 
time) can be control led by init ializing the memory to all 
O's or all l ' s .  

Figure 7 indicates the results of using strategy 6 for m 
equals 4 (a random access memory of 16 one-b i t  
words). The exclusive OR hash was used. The results 
are similar to those of strategy 2. 

A variation of strategy 6 can be used to deal w i th  
anomalous branch decisions more effectively. This 
variation uses random access memory words that 
contain a count rather than a single bit. Say the counts 
are init ial ly 0 and the word  length is n; the maximum 
count is 2 "-1 - 1, and the minimum count is -2  "-1 (twos 
complement notation). When a branch instruct ion is 
taken, the memory word  it indexes is incremented (up to 
the l imit of 2 "-1) - 1 ; when it is not taken, the memory 
word is decremented (down to the l imit of -2"-1). 

When a branch instruct ion is to be predicted, its address 
is hashed, and the proper count is read out of random 
access memory. If the sign bit is 0 (a posit ive number 
or 0), the branch is predicted to be taken. If it is 1, the 
branch is predicted to be not taken. In this way, the 
histories of several of the more-recent  branch 
executions determine a predict ion rather than just that  of 
the most recent branch execution. In the case of an 
anomalous branch decision, other preceding decisions 
tend to override the most recent anomalous decision, so 
only one incorrect prediction is made rather than two. 

Strategy 7 

Use strategy 6 wi th  twos complement  counts instead 
of a single bit. Predict that  the branch wi l l  be taken if 
the sign bit of the accessed count is 0; predict that it 
wi l l  not be taken if the sign bit is 1. Increment the 
count when a branch is taken; decrement it when a 
branch is not taken. 

Note that strategy 6 is actually a special case of strategy 
7 w i th  a count of one bit. Also, using a count tends to 
cause a " vo te "  when more than one branch instruct ion 
hashes to the same count. 

Figure 8 summarizes the results of using s~ategy 7 wi th  
counts of 2 and 3 bits and wi th  a hash index of 4 bits. 
The accuracy is quite good; in fact, it is usually as good 
as or better than any strategies looked at thus far. Also, 
a count of 2 bits often gives better accuracy than a 
count of one bit, but going to larger counters than 2 bits 

does not necessarily give better results. This is partially 
attr ibuted to the " iner t ia"  that can be built up w i th  a 
larger counter in which history in the too-d is tan t  past is 
used, or the history of an earlier branch instruction 
hashing to the same address influences predict ions for a 
later branch instruction. 

HIEARCHIAL PREDICTION 

Generally, the farther an instruct ion is processed 
fo l lowing a predicted branch, the greater the t ime 
penalty if the prediction is wrong. For example, if only 
instruct ion prefetches are based on a condit ional branch 
prediction, the t ime penalty wi l l  probably be less than if 
instruct ions are not only prefetched but also preissued. 
That is, the t ime needed to redirect instruct ion 
prefetches is probably less than the "c leanup"  t ime for 
instruct ions issued incorrectly. 

Of course, the rewards are greater the farther an 
instruct ion is processed when the prediction turns out to 
be right. If a level of conf idence can be attached to a 
branch prediction, then performance can be optimized 
by l imit ing the processing of an instruction based on the 
conf idence that a branch predict ion is correct. 

Example 

Assume that for CPU, if instruct ion prefetches are based 
on a branch prediction, an incorrect predict ion leads to a 
6 clock period (cp) delay to fetch the correct 
instructions. If the predict ion is correct, but instruct ions 
are not issued before the outcome is known, there is a 
3 cp delay to wai t  for the branch decision. If 
instruct ions are preissued anyway, and the predict ion is 
correct, there is no delay at all, but if the predict ion is 
incorrect, there is a total of a 12 cp delay. 

Assume that overall, 70% of the branches can be 
predicted correctly. Half of the branches (Set A) can be 
predicted w i th  50% accuracy, and the other half (Set B) 
can be predicted wi th  90% accuracy. Further, assume 
that it is known at the t ime a predict ion is made 
whether  the branch instruct ion belongs to set A or set 
B. 

The three possible strategies and their average delays 
are as fo l lows:  

1. Prefetch for all branches: 
(0.3 x 6 cp) + (0.7 x 3 cp) = 3.9 cp 

2. Prefetch and preissue for all branches: 
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(0.3 x 12 cp) + (0.7 x 0 cp) = 3.6 cp 

3. Prefetch for branches in set A; prefetch and 
preissue for branches in set B: 
0.5 x [(0.5 x 3 cp) + (0.5 x 6 cp)] + 0.5 x 

[(0.1 x 12 cp) + (0.9 x 0 cp)] = 2.85 cp 

The third strategy is best, because it risks the high 12 
clock period penalty only when there is higher 
confidence of being correct. 

Strategy 7 provides a natural way of implementing such 
a hiearchical prediction strategy. If a counter (of at least 
2 bits) is at its maximum value when a prediction is to 
be made, the last prediction must have been that the 
branch would be taken, and it must have been correct. 
A fo l lowing similar prediction would then seem likely to 
be correct. An analogous statement holds if a count is 
at its minimum value. 

Consequently, a prediction based on an extremal counter 
value is a high-conf idence prediction, and a prediction 
based on any other counter value is a lower-conf idence 
prediction. Figure 9 summarizes the results of using 
such an approach. A 16-word  RAM is used with a 
count of 3 bits. 

In all cases studied, the predictions made at the counter 
extremes were more accurate. The greatest variation in 
accuracy was in the SORTST program in which 78.5% 
of the predictions were made at the counter extremes 
(-4, +3), and about 92% were correct. Of the 21.5% of 
the predictions made away from the counter extremes, 
only about 58% were accurate. The least variation was 
in the ADVAN program in which the counters were 
virtually always at their maximum values, and hiearchical 
prediction would have been of no real value. 

The counter method usually achieved what  was 
anticipated in making predictions with two confidence 
levels. This method could be generalized if counter 
ranges were broken into several intervals, a dif ferent 
confidence level being attached to each. 

CONCLUSIONS 

This paper studied the accuracy of branch prediction 
methods proposed elsewhere as wel l  as new methods 
proposed here. A summary of the strategies fol lows. In 
the cases of strategies with several variations, only one 
or two representatives are indicated. Figure 10 gives a 
summary of the results. 

Strategy 1: Predict that all branches wil l  be 
taken. 

Strategy la: Predict that only certain branch 
operation codes wil l  be taken. 

Strategy 2: Always predict that a branch wil l  be 
decided as on its last execution. 

Strategy 3: Predict that only backward branches 
wil l  be taken. 

Strategy 4: Maintain a table of the m most 
recent branches not taken. Predict 
that only branches found in table 
wil l  be not taken. 

Strategy 5: Maintain a history bit in cache and 
predict according to the history bit in 
cache and predict according to the 

history bit (a 64 -word  instruction 
cache was used). 

Strategy 6: 

Strategy 7: 

Hash the branch address to m bits 
and access a 2 m word RAM 

containing history bits, and predict 
according to the history bit. 

Like Strategy 6, but use counters 
instead of a single history bit. 

The dynamic methods tended to be more accurate. Of 
the feasible strategies, strategy 7 was the most 
accurate. It also had the advantage of using random 
access memory rather than associative memory. For 
attaching levels of confidence to predictions, strategy 7 
was easily adapted and gave good results. At  least for 
the applications studied here, strategy 7 is probably the 

best choice based on accuracy, cost, and flexibil ity. 
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Program Prediction Accuracy 

ADVAN 99.4 

GIBSON 65.4 

SCI2 96.2 

SINCOS 80.2 

SORTST 57.4 

TBLLNK 61.5 

Figure 1. Accuracy of Prediction (%) for Strategy 1 

Program Prediction Accuracy 

ADVAN 98.9 

GIBSON 97.9 

SCI2 96.0 

SINCOS 76.2 

SORTST 81.7 

TBLLNK 91.7 

Figure 2. Accuracy of Prediction (%) for Strategy 2 
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PROGRAM PREDICTED ACCURACY 

ADVAN 99.4 

GIBSON 98.5 

SCI2 97.9 

SINCOS 65.7 

SORTST 82.5 

TBLLNK 76.2 

Figure 3. Accuracy of Prediction (%) for la  on CY170 Kernels 

PROGRAM PREDICTION ACCURACY 

GIBSON 81.9 

SC12 98.0 

SINC0S 35.2 

SORTST 82.5 

TBLLNK 84.9 

Figure 4. Accuracy of Prediction (%) for Strategy 3 
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PROGRAM 1 

PREDICTION ACCURACY 

Table Size 
2 4 8 

ADVAN 98.9 98.9 98.9 98.9 

GIBSON 65.4 97.9 97.9 97.9 

SCI2 96.1 96.1 96.0 96.0 

SINCOS 7 6 . 2  7 6 . 2  7 6 . 2  7 6 . 2  

SORTST 5 7 . 3  81.7 81.7 81.7 

TBLLNK 61.5 61.5 91.7 91.7 

Figure 5. Accuracy of Prediction (%) for Strategy 4 

PREDICTION ACCURACY 
PROGRAM CYi70 

ADVAN 98.9 

GIBSON 97.0 

SCI2 96.0 

SINCOS 76.1 

SORTST 81.7 

TBLLNK 91.7 

Figure 6. Accuracy of Prediction (%) for Strategy 5 
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PROGRAM PREDICTION ACCURACY 

ADVAN 98.9 

GIBSON 97.9 

SCI2 96.0 

SINCOS 76.2 

SORTST 81.7 

TBLLNK 91.8 

Figure 7. Accuracy of Prediction (%) for Strategy 6 

PROGRAM 2 

PREDICTION ACCURACY 

BIT COUNTER 3 BIT COUNTER 

ADVAN 99.4 99.4 

GIBSON 97.9 97.3 

SCI2 98.0 98.0 

SINCOS 80.1 83.4 

SORTST 84.7 81.7 

TBLLNK 95.2 94.6 

Figure 8. Accuracy of Prediction (%) for Strategy 7 for Counters of 2 and 3 Sits 
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% Correct % % 
% Prediction at Correct Not Correct 

PROGRAM Made At Extremes Extremes At Extremes Overall 

ADVAN 99.3 99.4 87.8 99.4 

GIBSON 91.3 98.3 86.8 97.3 

SCI2 98.0 99.8 99.4 98.0 

SINCOS 78.4 85.7 75.1 83.4 

SORTST 78.5 92.1 57.7 84.7 

TBLLNK 96.8 95.2 76.2 94.6 

Figure 9. Accuracy of Hierarchical Prediction for Strategy 7 w i th  16-Word Memory and Counters of 3 Bits 
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Figure 10. Summary of Results 
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