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Abstract 

Fault secure multiple-valued logic networks 
have their outputs encoded in an error-detecting 
code so that assumed failures either result in 
no output error or in a detectable (noncode) 
output. In this paper we discuss a way of con- 
structing fault secure combinational networks 
as well as a generalization that we define to be 
"strongly fault secure." The only constraint on 
the networks themselves is that they be made of 
positive unate gates and use unordered output 
encodings. 

The fault assumptions are quite general; 
they include stuck-at faults as well as many 
other failures which seem reasonable in a 
multiple-valued technology. Protection is pro- 
vided against both permanent and intermittent 
faults. Various unordered codes and their pro- 
perties are discussed as is the construction of 
check circuits that are themselves fault secure 
or strongly fault secure. 

I. Introduction 

In theory, multiple-valued logic networks 
enjoy many advantages over two-valued networks 
[i]. Nevertheless, two-valued networks are used 
almost exclusively in practice, and a major rea- 
son is that two-valued logic networks are more 
reliable. To take one example, multiple-valued 
networks may have more critical noise tolerances 
than two-valued networks. In order for multiple- 
valued logic with its attendant advantages to 
be of practical use, the reliability problem 
must be solved. 

There are two fundamental approaches to 
increasing the reliability of logic networks. 
The first is to simply increase the reliability 
of the individual components (e.g. gates). The 
second approach is applied at a higher level 
and involves interconnecting components so that 
reliability is increased due to the structure 
of the interconnection. A very simple example 
of the second approach is the use of triplica- 
tion and voting [2]. Of course, these two 
approaches can be used separately, or they can 
be used in combination. 

This paper presents an approach to the 
reliability problem that falls into the second 

Western Electric Eng. Res. Ctr. 
Princeton, New Jersey 

of the above categories. We discuss a class 
of combinational multiple-valued logic networks 
that have their output signals encoded in an 
error-detecting code. These networks are de- 
signed so that assumed failures (faults) either 
result in a detectable error (i.e. a noncode 
output) or in no error at all. This approach 
is based on the philosophy that the costly 
errors are those that go undetected. Errors 
can still occur using the proposed method, but 
they are immediately detected so that undesir- 
able consequences can be minimized. 

It appears that intermittent faults may 
be of great concern in multiple-valued networks 
due to such things as reduced noise tolerance. 
An additional advantage of the netwoTks dis- 
cussed here is that they are very effective 
at combating intermittent faults, and it is 
felt that the method given is one of the few 
practical ways of dealing with intermittent 
faults. 

Networks that have the error-detecting 
property informally described above have 
studied for two-valued logic and are said to 
be "fault secure" ~3]. Formal definitions of 
the fault secure property and a useful gener- 
alization are given and discussed in the sequel. 
The theory developed here is in some ways a 
straightforward extension of existing theory 
developed ~or the two-valued case [3-8]. 
However, in\the area of fault modeling we depart 
from the obvious extension, and it is this 
departure that leads to what we feel are inter- 
sting and practical results. 

If. Preliminaries 

A. Basic Definitions 

We consider multiple input, multiple output 
combinational logic networks which are formed 
as acyclic interconnections of multiple-valued 
gates. Let G be an m-valued logic network. 

n 
Then if G has n primary input lines, the m 
vectors of length n form the input space, X, 
of G. The output s~, Y, is similarly defined 
to be the set of m r vectors of length p where 
G has p primary outputs. During normal, i.e. 
failure-free, operation G receives only a 
subset of X called the input code space, A, and 
produces a subset of Y called the output code 
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space, B. Members of a code space are called 
code words. Under faults, noncode words may be 
produced. 

B. Post Algebras 

The logic networks to be studied here are 
based on Post algebras [16,17]. For an m-valued 
system we use Post chains formed from the set of 
integers [0,1,2, ..., m-l] and the natural 
partial ordering ~. A function or order n (i.e. 
n variables) possesses m n entries in its truth 
table so that there exist m mn truth tables (and 
functions) or order n. 

Post showed that the following two 
operators form a functionally complete set: 

A 
I) f+g = max (f,g) 

2) p+ ~(p+l) mod m. 

Another important operator, not needed for 
functional completeness, but equally simple 
to generate and helpful in constructing 
functions is the minimum operation: 

3) f'g ~ rain (f,g). 

With the min and max operators being the great- 
test lower bound and least upper bound,respec- 
tively,the lattice of truth values is a chain 
lattice, an example of which is shown in Figure 
la. Figures ib and ic show the lattices pxp 
and pxpxp and indicate a partial ordering among 
m-valued vectors or vertices. 

Although forming a complete set of opera- 
tors with max and min functions, the cycling 
operation is not the only unary function of 
interest. For an m-valued system, there are 
m 

m such functions. As an example, consider the 
27 possible ternary functions of a single 
variable: 

x Z 

0 000000000111111  1222222222 
000111222000111222000111222 

012012012012012012012012012 

, Unary functions will be denoted as 
X tao'al''''am-l) and will take value a. if x=i, 
0<i<m-l. For example X ÷ = X(120)in ternary 
algebra. For constructing logic networks it is 
desirable to limit the number of unary operators 
for the usual reasons associated with modularity. 
Due to other considerations, however, it may not 
always be possible to use a minimum number. 

The partial ordering relation indicated 
in Figure 1 can be reformulated into the con- 
cept of covering. 

Definition i: A vertex XlX2...x covers 
n - -  

> 
a vertex y~y .... y , denoted as XlX 2...xn-yly2... 

.~ ~ ± ~ n 

Yn xz xi_ty i for all i. 

Using the max and min operators one can say 
x.x .... x ~Yly .... y if max (x.,y.)=x for all i, 
m z n ± >z 1 1 i 

and XlX 2.. .Xn--yly 2. ..yn iff min (xi,Yi)=Yi for 

all i. 

If two vertices do not satisfy in any way 
the binary ordering relation, they are said to 
be incomparable. Functions that have outputs 
that are ordered in essentially the same way as 
their arguments are called linear monotonic or 
unate. 

Definition 2" A function F(x x^. .x ) is 
~ 7 "  > i Z " 

positive unate iz x x . x ~-y.y .... y implies 
> 1 2 "" n I z n 

F (XlX2...Xn) £_F(ylY2...y~. 

This notion can be readily extended to 
multiple output functions by requiring that each 
output function be positive unate. 

In Section 3 we construct combinational 
logic networks from positive unate gates. Any 
such network (typically with multiple outputs) 
must also be positive unate. 

Theorem i: Any combinational logic net- 
work composed solely of positive unate gates 
must realize a positive unate function. 

For generality, we do not insist on a 
particular set of positive unate gates, however, 
one might be interested in sets of gates that 
can implement all positive unate functions. 

Definition 3: A set of positive unate 
operators {Ui,U~,...U } is positive unate com- 

L S 
plete, or for our purposes simply unate complete, 
if the operators can be composed to form all 
positive unate functions. The use of logical 
constants is allowed. 

Since the cycling, min, and max operators 
are functionally complete they can be used to 
construct all positive unate functions. However, 
the cycling operator is not positive unate, so 
this set of operators is not unate complete. 
It follows that other unary operators must be 
used with the max and min operators in order to 
get a unate complete set. In the table of 
single variable ternary functions, the positive 
unate functions are marked with an asterisk (*). 
Some positive unate unary functions can be ob- 
tained from others, for example max (xO02,X012) 

= X(012) and therefore one of the arguments is 
not essential. We do not address the problem 
of finding the smallest unate complete set(s). 
Nevertheless, it should be apparent that the min, 
max, and all positive unate unary operators are 
sufficient to implement all unate functions, and 
hence form a unate complete set of operators. 

The partial ordering relation ~ can be used 
to define a class of codes with which we are 
interested. 
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Definition 4: An unordered code is a set 
of mutually incomparable vertices of similar 
degree. 

The code {002,011,101,020,110,200} is an 
example of an unordered code. Specific unordered 
codes are discussed in section IV. 

C. Fault Mode!ing 

All failures that can occur in a network 
G are assumed to be modeled logically as faults. 
A fault is some transformation in the logic func- 
tion realized by the network. By looking at the 
logical effects of a hardware failure, one can 
deal with failures within the structure of Post 
algebras. 

For two-valued logic networks, the most 
common fault assumption is that failures can be 
modeled logically as lines "stuck-at" logical 
values (either 0 or I) [9]. This stuck-at model 
has led to many useful results in two-valued 
logic. Nevertheless, we feel that a stuck-at 
model is inadequate for multiple-valued networks. 
This is primarily because a good fault model is 
technology dependent, and it is not all clear 
that the stuck-at model will model the most 
likely failures in a multiple-valued technology. 
For example, due to signal degradation in a 
gate (a reasonable failure mode) output voltage 
levels could become shifted downward. Consequent- 
ly, outputs may have incorrect logic values 
(they are consistently too low), but are clearly 
not stuck. Faults of the type just described, 
as well as those where an upward voltage shift 
occurs, will be referred to as "skew faults". 

In this paper we use two very general fault 
models. For a given network G, we define F to 
be a fault set that includes the transformation 
of any single gate in G so that it realizes any 
other single-output function. F is defined to u 
be the set of single gate transformatlons to any 
positive unate function. Both F and F are 
very rich fault sets. F clearl~ includes all 
stuck-at and skew faults~ and when all the gates 
implement positive unate functions as they do in 
the sequel then F also includes stuck-at and 
skew faults. The~e two fault models include 
many other failure~ with F being nearly the most 
general fault model possible, given that only 
single gates fail. 

For later cosvenience, we define F to be 
the set of multiple gate transformation~ in G. 
Hence, F ~ F and F C F . To denote a member 

s m u- m 
of F m involving two (or more) members of F , 

say f l  and f 2 '  we w r i t e  t he  f a u l t  as  f l  U f2~ 

The number of faults in a digital system 
is typically modeled as a Poisson process [i0]. 
As a consequence, it is assumed that fault in 
F or F accumulate G one at a time with some 
s u 

time interval separating them. A critical 
assumption regarding this time interval is dis- 
cussed in the next section. Because faults 
accumulate with time, we denote this behavior 

by defining a fault sequence <fl'f2 ''''fn > to 

represent the event where f_ occurs, followed 
latter by f 2 '  and so f o r t h  ~ n t i l  f o c c u r s .  n 

III. Fault Secure Network Structures 

A. Definitions 

We now formally define fault secure combina- 
tional networks and an interesting generaliza- 
tion, strongly-fault secure networks. In order 
to make concise definitions possible, we denote 
the output of the network G under input x~X and 
fault f~F M as G(x,f). Under the fault-free 

condition, the output is denoted as G(x,~). 

The following definition is due to D. A. 
Anderson [3]. It refers to the functional 
block G with input code space ACX, output code 
space BCY, and with some assumed fault set F. 

Definition 5: G is fault secure (FS) 
with respect to F if 

Vf~F ratA G(a,f) = G(a,~) or G(a,f)~B. 

If G is FS and an assumed fault occurs, 
then any erroneous output can be detected by 
simply checking for code or noncode network out- 
puts. Hence, a fault secure network appears to 
offer complete protection against undetected 
errors caused by modeled failures. Unfortun- 
ately, this is not necessarily true. As time 
passes, the network may pick up a second fault, 

f2' in addition to the first, fl" If f.Uf^ 
F then some code input may cause the ou~pu~ to 
be an undetected incorrect code word. 

A partial solution to this problem is to 
repair the network when the first noncode out- 
put appears. If f. can cause a noncode output 
and a sufficient tlme passes between f2 and fl 

for a subset of A to be applied that tests for 
fl' then this solution is satisfactory. A fur- 

ther problem, however, is that fl may be such 
that VaeA G(a,f I) = G(a,~), i.e. there is no 
input code word that "tests" for the presence 

of fl" 

Despite the above complications a FS net- 
work is still useful from a practical standpoint 
if it is periodically tested offline (possibly 
using noncode inputs). Using this technique, 
an undetected error can occur only if between 
two off-line tests. 

I) a fault occurs that is not tested by 
a code input, 

2) a second fault occurs, 

3) the second fault conspires with the 
first to give an erroneous code output. 

We believe that in most situations, the 
probability of all three of these events occur- 
ring during a suitably chosen testing interval 
would be very small, and a FS network would be 
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effective. It would almost certainly be more 
reliable than an unprotected system using the 
same testing interval. 

To develop another solution to the above 
problem, we first observe that G may be FS with 

respect to fl U f2 even though flUf2~F. Then, if 

fiUf^ results in a noncode output for some code 
input, the faults are detected and the network 
can be repaired. The following definitions 
(from [5] formalize this property for fault 
sequences of arbitrary length. 

Definition 6: For a fault sequence 
<f,,f~, f >, f.~F, let k be the smallest 

± z "'" n 
integer for which there exists a code input a~A 
such that G(a, k f.) = G(a,~). If there is no 
such k, set k=n. JThen G is strongly fault secure 
(SFS) with respect to the fault sequence if 

Va~A either G(a, ~ fj) = G(a,~) or 

j=l 

k 
G(a, U fj)~B. 

j=l 

Definition 7: The network G is strongly 
fault secure (SFS) with respect to the fault 
set F if G is SFS with respect to all fault 
sequences whose members belong to F. 

It can be shown that if a sufficient time 
elapses between faults so that the complete set 
of code inputs is applied, then the first 
erroneous output in response to any assumed 
fault (s) in a SFS network must be a noncode 
word. Consequently, if the above conditions 
are met and repairs are made whenever a fault 
is detected, then no undetected errors will be 
emitted from the network. In addition, no 
periodic offline testing is required; however, 
in many instances offline testing may be ad- 
visable to ensure that a sufficient test set 
(code inputs) has been applied between faults. 

Two-valued SFS logic networks where k is 
1 for all fault sequences have been called 
"totally self-checking" and have been studies 
extensively [3,6-8,11-14]. The typical (equiv- 
alent) definition given for these networks is: 

Definition 8: A network G is totally 
self-checkin$ with respect to F if 

i) it is fault secure with respect 
to F and 

2) Vf~F~a~A such that G(a,f)~B(the self- 
testing property [3]). 

We have chosen not to emphasize totally 
self-checking networks because we believe that 
our fault models are so general (particularly 
F ) that they make the construction of totally 
s 

self-checking networks very difficult. There 
are two arguments to support this contention. 

J 

First, in order to self-test all members 

of F it is necessary that all possible input 
8 

combinations be applied to all gates by members 
of A, and for each combination a path must be 
sensitized [15] to at least one output. The 
totally self-checking networks studied elsewhere 
have been rather difficult to construct, and 
they are based on stuck-at fault assumptions 
which only require some proper subset of gate 
input combinations be applied to each gate with 
the gate's output being sensitized to network 
outputs. 

Second, the most straightforward way of 
constructing totally self-checking networks 
involves transforming a network with a non-self- 
tested stuck-at fault into one realizing the 
same function without undetectable faults. 
This method involves the removal of certain 
"redundant" parts of the network [14], i.e. 
the untested lines and some associated gates. 
For the fault models we propose here, no such 
transformation is apparent. 

B. Main Theorems 

In this section we show that any network 
made of positive unate gates which uses an un- 
ordered output code space must be FS with respect 
to F and SFS with respect to F . Consequently, 

S U 
a very general design method for these types 
of networks is to 

i) choose some unordered output encoding; 
2) implement the desired function using 

network of positive unate gates. 
Using this method, the designer has a great deal 
of freedom both when choosing codes and design- 
ing a network. Further, later in this section 
we will discuss conditions under which the 
restriction to positive unate gates can be re- 
laxed. 

Theorem 2: Any combinational network G 
composed only of positive unate gates and using 
an unordered output code space is FS with res- 
pect to F . 

s 

Proof: Without loss of generality, say 
the fault f~F is present in G, and it affects 
gate g (referSto Fig. 2a). Cut the output line 
of g and treat it as a network input line. Then 
we have a new network G v with inputs Xl,X_ , , 
x , g which must realize a positive unate func- 

tion since it contains oniy positive unate gates. 
Apply any input a~A to G, and let g(a,~) be the 
normal output of gate g (no fault is present). 
Let g(a,f) be the output of g when it is faulty. 
Then, g(a,~)~g(a,f) or g(a,f)~g(a,~) (the order- 
ing of elements of the algebra is total. If 
aog(a,~) represents the concatenation of the 
input word a with g(a,~), then 
aog(a,~)~aog(a,f) or aog(aog(a,f)~aog(a,~). By 
considering the structure of G' shown in Fig. 
2b, we can deduce that 

(i) G' (aog(a,~),~)=G(a,~), and 
(2) G' (ao g(a, f) ,~)=G(a, f). 

Since G w is positive unate, 
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G' (aog(a, f),~),~)>_G' (aog(a,~),~) 
or G'(aog(a,~),~) > G'(aog(a,f),~). 

Substituting from (I) and ~2); 
G(a, f)>G(a,~) 

or G(a,~)>_G(a, f). 
Consequently, either G(a,f)=G(a,~) or 

G(a,f)~B since all members 
of B ale unordered. Q.E.D. 

Theorem 3: Any combinational network G com- 
posed only of positive unate gates and using an 
unordered output code space is SFS with respect 
to F . 

U 

Proof: For an arbitrary fault sequence 

<fl,f2,...fn>, fieFu, let k be theksmallest inte- 

ger for which ~aeA such that G(a,j_Ulfj)_ = G(a,~). 

If there is no such k, then it follows that G is 
SFS with respect to the sequence by Definition 6. 

k-I 
If there is such a k, then G(a, Uf.) = G(a,~) 

j =1 J 

for all code inputs. Let G' denote the network 
G with the transformations of gates indicated by 
k-i 
U f.. Then G' is effectively made of positive 

j=l ] k-i 
unate gates and VaeA G' (a,~) = G(a, U f°). By 

j=l 
Theorem 2 G' is FS with respect to F and FuC_Fs; 

k s 

consequently, VaeA G'(a,fk) = G(a,Ufj) = G(a,~) 

j=l 
or G' (a,fk)~B. Then G is SFS for the fault 
sequence. Since we chose an arbitrary fault 
sequence, the above argument must hold for all 
sequences. Q.E.D. 

C. Implementations with Nonunate Gates 

Thus far we have discussed networks made of 
positive-unate gates, and this has been the only 
restriction on network structure. We have not 
insisted on any particular set of gates; any 
unate-complete set will do. As a consequence, 
one could take any single-output subnetwork and 
call it a "gate". Since it is made of positive 
unate gates, it will also be positive unate. As 
long as its function is positive unate, any 
internal realization of the "gate" can be used. 
Hence, some nonunate gates can be interconnected 
to form a single-output positive unate "gate" 
in one of our networks. 

Conceptually, the network satisfies Theorem 
2 and is FS with respect to Fs, the set of all 

transformations of positive unate gates. It can 
also be seen that F includes all transformations 

s 
of all the nonunate component gates as well. 
When considering F as in Theorem 3, some 

U 
restrictions must be made on faults occurring in 
the nonunate component gates. In most cases, 
however, we feel that an adequate fault model 
results. 

D. Interconnections of Networks 

In order to be of practical use, it must be 
possible to interconnect FS ans SFS networks in 
order to form larger FS and SFS networks. As 
before, we consider combinational networks. 

In an interconnection of networks, the out- 
put code space of one network may be the input 
code space of other network(s). Consequently, 
there must not be a conflict between the use of 
unordered input code spaces and the restriction 
that networks be made of positive unate gates. 
Fortunately, as the following Lemma points out, 
unordered input codes and positive unate gates 
fit together quite well. 

Lemma I: Any multiple-output function 
whose inputs are unordered can be embedded in 
a positive unate function if don't care inputs 
are properly assigned. 

The proof of the Lemma is very straight- 
forward and has been omitted. 

Another consideration when interconnecting 
the proposed networks is that when placed in a 
particular system, not all members of A may 
ever reach the inputs of a network. The follow- 
ing Lemma shows that this causes no problems. 

Lemma 2: Let G be a network made of posi- 
tive unate gates with an unordered output code 
space B and with input code space A. Then the 
same network G with a new input code space 
A'CA is FS with respect to F . 

u 

Proof: Since A~A, B' is the new output 
code space, andB'C B. Therefore, B' must be 
unordered, and the Lemma follows from Theorems 

2 and 3. 

We close this section with a theorem show- 
ing that essentially no difficulties are en- 
countered when interconnecting the networks we 
propose. 

Theorem 4: Given a set of networks N = 
={Ni, N .... } that are each FS (SFS) with re- 
spect t~ F (F) according to Theorem 2 (3), 

.u 
any acycli~ interconnectlons of the networks 
in N forms a network that is also FS (SFS) 
with respect to F (F). 

S U 

E. Intermittent Faults 

An intermittent fault is one that does 
not remain permanently in a network after it 
first appears. After its first occurence, we 
say that an intermittent fault is either 
'present' or 'nonpresent'. When a member of 
F is intermittent and it is present, the net- 
s 

work must be FS since a present intermittent 
fault behaves in the same way as a permanent 
fault. A nonpresent intermittent fault does 
not affect the network at all, so it is trivi- 
ally FS under this condition. Consequently, 
a network G as described in Theorem 2 is FS 
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with respect to all intermittent members of F 
s 

as well as the permanent ones. 

When considering the SFS property for inter- 
mittent faults, there is some difficulty, prima- 
rily because some members of a fault sequence 
could be present, and others nonpresent. In 
short, the SFS property does not easily extend 
to intermittent members of F . 

U 

IV. Unordered Codes 

In this section, we define some specific 
unordered codes and examine some of their pro- 
perties. 

A. Fixed-Weight Codes 

Consider a vertex XlX 2...xn, 0<x_ i--<m-l" Then 
n 

the weight of the vertex is defined to be Z x.. 
i= 1 1 

Then, as their name indicates, fixed-weight 
codes are made up of vertices of identical 
weights. In pxp and pxpxp of Fig. ib and c, each 
horizontal row forms a fixed-weight code space. 
For example, the code {002,011,101,020,110,200} 
is a fixed-weight code where the weight is 2. 
Larger fixed-weight codes can be obtained by 
performing weight preserving concatenation pro- 
ducts of smaller lattices. For the binary case, 
fixed-weight codes are often called k-out-of-n 
codes where k is the number of l's. 

In an m-valued systems, the maximum weight 
that a length n code word can have is (m-l).n. 
We define the fixed-weight code of weight 
(m-~)-n I to be the half-weight code. The 

b~nary analog is the [~-out-of-n code. 

Theorem 5: In an m-valued system, a length 
n unordered code with the maximum number of code 
words is the half-weight code. 

The proof of Theorem 5 is a generalization 
of the one used to show that -out-of-n codes 

are optimal binary unordered codes [18]. As a 
consequence of the theorem, if one wants to 
minimize the number of digits used to encode in- 
formation the half-weight codes will lead to such 
optimal encodings. 

A special case of the fixed-weight codes 
are the "two-rail codes." The most basic two- 
rail code word has length 2, and these two 
digits, ab, have the property thatb=$ m-l,m-L, 

"'''l'0~i.e." b is the negation of a. Its code 
words all have weight m-l. Larger two-railed 
code spaces can be obtained by simple concaten- 
ation of the basic two-rail codes. For 
example, {0202,0211,0220,1102,1111,1120,2002, 
2011,2020} is the 3-valued length 4 two-rail 
code. 

B. Berger Codes 

Berger codes [19] were first constructed 

for binary asymmetric channels; the following 
is a multiple-valued generalization. A Berger 
code in our generalized sense is a separable 
code consisting of separate information digits 
to which are concatenated check digits. Sepa- 
rable codes are useful when the extraction of 
encoded information is to be done most effi- 
ciently. 

To satisfy the unordered property the 
weight of the check digits should decrease as 
the weight of the information digits increases. 
There are many ways of doing this, we consider 
only one useful case. A Berger code is a code 
consisting of information digits to which are 
appended the value in base m-i of the weight 
of the m-l's complements of the information 
digits. Berger codes can be characterized 
by three numbers: The number of truth values, 
m; the number of information digits, n; and 
the number of check digi!s , k. Clearly~ k= 

[logm(n.(m-l)+l~. If I logm(n.(m-l)+l)l = log m 

(n.(m-l)+l) then the code is maximal. 

Example: A maximal Berger code with 
m=3, n=4, and k=2. 

Info. 2's comp. Weightlo Weight 3 Codeword 
digits 

0000 2222 8 22 000022 
0001 2221 7 21 000121 
0002 2220 6 20 000220 
0010 2212 7 21 001021 

1021 1201 4 ii 102111 
1022 1200 3 i0 102210 
ii00 1122 6 20 110020 

2220 0002 2 02 222002 
2221 0001 i Ol 222101 
2222 0000 0 O0 222200 

Theorem 6: In an m-valued system, a 
length n separable unordered code with the 
maximum number of code words is the Berger 
code. 

As with Theorem 5, a proof is a straight- 
forward generalization of the one used for the 
binary case [19]. 

V. Check Circuits 

In the networks proposed here, faults are 
detected by checking the network outputs for 
noncode words. Consequently, one must be able 
to construct check circuits to perform this 
code checking. A complication is that any such 
check circuit is presumably as prone to fail- 
ure as the circuits being checked. 

In this section, we consider checkers 
that are themselves fault secure or strongly 
fault secure. Checkers are functional blocks 
that in addition to satisfying the previously 
defined properties also possess the code dis- 
joint property. 
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Definition 9: A functional block is code 
disjoint if it maps all noncode inputs to noncode 
outputs. 

A checker may have a code space input con- 
sisting of a product of several codes spaces, 
but generally has a single and small output code 
space. 

Fault secure check circuits are for the 
most part easy to construct. One can simply use 
a single output line with one output value indi- 
cating that the checker is examining a code word, 
and with the other values indicating a noncode 
input is being applied. That such a checker is 
fault secure with respect to F (or actually any 

• S 
member of Fm) can be easily shown. One should 

note, however, that after a fault occurs in the 
checker, it may no longer be code disjoint. 

Strongly fault secure checkers, on the other 
hand, are much more interesting. This is because 
we will insist that they retain the code disjoint 
property for all initial fault sequences which 
result in no detectable output errors (referring 
to Definition 6, the sequences of length 1,2,... 
k-l). 

Theorem 7: In order for a checker to be 
SFS with respect to Fu, at least two output lines 
are necessary. 

Proof: If only one output line is used and 
the line becomes stuck at a "valid" indication 
(this fault is in F u) then the check circuit will 

not produce a noncode output for this length 1 
fault sequence. However, the circuit is no 
longer code disjoint. Consequently, more than 
one output line is required. Q.E.D. 

A consequence of this theorem is to define 
the size of the hardcore, i.e. the smallest 
number of output lines a checker may have and 
still possess the code disjoint and SFS pro- 
perties. Two output lines are usually sufficient, 
and two lines are used in the next sections where 
checkers for specific codes are discussed. 

A. SFS Checkers for Fixed-Weight Codes 

From the general discussion on checkers it 
is apparent that the code disjoint property im- 
poses a partition on the set of input vertices. 
More precisely the set of input code words will 
map onto a set of output codewords. Due to the 
positive unateness of the checker, a noncode in- 
put to the checker that covers a codeword should 
produce at the checker's outputs a noncode word 
that covers some output codeword. A dual of 
this statement is also true if the covering is 
the other way around. 

The theory and implementation of checkers 
for binary fixed-weight codes is well developed 
[4, 7, 12]. Some of the work deals with the 
theory of Ramsey numbers from combinatorics [7], 
and its extension to the multivalued case is 
very difficult. As an alternative, we shall pre- 

sent a method to construct checkers based on 
the work of Carter and Schneider [4] and Anderson 
[12]. 

The checker will realize two functions; 
more precisely eodewords will be mapped onto 
2 output codewords (0,m-l) and (m-l,0). To 
design a checker for a code of fixed-weight k 
the input digits to the checker are partitioned 
into two non-empty groups A and B of n and rh 

a D 
digits. The weight of the digits in group A(B) 
will be labeled w (w.). Define the function 

a D 
T(w >i) to have value m-i if the argument is a-- 
true and 0 otherwise. Let the 2 output func- 
tions be defined as follow: 

(X 

f = MAX T(w > i) • T(w b > k-i) i even 
i=0 a -- 

C~ 

g = MAX T(w a >_ i) • T(w b > k-i) i odd 
i=0 

Where the bound ~ can be obtained as follow: 

T(w > i) = 0 for i > w 
a -- a 

and T(w b ~ k-i) = 0 for i > k-w b 

hence ~ = min(wa,k-Wb). 

To complete the design method we need a techni- 
que for implementing the threshold functions. 
T(w a ~ i) is to be implemented. There are n a 

digits in that group labeled (say) XlX2...Xna. 

First enumerate all the n -tuples that have a 
weight w . For each variable x implement the a 

functions x (0'm-I .... m-l) (O,0,m-l,...m-l) 
' X 

...x (0'O''''0'm-l) and use them as follows. 

For each n -tuple first described realize the a 

product xl(Bll'B12"'''Blm ) x2(B21'B22"''B2J , 

"''x (Bnal,Bna2''''Bna m~ where 
n .  a 

Bij = 0 if j < x i 

Bij = m-i if j ~ x i 

The function T(w a ~ i) is the maximum of all 

the product terms thus obtained. Example: A 
checker for a code of length 3, weight 3 in a 
3-valued system. The code is {012,102,021,111, 
201,120,210}. Let A be the first 2 digits x I 

and x 2 and B be x 3. 
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O1 

10 

11 

0 2  

20 

12 

2 1  

( B l l ' B 1 2 , B 1 3 )  " ( B 2 1 , B 2 2 , B 2 3 )  
x I x 2 

xl(222).x2(022)=2.x2(022)=x2 (022) 

x1(022) 

x1(022).x2(022) 

x2(002) 

X1(002) 

(022) (002) 
x 1 "x 2 

x1(002).x2(022) 

B % 

0 0 

1 1 

2 2 

(B31,B32,B33) 
X 3 

x3(222) .  2 

x3(022) 

X3(002) 

f = T(Wa~0 ) • T(wb~3) + T(Wak2) • T(Wb~1 ) 

. [Xl(022)-x2(022)+Xl(002)÷x2(002)+xl(002).x2(022)+Xl(022).x2(002)].x3 (022) 

g = T(Wa21) • T(Wb~2 ) + T(Wa~3)T(Wb~0) 

. (xl(O22)+x2(O22)).x3(OO21+(xl(OO2).x2(O22)+xl(O22)x2(O02)).2 

'~e absorbtlon laws hold so x(OO2]+x(002)y(022) 

f = (x l (OO2)÷x2(002)+xl (O22)x2(022)) .  x3(022) 

(002) m x and 2-x ~ X. hence 

a n d  

9 = (xl(022)÷x2(022)) " x3(002)+Xl(002) 'x2(022) (022)'~2(002) +x I 

This can be implemented using 6 unary gates, 5 
MAX gates and 5 MIN gates. 

B. SFS Checkers for Two-rail Codes 

Checkers for two-rail codes have for an in- 
put code space a product of basic two-rail 
codes and produce a single two-rail coded out- 
put. Let k be the degree of the product of two- 
rail input code spaces. Let a k and b k be the 
k th two-rail input. The output functions f. and 
gk can be expressed recursively as follows: k 

fk = fk-i "bk + gk-l'ak 

gk = fk-i "ak + gk~l'bk where fl=aland gl=bl 

We shall not prove this result. However, it 
should be apparent from the example below that 
these formulae work in general. 

Example: For k=2, the functions become 

f2 = alb2 + bla2 

g2 = ala2 + blb2 

The checker's outputs f2 and g2 for code space 
inputs are as follows: 

al bl a2 b2 f2 g2 

0 2 0 2 2 0 
0 2 2 0 0 2 
0 2 1 1 1 1 
2 0 0 2 0 2 
2 0 2 0 2 0 
2 0 1 1 1 1 
1 1 0 2 1 1 
1 1 2 0 1 1 
1 1 1 1 1 1 

It can be verified that the code disjoint pro- 
perty is satisfied. Checkers for two rail codes 
with larger k's can be obtained by cascading in 
a tree fashion the two-rail checkers for k=2 
hence suggesting a proof to the generalized 
expression for f and g. The two-rail checker 

k k" 
for k=2 is shown in Fig. 3. 

This is a MIN-MAX implementation. A MAX- 
MIN implementation can be obtained from the 
following formulae: 

fk = (fk-i + ak) " (gk-i + bk) 

gk = (fk-i + bk) " (gk-i + ak) with 

fl = al and gl = bl 

The two-rail checkers can be used as duplication 
comparators if one set of inputs (e.g. all a. 

i 

or all b.) is inverted using x (m-l'm-2''''l'O) 
1 

This unary operator, however, is negative unate, 
hence some of the structural properties are lost 
and the checker is no longer SFS with respect 
to F . 

U 

C. SFS Checkers for Berger Codes 

Checkers for separable unordered codes 
under the structural constraints enunciated be- 
fore possess little well-established theory 
and implementation methods. This is true for 
any valued system. Figure 4 gives a schematic 
of how checking could be achieved. It is 
highly likely that such an approach would result 
in a non-unate implementation, However, it may 
be the only practical implementation. Other 
ideas can be borrowed from [7,8]. 

D. General Comments 

It is apparent from the previous discus- 
sions on checkers that there are several open 
questions concerning checkers for multi-valued 
unordered codes. For the fixed-weight codes 
it would be desirable to be able to determine 
the existence and the construction rules for 
checkers with the smallest number of levels. 
Also modular checkers would enhance the practi- 
cability of the codes. Clearly the results on 
Berger checkers need further development. These 
topics will be discussed in a subsequent paper. 
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Vl. Conclusions 

This paper presents a scheme for decreasing 
undetected errors that can be produced by faulty 
multiple-valued combinational logic networks. It 
is based on a fault model that we believe is much 
more realistic than the more common stuck-at model. 
An added feature that we feel is very important is 
the protection provided against intermittent faults. 

Fault secure networks depend on encoded inputs 
and outputs, and in multiple-valued technologies 
where pin counts will be of less importance than 
in current binary technologies, these encodings 
should cost relatively little in relation to the 
savings gained from added output reliability. 

Constraints on network structure are rela- 
tively loose. Future study will be directed at 
specific network realizations. Emphasis will be 
placed on more common functional blocks such as 
adders and check circuits. 
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Figure 2. a) A functional block G with faulty gate g. 

b) The block G' with the output of g treated as an input. 
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Figure 3. An SFS two-rail checker. 
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