
A STUDY OF BRANCH PREDICTION STRATEGIES

JAMES E. SMITH

Control Data Corporation
Arden Hills, Minnesota

ABSTRACT

In high-performance computer systems, performance losses
due to conditional branch instructions can be minimized by
predicting a branch outcome and fetching, decoding, and/or
issuing subsequent instructions before the actual outcome is
known. This paper discusses branch prediction strategies with
the goal of maximizing prediction accuracy. First, currently
used techniques are discussed and analyzed using instruction
trace data. Then, new techniques are proposed and are shown
to provide greater accuracy and more flexibility at low cost.

INTRODUCTION

It is well known 1-3:° that in a highly parallel computer
system, branch instructions can break the smooth f low
of instruction fetching and execution. This results in
delay, because a branch that is taken changes the
location of instruction fetches and because the issuidg
of instructions must often wait until conditional branch
decisions are made.

To reduce delay, one can attempt to predict the
direction that a branch instruction wil l take and begin
fetching, decoding, or even issuing instructions before
the branch decision is made. Unfortunately, a wrong
prediction may lead to more delay if, for example,
instructions on the correct branch path need to be
fetched or partially executed instructions on the wrong
path need to be purged. The disparity bet~veen the
delay for a correctly predicted branch and an incorrectly
predicted branch points to the need for accurate branch
prediction strategies.

This paper discusses branch prediction strategies with
the goal of maximizing the likelihood of correctly
predicting the outcome of a branch. First, previously
suggested branch prediction techniques are discussed.
Owing to the large number of variations and
configurations, only a few representative strategies have
been singled out for detailed study, although several are
mentioned. Then, new techniques are proposed that
provide more accuracy, less cost, and more flexibil ity
than methods used currently.

Because of the wide variation in branching behavior
between different applications, different programming
languages, and even individual programs, there is no
good analytic model for studying branch prediction. For
this reason, we used instruction trace data to measure
experimentally the accuracy of branch prediction
strategies.

Originally, ten FORTRAN programs, primarily scientific,
were chosen. It was found, however, that several were
heavily dominated by inner loops, which made them very
predictable by every strategy considered. Two
programs, SCI2 and ADVAN, were chosen from this
inner-loop-dominated class. Four other programs were
not as heavily dominated by inner loops and were less
predictable. All were chosen for the study.

The six FORTRAN programs used in this study were:

1. ADVAN : Calculates the solution of three
simultaneous partial differential
equations

2. SCI2: Performs matrix inversion

3. SINCOS: Converts a series of points from
polar to Cartesian coordinates

4. SORTST: Sorts a list of 10,000 integers using
the shell sort algorithm 9

5. GIBSON: An artificial program that compiles
to instructions that roughly satisfy
the so called GIBSON mix 5

6. TBLLNK: Processes a linked list and contains
a variety of conditional branches

The programs were compiled for a CDC CYBER 170
architecture.

Note that other than ADVAN and SCI2, the test
programs were chosen for their unpredictability, and that
a more typical scientific mix would contain more
programs like ADVAN and SCI2.

0149-71111811000010135500.75 © 1981 IEEE | 3 5

Because of the method used for evaluating prediction
strategies, any conclusions regarding their relative
performance must be considered in light of the
application area and the language used here.
Nevertheless, the basic concepts and the strategies are
of broader interest, because it is relatively
straightforward to generate instruction traces and to
measure prediction accuracy for other applications or
languages.

Results published previously in this area appear in
Shustek 8, who used instruction trace data to evaluate
strategies for the IBM System 360/370 architecture.
Ibbett 7 described the instruction pipeline of the MU5
computer and gave experimental results for a particular
branch prediction strategy. A rather sophisticated
branch predictor has been described for the $1
processor, 8 but as of this writing, no information
appears to have been published regarding its accuracy.
Branch prediction strategies have also been used in
other high performance processors, but, again,
experimental results have not been published.

Our study begins in the next section, with two branch
prediction strategies that are often suggested. These
strategies indicate the success that can reasonably be
expected. They also introduce concepts and terminology
used in this paper. Strategies are divided into two basic
categories, depending on whether or not past history
was used for making a prediction. In subsequent
sections, strategies belonging to each of the categories
are discussed, and further refinements intended to
reduce cost and increase accuracy are presented. Levels
of confidence are attached to branch predictions to
minimize delay when there are varying degrees to which
branch outcomes can be anticipated (for example,
prefetching instructions is one degree, preissuing them
is another). Conclusions are given in the final section.

TWO PRELIMINARY PREDICTION STRATEGIES

Branch instructions test a condition specified by the
instruction. If the condition is true, the branch is taken:
instruction execution begins at the target address
specified by the instruction. If the condition is false, the
branch is not taken, and instruction execution continues
with the instruction sequentially fol lowing the branch
instruction. An unconditional branch has a condition that
is always true (the usual case) or is always false
(effectively, a pass). Because unconditional branches
typically are special cases of conditional branches and
use the same operation codes, we did not distinguish

them when gathering statistics, and hence, unconditional
branches were included.

A straightforward method for branch prediction is to
predict that branches are either always taken or always
not taken. Because most unconditional branches are
always taken, and loops are terminated with branches
that are taken to the top of the loop, predicting that all
branches are taken results typically in a success rate of
over 50%.

Strategy 1

• Predict that all branches will be taken.

Figure 1 summarizes the results of using strategy 1 on
the six FORTRAN benchmarks.

From Figure 1, it is evident that the majority of branches
are taken, although the success rates vary widely from
program to program. This points to one factor that must
be considered when evaluating prediction strategies:
program sensitivity. The algorithm being programmed,
as well as the programmer and the compiler, can
influence the structure of the program and,
consequently, the percentage of branches that are taken.
High program sensitivity can lead to widely different
prediction accuracies. This, in turn, can result in
significant differences in program performance that may
be diff icult for the programmer of a high-level language
to anticipate.

Strategy 1 always makes the same prediction every time
a branch instruction is encountered. Because of this,
strategy 1 is called static. It has been observed and
documented, 8 however, that the likelihood of a
conditional branch instruction at a particular location
being taken is highly dependent on the way the same
branch was decided previously. This leads to dynamic
prediction strategies in which the prediction varies,
based on branch history.

Strategy 2

Predict that a branch wil l be decided the same way
as it was on its last execution. If it has not been
previously executed, predict that it wil l be taken.

The results (Figure 2) of using strategy 2, indicate that
strategy 2 generally provides better accuracy than
strategy 1. Unfortunately, strategy 2 is not physically
realizable, because theoretically, there is no bound on

136

the number on individual branch instructions that a
program may contain. (In practice, however, it may be
possible to record the history of a limited number of
past branches; such strategies are discussed in a
subsequent section.)

Strategies 1 and 2 provide standards for judging other
branch prediction strategies. Strategy 1 is simple and
inexpensive to implement, and any strategy that is
seriously being considered for use should perform at
least at the same level as strategy 1. Strategy 2 is
widely recognized as being accurate, and if a feasible
strategy comes close to (or exceeds) the accuracy of
strategy 2, the strategy is about as good as can
reasonably be expected.

Strategy 1 is apparently more program sensitive than
strategy 2. Evidence of this is the wide variation in
accuracy for strategy 1 and the much narrower variation
for strategy 2 (Figures 1 and 2). Strategy 2 has a kind
of second-order program sensitivity, however, in that a
branch that has not previously been executed is
predicted to be taken. Lower program sensitivity for
dynamic prediction strategies is typical, as results
throughout this paper show.

Finally, it is interesting that one aspect of branch
behavior leads occasionally to better accuracy with
strategy 1 than strategy 2. Often, a particular branch
instruction is predominately decided one way (for
example, a conditional branch that terminates a loop is
most often taken). Sometimes, however, it is decided
the other way (when "fal l ing out of the loop"). These
anomalous decisions, are treated differently by strategies
1 and 2. Strategy 1, if it is being used on a branch that
is most often taken, leads to one incorrect prediction for
each anomalous not taken decision. Strategy 2 leads to
two incorrect predictions; one for the anomalous
decision and one for the subsequent branch decision.
The handling of anomalous decisions explains those
instances in which strategy 1 outperforms strategy 2
and indicates that there may exist some strategies that
consistently exceed the success rate of strategy 2.

attempts to exploit program sensitivities by observing,
for example, that certain branch types are used to
terminate loops, while others are used in
IF-THEN-ELSE-type constructs.

Strategy l a

Predict that all branches with certain operation codes
wil l be taken; predict that the others will not be
taken.

The six CYBER 170 FORTRAN programs were
examined, and it was found that "branch if negative",
"branch if equal", and "branch if greater than or equal'"
are usually taken, so they are always predicted to be
taken. Other operation codes are always predicted to be
not taken. This strategy is somewhat tuned to the six
benchmarks, because only the benchmarks were
analyzed to determine which opcodes should be
predicted to be taken. For this reason, the results for
strategy la may be slightly optimistic.

Figure 3 shows the results for strategy la when it was
applied to the CY170 programs. Generally, greater
accuracy was achieved with strategy la than with
strategy 1. The largest increase was in the GIBSON
program in which the prediction accuracy was improved
from 65.4% to 98.5%. The only program showing a
decrease in accuracy was the SINCOS program in which
there was a drop from 80.2% to 65.7%. The changes
in both the GIBSON and SINCOS programs can be
attributed to predicting that "branch if plus" was not
taken. If it had been predicted as taken, the accuracy of
the GIBSON program would have dropped nearly to its
original value, and the accuracy of the SINCOS program
would have risen nearly to its original value.

Other static strategies are possible. For example,
predictions based on the direction of the potential
branch or on the distance to the branch target can be
made. Following is a detailed description of one of
these strategies.

STATIC PREDICTION STRATEGIES

Strategy 1 (always predict that a branch is taken) and its
converse (always predict that a branch is not taken) are
two examples of static prediction strategies. A further
refinement of strategy 1 is to make a prediction based
on the type of branch, determined, for example, by
examining the operation code. This is the strategy used
in some of the IBM System 360/370 models 9 and

Strategy 3

Predict that all backward branches (toward lower
addresses) will be taken; predict that all forward
branches will not be taken.

The thought behind strategy 3 is that loops are
terminated with backward branches, and if all loop

137

branches are correctly predicted, the overall accuracy
will be high.

Figure 4 indicates that strategy 3 often worked well,
sometimes exceeding strategy 2 (probably because of
the anomalous decision case). There is, however, one
program in which its performance was poor: in the
SlNCOS program, the accuracy for strategy 3 was about
35%. This indicates that program sensitivity is
significant and that performance can suffer considerably
for some programs.

A disadvantage of strategy 3, and of other strategies
using the target address, is that the target address may
need to be computed or compared with the program
counter before a prediction can be make. This tends to
make the prediction process slower than for other
strategies.

DYNAMIC PREDICTION STRATEGIES

Some strategies base predictions on past branch history.
Strategy 2 is an idealized strategy of this type, because
it assumes knowledge of the history of all branch
instructions. The strategies discussed in this section are
actually realizable, because they use bounded tables to
record a limited amount of past branch history.

Branch history can be used in several ways to make a
branch prediction. One possibility is to use the outcome
of the most recent execution of the branch instruction;
this is done by strategy 2. Another possibility is to use
more than one of the more recent executions to predict
according to the way a majority of them were decided;
this is done by strategy 7. A third possibility is to use
only the first execution of the branch instruction as a
guide; a strategy of this type, although accurate, has
been found to be slightly less accurate than other
dynamic strategies.

First, strategies are considered that base their
predictions on the most recent branch execution
(strategy 2). The most straightforward strategy is to use
an associative memory that contains the addresses of
the n most-recent branch instructions and a bit
indicating whether the branch was taken or not taken.
The memory is accessed with the address of the branch
instruction to be predicted, and the taken or not taken
bit is used to make the prediction.

If a branch instruction is not found in the table, two
issues must be considered: (1) the prediction that is to
be made, and (2) the table entry that should be replaced

to make room for the new branch instruction. First, if a
branch instruction is not in the table, some static
strategy must be reverted to for a default prediction. A
good choice is to predict that the branch is taken as in
strategy 2.

A more complex default strategy could be used (strategy
la, for example), but using the simpler always predict
taken strategy has a positive side effect. In particular,
only branch instructions that are not taken need to be
put into the table; then, the existence of a branch in the
table implies ,it was previously not taken. Branches that
were recently taken are given the proper prediction by
default. One bit of memory is saved, but more
importantly, histories of more branch instructions are
effectively remembered. For example, if two out of the
eight most-recent branch instructions executed are not
taken, then all eight consume only two table entries,
although all are predicted to have the same outcome as
on their previous executions. A dual strategy is to use a
default prediction of branch not taken and to maintain a
table of branches most recently taken. Because most
branch instructions are taken, however, this strategy is
generally less accurate.

As far as replacement strategies, f i rst- in f i rst-out (FIFO)
and least-recently used (LRU) seem to be two
reasonable alternatives. For the application here, in
which the sequence of branch instructions tends to be
periodic because of the iterative structure of most
programs, there is actually little difference between the
FIFO and LRU strategies as far as prediction accuracy.
The LRU strategy does appear to be more compatible
with the scheme mentioned previously in which only
branches that were not taken are recorded. Then, if a
branch in the table is taken, it is purged from the table,
and that table location is recorded as being least
recently used. A branch that is taken subsequently fills
the vacancy in the table rather than replacing a good
table entry. Such a scheme for fill ing vacancies in the
table fits naturally with the LRU replacement strategy.

Strategy 4

Maintain a table of the most recently used branch
instructions that are not taken. If a branch instruction
is in the table, predict that it wil l not be taken;
otherwise predict that it wil l be taken. Purge table
entries if they are taken, and use LRU replacement to
add new entries.

Figure 5 indicates the accuracy of strategy 4 for tables
of 1, 2, 4, and 8 entries. In some cases, the accuracy

138

was close to strategy 1 for small table sizes and became
close to strategy 2 as the table size grew. This is
because small table sizes are not big enough to contain
all active branch instructions, and they keep replacing
each other. As a result, few branch instructions are ever
found in the table, and most branches are predicted as
taken. As the table size becomes large enough to hold
all active branches, they are all predicted as in strategy
2.

A variation 7 allows earlier predictions than with the
strategies discussed thus far. In this variation,
instruction words being fetched are compared with an
associative memory to see whether the fol lowing word
was in sequence or out of sequence the last time the
word was accessed. If it is out of sequence, a memory
alongside the associative memory gives the address of
the out-of-sequence word, and instruction fetching can
begin at the out-of-sequence location. In this way, the
prediction is, in effect, made before decoding an
instruction as a branch and even before decomposing
the instruction word into separate instructions. The
accuracy of this strategy (75%) 7 is lower than many of
the strategies given here, partly because the default
prediction is effectively that the branch will not be
taken. The prediction, however, can be made earlier in
the instruction-fetching sequence, and can therefore
lead to a smoother stream of prefetched instructiohs.

Another possibility for implementing a dynamic strategy
when the system contains cache memory is to store
previous branch outcomes in the cache, s, s

Strategy 5

Maintain a bit for each instruction in the cache. If an
instruction is a branch instruction, the bit is used to
record if it was taken on its last execution. Branches
are predicted to be decided as on their last execution;
if a branch has not been executed, it is predicted to
be taken (implemented by initializing the bit cache to
taken when an instruction is first placed in cache).

Figure 6 shows the result of using strategy 5 when there
is a 64-word instruction cache with 4 blocks of 16
words each; replacement in the cache is the LRU
strategy. The results are close to strategy 2, as
expected, because an instruction cache hit ratio is
usually at least 90%.

There is also a strategy that is similar to strategy 5
except in its implementation, s A bit is maintained for
each instruction in the cache, but the bit is not directly

used to make a branch prediction. First, a static
prediction based on the operation code is made. Then,
the prediction is exclusive ORed with the cache
prediction bit. This changes the prediction if the bit is
set. Whenever a wrong prediction is made, the cache
prediction bit is complemented. In this way, branches
are predicted as in strategy 5, but the prediction
memory only needs to be updated when there is a
wrong prediction. This is an advantage if there is a time
penalty for updating the memory.

IMPROVED DYNAMIC STRATEGIES

Several dynamic strategies in the preceding section are
quite accurate. In this section, they are refined to (1)
use random access memory instead of associative
memory and (2) deal with anomalous decisions more
effectively.

In any of the strategies, there is always the possibility
that a prediction may be incorrect, and there must be a
mechanism for reversing a wrong prediction. This
implies that there is room for error, and this fact can be
used to replace associative memory with random access
memory.

Instead of using the entire branch instruction's address
for indexing into a table, it can be hashed down to a
small number of bits. More than one branch instruction
might hash to the same index, but at worst, an incorrect
prediction would result, which could be compensated
for.

The hashed address can be used to access a small
random access memory that contains a bit indicating the
outcome of the most recent branch instruction hashing
to the same address. Hashing functions can be quite
simple; for example, the low-order m bits of the
address can be used, or the low-order m bits can be
exclusive ORed with the next higher m bits. With these
methods, branch instructions in the same vicinity will
tend to hash to different indices.

Strategy 6

Hash the branch instruction address to m bits and
use this index to address a random access memory
containing the outcome of the most recent branch
instruction indexing the same location. Predict that
the branch outcome wil l be the same.

139

Although it contr ibutes negl igibly to the results, the
default prediction (when a location is accessed the first
time) can be control led by init ializing the memory to all
O's or all l ' s .

Figure 7 indicates the results of using strategy 6 for m
equals 4 (a random access memory of 16 one-b i t
words). The exclusive OR hash was used. The results
are similar to those of strategy 2.

A variation of strategy 6 can be used to deal w i th
anomalous branch decisions more effectively. This
variation uses random access memory words that
contain a count rather than a single bit. Say the counts
are init ial ly 0 and the word length is n; the maximum
count is 2 "-1 - 1, and the minimum count is -2 "-1 (twos
complement notation). When a branch instruct ion is
taken, the memory word it indexes is incremented (up to
the l imit of 2 "-1) - 1 ; when it is not taken, the memory
word is decremented (down to the l imit of -2"-1).

When a branch instruct ion is to be predicted, its address
is hashed, and the proper count is read out of random
access memory. If the sign bit is 0 (a posit ive number
or 0), the branch is predicted to be taken. If it is 1, the
branch is predicted to be not taken. In this way, the
histories of several of the more-recent branch
executions determine a predict ion rather than just that of
the most recent branch execution. In the case of an
anomalous branch decision, other preceding decisions
tend to override the most recent anomalous decision, so
only one incorrect prediction is made rather than two.

Strategy 7

Use strategy 6 wi th twos complement counts instead
of a single bit. Predict that the branch wi l l be taken if
the sign bit of the accessed count is 0; predict that it
wi l l not be taken if the sign bit is 1. Increment the
count when a branch is taken; decrement it when a
branch is not taken.

Note that strategy 6 is actually a special case of strategy
7 w i th a count of one bit. Also, using a count tends to
cause a " vo te " when more than one branch instruct ion
hashes to the same count.

Figure 8 summarizes the results of using s~ategy 7 wi th
counts of 2 and 3 bits and wi th a hash index of 4 bits.
The accuracy is quite good; in fact, it is usually as good
as or better than any strategies looked at thus far. Also,
a count of 2 bits often gives better accuracy than a
count of one bit, but going to larger counters than 2 bits

does not necessarily give better results. This is partially
attr ibuted to the " iner t ia" that can be built up w i th a
larger counter in which history in the too-d is tan t past is
used, or the history of an earlier branch instruction
hashing to the same address influences predict ions for a
later branch instruction.

HIEARCHIAL PREDICTION

Generally, the farther an instruct ion is processed
fo l lowing a predicted branch, the greater the t ime
penalty if the prediction is wrong. For example, if only
instruct ion prefetches are based on a condit ional branch
prediction, the t ime penalty wi l l probably be less than if
instruct ions are not only prefetched but also preissued.
That is, the t ime needed to redirect instruct ion
prefetches is probably less than the "c leanup" t ime for
instruct ions issued incorrectly.

Of course, the rewards are greater the farther an
instruct ion is processed when the prediction turns out to
be right. If a level of conf idence can be attached to a
branch prediction, then performance can be optimized
by l imit ing the processing of an instruction based on the
conf idence that a branch predict ion is correct.

Example

Assume that for CPU, if instruct ion prefetches are based
on a branch prediction, an incorrect predict ion leads to a
6 clock period (cp) delay to fetch the correct
instructions. If the predict ion is correct, but instruct ions
are not issued before the outcome is known, there is a
3 cp delay to wai t for the branch decision. If
instruct ions are preissued anyway, and the predict ion is
correct, there is no delay at all, but if the predict ion is
incorrect, there is a total of a 12 cp delay.

Assume that overall, 70% of the branches can be
predicted correctly. Half of the branches (Set A) can be
predicted w i th 50% accuracy, and the other half (Set B)
can be predicted wi th 90% accuracy. Further, assume
that it is known at the t ime a predict ion is made
whether the branch instruct ion belongs to set A or set
B.

The three possible strategies and their average delays
are as fo l lows:

1. Prefetch for all branches:
(0.3 x 6 cp) + (0.7 x 3 cp) = 3.9 cp

2. Prefetch and preissue for all branches:

140

(0.3 x 12 cp) + (0.7 x 0 cp) = 3.6 cp

3. Prefetch for branches in set A; prefetch and
preissue for branches in set B:
0.5 x [(0.5 x 3 cp) + (0.5 x 6 cp)] + 0.5 x

[(0.1 x 12 cp) + (0.9 x 0 cp)] = 2.85 cp

The third strategy is best, because it risks the high 12
clock period penalty only when there is higher
confidence of being correct.

Strategy 7 provides a natural way of implementing such
a hiearchical prediction strategy. If a counter (of at least
2 bits) is at its maximum value when a prediction is to
be made, the last prediction must have been that the
branch would be taken, and it must have been correct.
A fo l lowing similar prediction would then seem likely to
be correct. An analogous statement holds if a count is
at its minimum value.

Consequently, a prediction based on an extremal counter
value is a high-conf idence prediction, and a prediction
based on any other counter value is a lower-conf idence
prediction. Figure 9 summarizes the results of using
such an approach. A 16-word RAM is used with a
count of 3 bits.

In all cases studied, the predictions made at the counter
extremes were more accurate. The greatest variation in
accuracy was in the SORTST program in which 78.5%
of the predictions were made at the counter extremes
(-4, +3), and about 92% were correct. Of the 21.5% of
the predictions made away from the counter extremes,
only about 58% were accurate. The least variation was
in the ADVAN program in which the counters were
virtually always at their maximum values, and hiearchical
prediction would have been of no real value.

The counter method usually achieved what was
anticipated in making predictions with two confidence
levels. This method could be generalized if counter
ranges were broken into several intervals, a dif ferent
confidence level being attached to each.

CONCLUSIONS

This paper studied the accuracy of branch prediction
methods proposed elsewhere as wel l as new methods
proposed here. A summary of the strategies fol lows. In
the cases of strategies with several variations, only one
or two representatives are indicated. Figure 10 gives a
summary of the results.

Strategy 1: Predict that all branches wil l be
taken.

Strategy la: Predict that only certain branch
operation codes wil l be taken.

Strategy 2: Always predict that a branch wil l be
decided as on its last execution.

Strategy 3: Predict that only backward branches
wil l be taken.

Strategy 4: Maintain a table of the m most
recent branches not taken. Predict
that only branches found in table
wil l be not taken.

Strategy 5: Maintain a history bit in cache and
predict according to the history bit in
cache and predict according to the

history bit (a 64 -word instruction
cache was used).

Strategy 6:

Strategy 7:

Hash the branch address to m bits
and access a 2 m word RAM

containing history bits, and predict
according to the history bit.

Like Strategy 6, but use counters
instead of a single history bit.

The dynamic methods tended to be more accurate. Of
the feasible strategies, strategy 7 was the most
accurate. It also had the advantage of using random
access memory rather than associative memory. For
attaching levels of confidence to predictions, strategy 7
was easily adapted and gave good results. At least for
the applications studied here, strategy 7 is probably the

best choice based on accuracy, cost, and flexibil ity.

REFERENCES

1D. W. Anderson et al. The IBM System/360 model 91 :
Machine philosophy and instruction handling, IBM Journal
(Jan. 1967), 8-24.

2M. J. Flynn. Some computer organizations and their
effectiveness, IEEE Transactions on Computers, C-21 (Sept.
1972), 948-960.

3H. D. Shapiro. A comparison of various methods for detecting
and utilizing parallelism in a single instruction stream,
Proceedings of the 1977 International Conference on Parallel
Processing (Aug. 1977), 67-76.

141

4D. E. Knuth. The Art of Computer Programming, vol.
3-Sorting and Searching (Reading, Mass.: Addison-Wesley
1973), 84-95.

5j. C. Gibson. The Gibson mix (Report TR 00.2043), IBM
Systems Development Division, 1970.

6L. J. Shustek. Analysis and performance of computer
instruction sets (Report 205), Stanford Linear Accelerator
Center, 1978.

7R. N. Ibbett. The MU5 instruction pipeline, The Computer
Journal, 15 (Feb. 1972), 42-50.

8S1 Project Staff. Advanced digital computing technology base
development for Navy applications: The S-1 project,
Lawrence Livermore Laboratories (Technical report UCID
18038), 1978.

91. Flores. Lookahead control in the IBM System 370 Model
165, Computer, 7 (Nov. 1974), 24-38.

l°E. M. Riseman and C. C. Foster. The inhibition of potential
parallelism by conditional jumps, IEEE Transactions on
Computers, C-21 (Dec. 1972), 1405-1411.

142

Program Prediction Accuracy

ADVAN 99.4

GIBSON 65.4

SCI2 96.2

SINCOS 80.2

SORTST 57.4

TBLLNK 61.5

Figure 1. Accuracy of Prediction (%) for Strategy 1

Program Prediction Accuracy

ADVAN 98.9

GIBSON 97.9

SCI2 96.0

SINCOS 76.2

SORTST 81.7

TBLLNK 91.7

Figure 2. Accuracy of Prediction (%) for Strategy 2

143

PROGRAM PREDICTED ACCURACY

ADVAN 99.4

GIBSON 98.5

SCI2 97.9

SINCOS 65.7

SORTST 82.5

TBLLNK 76.2

Figure 3. Accuracy of Prediction (%) for la on CY170 Kernels

PROGRAM PREDICTION ACCURACY

GIBSON 81.9

SC12 98.0

SINC0S 35.2

SORTST 82.5

TBLLNK 84.9

Figure 4. Accuracy of Prediction (%) for Strategy 3

144

PROGRAM 1

PREDICTION ACCURACY

Table Size
2 4 8

ADVAN 98.9 98.9 98.9 98.9

GIBSON 65.4 97.9 97.9 97.9

SCI2 96.1 96.1 96.0 96.0

SINCOS 7 6 . 2 7 6 . 2 7 6 . 2 7 6 . 2

SORTST 5 7 . 3 81.7 81.7 81.7

TBLLNK 61.5 61.5 91.7 91.7

Figure 5. Accuracy of Prediction (%) for Strategy 4

PREDICTION ACCURACY
PROGRAM CYi70

ADVAN 98.9

GIBSON 97.0

SCI2 96.0

SINCOS 76.1

SORTST 81.7

TBLLNK 91.7

Figure 6. Accuracy of Prediction (%) for Strategy 5

145

PROGRAM PREDICTION ACCURACY

ADVAN 98.9

GIBSON 97.9

SCI2 96.0

SINCOS 76.2

SORTST 81.7

TBLLNK 91.8

Figure 7. Accuracy of Prediction (%) for Strategy 6

PROGRAM 2

PREDICTION ACCURACY

BIT COUNTER 3 BIT COUNTER

ADVAN 99.4 99.4

GIBSON 97.9 97.3

SCI2 98.0 98.0

SINCOS 80.1 83.4

SORTST 84.7 81.7

TBLLNK 95.2 94.6

Figure 8. Accuracy of Prediction (%) for Strategy 7 for Counters of 2 and 3 Sits

146

% Correct % %
% Prediction at Correct Not Correct

PROGRAM Made At Extremes Extremes At Extremes Overall

ADVAN 99.3 99.4 87.8 99.4

GIBSON 91.3 98.3 86.8 97.3

SCI2 98.0 99.8 99.4 98.0

SINCOS 78.4 85.7 75.1 83.4

SORTST 78.5 92.1 57.7 84.7

TBLLNK 96.8 95.2 76.2 94.6

Figure 9. Accuracy of Hierarchical Prediction for Strategy 7 w i th 16-Word Memory and Counters of 3 Bits

147

O~

0

CO
CO CO

Od

©1

0

cry

cM

co

co

o) 0 0

co

il • ~ o',

cO

c~J o~ 0 c~J u'~ O~

O) co 0'~ cO co co

cr~ 0

tD

od

,d
co o)

,¢

o~
O~ ~D

~J

C~

c~J

co u~

tJ~

~D

Z

Figure 10. Summary of Results

Z
0

I--t

Od
I--t
¢.P

0

Z
I - I 0

148

