
FAULT SECURE MULTIPLE-VALUED LOGIC NETWORKS

James E. Smith Jean Dussault

Dept. of Elect. and Comp. Eng.
University of Wisconsin-Madison

Abstract

Fault secure multiple-valued logic networks
have their outputs encoded in an error-detecting
code so that assumed failures either result in
no output error or in a detectable (noncode)
output. In this paper we discuss a way of con-
structing fault secure combinational networks
as well as a generalization that we define to be
"strongly fault secure." The only constraint on
the networks themselves is that they be made of
positive unate gates and use unordered output
encodings.

The fault assumptions are quite general;
they include stuck-at faults as well as many
other failures which seem reasonable in a
multiple-valued technology. Protection is pro-
vided against both permanent and intermittent
faults. Various unordered codes and their pro-
perties are discussed as is the construction of
check circuits that are themselves fault secure
or strongly fault secure.

I. Introduction

In theory, multiple-valued logic networks
enjoy many advantages over two-valued networks
[i]. Nevertheless, two-valued networks are used
almost exclusively in practice, and a major rea-
son is that two-valued logic networks are more
reliable. To take one example, multiple-valued
networks may have more critical noise tolerances
than two-valued networks. In order for multiple-
valued logic with its attendant advantages to
be of practical use, the reliability problem
must be solved.

There are two fundamental approaches to
increasing the reliability of logic networks.
The first is to simply increase the reliability
of the individual components (e.g. gates). The
second approach is applied at a higher level
and involves interconnecting components so that
reliability is increased due to the structure
of the interconnection. A very simple example
of the second approach is the use of triplica-
tion and voting [2]. Of course, these two
approaches can be used separately, or they can
be used in combination.

This paper presents an approach to the
reliability problem that falls into the second

Western Electric Eng. Res. Ctr.
Princeton, New Jersey

of the above categories. We discuss a class
of combinational multiple-valued logic networks
that have their output signals encoded in an
error-detecting code. These networks are de-
signed so that assumed failures (faults) either
result in a detectable error (i.e. a noncode
output) or in no error at all. This approach
is based on the philosophy that the costly
errors are those that go undetected. Errors
can still occur using the proposed method, but
they are immediately detected so that undesir-
able consequences can be minimized.

It appears that intermittent faults may
be of great concern in multiple-valued networks
due to such things as reduced noise tolerance.
An additional advantage of the netwoTks dis-
cussed here is that they are very effective
at combating intermittent faults, and it is
felt that the method given is one of the few
practical ways of dealing with intermittent
faults.

Networks that have the error-detecting
property informally described above have
studied for two-valued logic and are said to
be "fault secure" ~3]. Formal definitions of
the fault secure property and a useful gener-
alization are given and discussed in the sequel.
The theory developed here is in some ways a
straightforward extension of existing theory
developed ~or the two-valued case [3-8].
However, in\the area of fault modeling we depart
from the obvious extension, and it is this
departure that leads to what we feel are inter-
sting and practical results.

If. Preliminaries

A. Basic Definitions

We consider multiple input, multiple output
combinational logic networks which are formed
as acyclic interconnections of multiple-valued
gates. Let G be an m-valued logic network.

n
Then if G has n primary input lines, the m
vectors of length n form the input space, X,
of G. The output s~, Y, is similarly defined
to be the set of m r vectors of length p where
G has p primary outputs. During normal, i.e.
failure-free, operation G receives only a
subset of X called the input code space, A, and
produces a subset of Y called the output code

287

space, B. Members of a code space are called
code words. Under faults, noncode words may be
produced.

B. Post Algebras

The logic networks to be studied here are
based on Post algebras [16,17]. For an m-valued
system we use Post chains formed from the set of
integers [0,1,2, ..., m-l] and the natural
partial ordering ~. A function or order n (i.e.
n variables) possesses m n entries in its truth
table so that there exist m mn truth tables (and
functions) or order n.

Post showed that the following two
operators form a functionally complete set:

A
I) f+g = max (f,g)

2) p+ ~(p+l) mod m.

Another important operator, not needed for
functional completeness, but equally simple
to generate and helpful in constructing
functions is the minimum operation:

3) f'g ~ rain (f,g).

With the min and max operators being the great-
test lower bound and least upper bound,respec-
tively,the lattice of truth values is a chain
lattice, an example of which is shown in Figure
la. Figures ib and ic show the lattices pxp
and pxpxp and indicate a partial ordering among
m-valued vectors or vertices.

Although forming a complete set of opera-
tors with max and min functions, the cycling
operation is not the only unary function of
interest. For an m-valued system, there are
m

m such functions. As an example, consider the
27 possible ternary functions of a single
variable:

x Z

0 000000000111111 1222222222
000111222000111222000111222

012012012012012012012012012

, Unary functions will be denoted as
X tao'al''''am-l) and will take value a. if x=i,
0<i<m-l. For example X ÷ = X(120)in ternary
algebra. For constructing logic networks it is
desirable to limit the number of unary operators
for the usual reasons associated with modularity.
Due to other considerations, however, it may not
always be possible to use a minimum number.

The partial ordering relation indicated
in Figure 1 can be reformulated into the con-
cept of covering.

Definition i: A vertex XlX2...x covers
n - -

>
a vertex y~y y , denoted as XlX 2...xn-yly2...

.~ ~ ± ~ n

Yn xz xi_ty i for all i.

Using the max and min operators one can say
x.x x ~Yly y if max (x.,y.)=x for all i,
m z n ± >z 1 1 i

and XlX 2.. .Xn--yly 2. ..yn iff min (xi,Yi)=Yi for

all i.

If two vertices do not satisfy in any way
the binary ordering relation, they are said to
be incomparable. Functions that have outputs
that are ordered in essentially the same way as
their arguments are called linear monotonic or
unate.

Definition 2" A function F(x x^. .x) is
~ 7 " > i Z "

positive unate iz x x . x ~-y.y y implies
> 1 2 "" n I z n

F (XlX2...Xn) £_F(ylY2...y~.

This notion can be readily extended to
multiple output functions by requiring that each
output function be positive unate.

In Section 3 we construct combinational
logic networks from positive unate gates. Any
such network (typically with multiple outputs)
must also be positive unate.

Theorem i: Any combinational logic net-
work composed solely of positive unate gates
must realize a positive unate function.

For generality, we do not insist on a
particular set of positive unate gates, however,
one might be interested in sets of gates that
can implement all positive unate functions.

Definition 3: A set of positive unate
operators {Ui,U~,...U } is positive unate com-

L S
plete, or for our purposes simply unate complete,
if the operators can be composed to form all
positive unate functions. The use of logical
constants is allowed.

Since the cycling, min, and max operators
are functionally complete they can be used to
construct all positive unate functions. However,
the cycling operator is not positive unate, so
this set of operators is not unate complete.
It follows that other unary operators must be
used with the max and min operators in order to
get a unate complete set. In the table of
single variable ternary functions, the positive
unate functions are marked with an asterisk (*).
Some positive unate unary functions can be ob-
tained from others, for example max (xO02,X012)

= X(012) and therefore one of the arguments is
not essential. We do not address the problem
of finding the smallest unate complete set(s).
Nevertheless, it should be apparent that the min,
max, and all positive unate unary operators are
sufficient to implement all unate functions, and
hence form a unate complete set of operators.

The partial ordering relation ~ can be used
to define a class of codes with which we are
interested.

288

Definition 4: An unordered code is a set
of mutually incomparable vertices of similar
degree.

The code {002,011,101,020,110,200} is an
example of an unordered code. Specific unordered
codes are discussed in section IV.

C. Fault Mode!ing

All failures that can occur in a network
G are assumed to be modeled logically as faults.
A fault is some transformation in the logic func-
tion realized by the network. By looking at the
logical effects of a hardware failure, one can
deal with failures within the structure of Post
algebras.

For two-valued logic networks, the most
common fault assumption is that failures can be
modeled logically as lines "stuck-at" logical
values (either 0 or I) [9]. This stuck-at model
has led to many useful results in two-valued
logic. Nevertheless, we feel that a stuck-at
model is inadequate for multiple-valued networks.
This is primarily because a good fault model is
technology dependent, and it is not all clear
that the stuck-at model will model the most
likely failures in a multiple-valued technology.
For example, due to signal degradation in a
gate (a reasonable failure mode) output voltage
levels could become shifted downward. Consequent-
ly, outputs may have incorrect logic values
(they are consistently too low), but are clearly
not stuck. Faults of the type just described,
as well as those where an upward voltage shift
occurs, will be referred to as "skew faults".

In this paper we use two very general fault
models. For a given network G, we define F to
be a fault set that includes the transformation
of any single gate in G so that it realizes any
other single-output function. F is defined to u
be the set of single gate transformatlons to any
positive unate function. Both F and F are
very rich fault sets. F clearl~ includes all
stuck-at and skew faults~ and when all the gates
implement positive unate functions as they do in
the sequel then F also includes stuck-at and
skew faults. The~e two fault models include
many other failure~ with F being nearly the most
general fault model possible, given that only
single gates fail.

For later cosvenience, we define F to be
the set of multiple gate transformation~ in G.
Hence, F ~ F and F C F . To denote a member

s m u- m
of F m involving two (or more) members of F ,

say f l and f 2 ' we w r i t e t he f a u l t as f l U f2~

The number of faults in a digital system
is typically modeled as a Poisson process [i0].
As a consequence, it is assumed that fault in
F or F accumulate G one at a time with some
s u

time interval separating them. A critical
assumption regarding this time interval is dis-
cussed in the next section. Because faults
accumulate with time, we denote this behavior

by defining a fault sequence <fl'f2 ''''fn > to

represent the event where f_ occurs, followed
latter by f 2 ' and so f o r t h ~ n t i l f o c c u r s . n

III. Fault Secure Network Structures

A. Definitions

We now formally define fault secure combina-
tional networks and an interesting generaliza-
tion, strongly-fault secure networks. In order
to make concise definitions possible, we denote
the output of the network G under input x~X and
fault f~F M as G(x,f). Under the fault-free

condition, the output is denoted as G(x,~).

The following definition is due to D. A.
Anderson [3]. It refers to the functional
block G with input code space ACX, output code
space BCY, and with some assumed fault set F.

Definition 5: G is fault secure (FS)
with respect to F if

Vf~F ratA G(a,f) = G(a,~) or G(a,f)~B.

If G is FS and an assumed fault occurs,
then any erroneous output can be detected by
simply checking for code or noncode network out-
puts. Hence, a fault secure network appears to
offer complete protection against undetected
errors caused by modeled failures. Unfortun-
ately, this is not necessarily true. As time
passes, the network may pick up a second fault,

f2' in addition to the first, fl" If f.Uf^
F then some code input may cause the ou~pu~ to
be an undetected incorrect code word.

A partial solution to this problem is to
repair the network when the first noncode out-
put appears. If f. can cause a noncode output
and a sufficient tlme passes between f2 and fl

for a subset of A to be applied that tests for
fl' then this solution is satisfactory. A fur-

ther problem, however, is that fl may be such
that VaeA G(a,f I) = G(a,~), i.e. there is no
input code word that "tests" for the presence

of fl"

Despite the above complications a FS net-
work is still useful from a practical standpoint
if it is periodically tested offline (possibly
using noncode inputs). Using this technique,
an undetected error can occur only if between
two off-line tests.

I) a fault occurs that is not tested by
a code input,

2) a second fault occurs,

3) the second fault conspires with the
first to give an erroneous code output.

We believe that in most situations, the
probability of all three of these events occur-
ring during a suitably chosen testing interval
would be very small, and a FS network would be

289

effective. It would almost certainly be more
reliable than an unprotected system using the
same testing interval.

To develop another solution to the above
problem, we first observe that G may be FS with

respect to fl U f2 even though flUf2~F. Then, if

fiUf^ results in a noncode output for some code
input, the faults are detected and the network
can be repaired. The following definitions
(from [5] formalize this property for fault
sequences of arbitrary length.

Definition 6: For a fault sequence
<f,,f~, f >, f.~F, let k be the smallest

± z "'" n
integer for which there exists a code input a~A
such that G(a, k f.) = G(a,~). If there is no
such k, set k=n. JThen G is strongly fault secure
(SFS) with respect to the fault sequence if

Va~A either G(a, ~ fj) = G(a,~) or

j=l

k
G(a, U fj)~B.

j=l

Definition 7: The network G is strongly
fault secure (SFS) with respect to the fault
set F if G is SFS with respect to all fault
sequences whose members belong to F.

It can be shown that if a sufficient time
elapses between faults so that the complete set
of code inputs is applied, then the first
erroneous output in response to any assumed
fault (s) in a SFS network must be a noncode
word. Consequently, if the above conditions
are met and repairs are made whenever a fault
is detected, then no undetected errors will be
emitted from the network. In addition, no
periodic offline testing is required; however,
in many instances offline testing may be ad-
visable to ensure that a sufficient test set
(code inputs) has been applied between faults.

Two-valued SFS logic networks where k is
1 for all fault sequences have been called
"totally self-checking" and have been studies
extensively [3,6-8,11-14]. The typical (equiv-
alent) definition given for these networks is:

Definition 8: A network G is totally
self-checkin$ with respect to F if

i) it is fault secure with respect
to F and

2) Vf~F~a~A such that G(a,f)~B(the self-
testing property [3]).

We have chosen not to emphasize totally
self-checking networks because we believe that
our fault models are so general (particularly
F) that they make the construction of totally
s

self-checking networks very difficult. There
are two arguments to support this contention.

J

First, in order to self-test all members

of F it is necessary that all possible input
8

combinations be applied to all gates by members
of A, and for each combination a path must be
sensitized [15] to at least one output. The
totally self-checking networks studied elsewhere
have been rather difficult to construct, and
they are based on stuck-at fault assumptions
which only require some proper subset of gate
input combinations be applied to each gate with
the gate's output being sensitized to network
outputs.

Second, the most straightforward way of
constructing totally self-checking networks
involves transforming a network with a non-self-
tested stuck-at fault into one realizing the
same function without undetectable faults.
This method involves the removal of certain
"redundant" parts of the network [14], i.e.
the untested lines and some associated gates.
For the fault models we propose here, no such
transformation is apparent.

B. Main Theorems

In this section we show that any network
made of positive unate gates which uses an un-
ordered output code space must be FS with respect
to F and SFS with respect to F . Consequently,

S U
a very general design method for these types
of networks is to

i) choose some unordered output encoding;
2) implement the desired function using

network of positive unate gates.
Using this method, the designer has a great deal
of freedom both when choosing codes and design-
ing a network. Further, later in this section
we will discuss conditions under which the
restriction to positive unate gates can be re-
laxed.

Theorem 2: Any combinational network G
composed only of positive unate gates and using
an unordered output code space is FS with res-
pect to F .

s

Proof: Without loss of generality, say
the fault f~F is present in G, and it affects
gate g (referSto Fig. 2a). Cut the output line
of g and treat it as a network input line. Then
we have a new network G v with inputs Xl,X_ , ,
x , g which must realize a positive unate func-

tion since it contains oniy positive unate gates.
Apply any input a~A to G, and let g(a,~) be the
normal output of gate g (no fault is present).
Let g(a,f) be the output of g when it is faulty.
Then, g(a,~)~g(a,f) or g(a,f)~g(a,~) (the order-
ing of elements of the algebra is total. If
aog(a,~) represents the concatenation of the
input word a with g(a,~), then
aog(a,~)~aog(a,f) or aog(aog(a,f)~aog(a,~). By
considering the structure of G' shown in Fig.
2b, we can deduce that

(i) G' (aog(a,~),~)=G(a,~), and
(2) G' (ao g(a, f) ,~)=G(a, f).

Since G w is positive unate,

290

G' (aog(a, f),~),~)>_G' (aog(a,~),~)
or G'(aog(a,~),~) > G'(aog(a,f),~).

Substituting from (I) and ~2);
G(a, f)>G(a,~)

or G(a,~)>_G(a, f).
Consequently, either G(a,f)=G(a,~) or

G(a,f)~B since all members
of B ale unordered. Q.E.D.

Theorem 3: Any combinational network G com-
posed only of positive unate gates and using an
unordered output code space is SFS with respect
to F .

U

Proof: For an arbitrary fault sequence

<fl,f2,...fn>, fieFu, let k be theksmallest inte-

ger for which ~aeA such that G(a,j_Ulfj)_ = G(a,~).

If there is no such k, then it follows that G is
SFS with respect to the sequence by Definition 6.

k-I
If there is such a k, then G(a, Uf.) = G(a,~)

j =1 J

for all code inputs. Let G' denote the network
G with the transformations of gates indicated by
k-i
U f.. Then G' is effectively made of positive

j=l] k-i
unate gates and VaeA G' (a,~) = G(a, U f°). By

j=l
Theorem 2 G' is FS with respect to F and FuC_Fs;

k s

consequently, VaeA G'(a,fk) = G(a,Ufj) = G(a,~)

j=l
or G' (a,fk)~B. Then G is SFS for the fault
sequence. Since we chose an arbitrary fault
sequence, the above argument must hold for all
sequences. Q.E.D.

C. Implementations with Nonunate Gates

Thus far we have discussed networks made of
positive-unate gates, and this has been the only
restriction on network structure. We have not
insisted on any particular set of gates; any
unate-complete set will do. As a consequence,
one could take any single-output subnetwork and
call it a "gate". Since it is made of positive
unate gates, it will also be positive unate. As
long as its function is positive unate, any
internal realization of the "gate" can be used.
Hence, some nonunate gates can be interconnected
to form a single-output positive unate "gate"
in one of our networks.

Conceptually, the network satisfies Theorem
2 and is FS with respect to Fs, the set of all

transformations of positive unate gates. It can
also be seen that F includes all transformations

s
of all the nonunate component gates as well.
When considering F as in Theorem 3, some

U
restrictions must be made on faults occurring in
the nonunate component gates. In most cases,
however, we feel that an adequate fault model
results.

D. Interconnections of Networks

In order to be of practical use, it must be
possible to interconnect FS ans SFS networks in
order to form larger FS and SFS networks. As
before, we consider combinational networks.

In an interconnection of networks, the out-
put code space of one network may be the input
code space of other network(s). Consequently,
there must not be a conflict between the use of
unordered input code spaces and the restriction
that networks be made of positive unate gates.
Fortunately, as the following Lemma points out,
unordered input codes and positive unate gates
fit together quite well.

Lemma I: Any multiple-output function
whose inputs are unordered can be embedded in
a positive unate function if don't care inputs
are properly assigned.

The proof of the Lemma is very straight-
forward and has been omitted.

Another consideration when interconnecting
the proposed networks is that when placed in a
particular system, not all members of A may
ever reach the inputs of a network. The follow-
ing Lemma shows that this causes no problems.

Lemma 2: Let G be a network made of posi-
tive unate gates with an unordered output code
space B and with input code space A. Then the
same network G with a new input code space
A'CA is FS with respect to F .

u

Proof: Since A~A, B' is the new output
code space, andB'C B. Therefore, B' must be
unordered, and the Lemma follows from Theorems

2 and 3.

We close this section with a theorem show-
ing that essentially no difficulties are en-
countered when interconnecting the networks we
propose.

Theorem 4: Given a set of networks N =
={Ni, N } that are each FS (SFS) with re-
spect t~ F (F) according to Theorem 2 (3),

.u
any acycli~ interconnectlons of the networks
in N forms a network that is also FS (SFS)
with respect to F (F).

S U

E. Intermittent Faults

An intermittent fault is one that does
not remain permanently in a network after it
first appears. After its first occurence, we
say that an intermittent fault is either
'present' or 'nonpresent'. When a member of
F is intermittent and it is present, the net-
s

work must be FS since a present intermittent
fault behaves in the same way as a permanent
fault. A nonpresent intermittent fault does
not affect the network at all, so it is trivi-
ally FS under this condition. Consequently,
a network G as described in Theorem 2 is FS

291

with respect to all intermittent members of F
s

as well as the permanent ones.

When considering the SFS property for inter-
mittent faults, there is some difficulty, prima-
rily because some members of a fault sequence
could be present, and others nonpresent. In
short, the SFS property does not easily extend
to intermittent members of F .

U

IV. Unordered Codes

In this section, we define some specific
unordered codes and examine some of their pro-
perties.

A. Fixed-Weight Codes

Consider a vertex XlX 2...xn, 0<x_ i--<m-l" Then
n

the weight of the vertex is defined to be Z x..
i= 1 1

Then, as their name indicates, fixed-weight
codes are made up of vertices of identical
weights. In pxp and pxpxp of Fig. ib and c, each
horizontal row forms a fixed-weight code space.
For example, the code {002,011,101,020,110,200}
is a fixed-weight code where the weight is 2.
Larger fixed-weight codes can be obtained by
performing weight preserving concatenation pro-
ducts of smaller lattices. For the binary case,
fixed-weight codes are often called k-out-of-n
codes where k is the number of l's.

In an m-valued systems, the maximum weight
that a length n code word can have is (m-l).n.
We define the fixed-weight code of weight
(m-~)-n I to be the half-weight code. The

b~nary analog is the [~-out-of-n code.

Theorem 5: In an m-valued system, a length
n unordered code with the maximum number of code
words is the half-weight code.

The proof of Theorem 5 is a generalization
of the one used to show that -out-of-n codes

are optimal binary unordered codes [18]. As a
consequence of the theorem, if one wants to
minimize the number of digits used to encode in-
formation the half-weight codes will lead to such
optimal encodings.

A special case of the fixed-weight codes
are the "two-rail codes." The most basic two-
rail code word has length 2, and these two
digits, ab, have the property thatb=$ m-l,m-L,

"'''l'0~i.e." b is the negation of a. Its code
words all have weight m-l. Larger two-railed
code spaces can be obtained by simple concaten-
ation of the basic two-rail codes. For
example, {0202,0211,0220,1102,1111,1120,2002,
2011,2020} is the 3-valued length 4 two-rail
code.

B. Berger Codes

Berger codes [19] were first constructed

for binary asymmetric channels; the following
is a multiple-valued generalization. A Berger
code in our generalized sense is a separable
code consisting of separate information digits
to which are concatenated check digits. Sepa-
rable codes are useful when the extraction of
encoded information is to be done most effi-
ciently.

To satisfy the unordered property the
weight of the check digits should decrease as
the weight of the information digits increases.
There are many ways of doing this, we consider
only one useful case. A Berger code is a code
consisting of information digits to which are
appended the value in base m-i of the weight
of the m-l's complements of the information
digits. Berger codes can be characterized
by three numbers: The number of truth values,
m; the number of information digits, n; and
the number of check digi!s , k. Clearly~ k=

[logm(n.(m-l)+l~. If I logm(n.(m-l)+l)l = log m

(n.(m-l)+l) then the code is maximal.

Example: A maximal Berger code with
m=3, n=4, and k=2.

Info. 2's comp. Weightlo Weight 3 Codeword
digits

0000 2222 8 22 000022
0001 2221 7 21 000121
0002 2220 6 20 000220
0010 2212 7 21 001021

1021 1201 4 ii 102111
1022 1200 3 i0 102210
ii00 1122 6 20 110020

2220 0002 2 02 222002
2221 0001 i Ol 222101
2222 0000 0 O0 222200

Theorem 6: In an m-valued system, a
length n separable unordered code with the
maximum number of code words is the Berger
code.

As with Theorem 5, a proof is a straight-
forward generalization of the one used for the
binary case [19].

V. Check Circuits

In the networks proposed here, faults are
detected by checking the network outputs for
noncode words. Consequently, one must be able
to construct check circuits to perform this
code checking. A complication is that any such
check circuit is presumably as prone to fail-
ure as the circuits being checked.

In this section, we consider checkers
that are themselves fault secure or strongly
fault secure. Checkers are functional blocks
that in addition to satisfying the previously
defined properties also possess the code dis-
joint property.

292

Definition 9: A functional block is code
disjoint if it maps all noncode inputs to noncode
outputs.

A checker may have a code space input con-
sisting of a product of several codes spaces,
but generally has a single and small output code
space.

Fault secure check circuits are for the
most part easy to construct. One can simply use
a single output line with one output value indi-
cating that the checker is examining a code word,
and with the other values indicating a noncode
input is being applied. That such a checker is
fault secure with respect to F (or actually any

• S
member of Fm) can be easily shown. One should

note, however, that after a fault occurs in the
checker, it may no longer be code disjoint.

Strongly fault secure checkers, on the other
hand, are much more interesting. This is because
we will insist that they retain the code disjoint
property for all initial fault sequences which
result in no detectable output errors (referring
to Definition 6, the sequences of length 1,2,...
k-l).

Theorem 7: In order for a checker to be
SFS with respect to Fu, at least two output lines
are necessary.

Proof: If only one output line is used and
the line becomes stuck at a "valid" indication
(this fault is in F u) then the check circuit will

not produce a noncode output for this length 1
fault sequence. However, the circuit is no
longer code disjoint. Consequently, more than
one output line is required. Q.E.D.

A consequence of this theorem is to define
the size of the hardcore, i.e. the smallest
number of output lines a checker may have and
still possess the code disjoint and SFS pro-
perties. Two output lines are usually sufficient,
and two lines are used in the next sections where
checkers for specific codes are discussed.

A. SFS Checkers for Fixed-Weight Codes

From the general discussion on checkers it
is apparent that the code disjoint property im-
poses a partition on the set of input vertices.
More precisely the set of input code words will
map onto a set of output codewords. Due to the
positive unateness of the checker, a noncode in-
put to the checker that covers a codeword should
produce at the checker's outputs a noncode word
that covers some output codeword. A dual of
this statement is also true if the covering is
the other way around.

The theory and implementation of checkers
for binary fixed-weight codes is well developed
[4, 7, 12]. Some of the work deals with the
theory of Ramsey numbers from combinatorics [7],
and its extension to the multivalued case is
very difficult. As an alternative, we shall pre-

sent a method to construct checkers based on
the work of Carter and Schneider [4] and Anderson
[12].

The checker will realize two functions;
more precisely eodewords will be mapped onto
2 output codewords (0,m-l) and (m-l,0). To
design a checker for a code of fixed-weight k
the input digits to the checker are partitioned
into two non-empty groups A and B of n and rh

a D
digits. The weight of the digits in group A(B)
will be labeled w (w.). Define the function

a D
T(w >i) to have value m-i if the argument is a--
true and 0 otherwise. Let the 2 output func-
tions be defined as follow:

(X

f = MAX T(w > i) • T(w b > k-i) i even
i=0 a --

C~

g = MAX T(w a >_ i) • T(w b > k-i) i odd
i=0

Where the bound ~ can be obtained as follow:

T(w > i) = 0 for i > w
a -- a

and T(w b ~ k-i) = 0 for i > k-w b

hence ~ = min(wa,k-Wb).

To complete the design method we need a techni-
que for implementing the threshold functions.
T(w a ~ i) is to be implemented. There are n a

digits in that group labeled (say) XlX2...Xna.

First enumerate all the n -tuples that have a
weight w . For each variable x implement the a

functions x (0'm-I m-l) (O,0,m-l,...m-l)
' X

...x (0'O''''0'm-l) and use them as follows.

For each n -tuple first described realize the a

product xl(Bll'B12"'''Blm) x2(B21'B22"''B2J ,

"''x (Bnal,Bna2''''Bna m~ where
n . a

Bij = 0 if j < x i

Bij = m-i if j ~ x i

The function T(w a ~ i) is the maximum of all

the product terms thus obtained. Example: A
checker for a code of length 3, weight 3 in a
3-valued system. The code is {012,102,021,111,
201,120,210}. Let A be the first 2 digits x I

and x 2 and B be x 3.

293

O1

10

11

0 2

20

12

2 1

(B l l ' B 1 2 , B 1 3) " (B 2 1 , B 2 2 , B 2 3)
x I x 2

xl(222).x2(022)=2.x2(022)=x2 (022)

x1(022)

x1(022).x2(022)

x2(002)

X1(002)

(022) (002)
x 1 "x 2

x1(002).x2(022)

B %

0 0

1 1

2 2

(B31,B32,B33)
X 3

x3(222) . 2

x3(022)

X3(002)

f = T(Wa~0) • T(wb~3) + T(Wak2) • T(Wb~1)

. [Xl(022)-x2(022)+Xl(002)÷x2(002)+xl(002).x2(022)+Xl(022).x2(002)].x3 (022)

g = T(Wa21) • T(Wb~2) + T(Wa~3)T(Wb~0)

. (xl(O22)+x2(O22)).x3(OO21+(xl(OO2).x2(O22)+xl(O22)x2(O02)).2

'~e absorbtlon laws hold so x(OO2]+x(002)y(022)

f = (x l (OO2)÷x2(002)+xl (O22)x2(022)) . x3(022)

(002) m x and 2-x ~ X. hence

a n d

9 = (xl(022)÷x2(022)) " x3(002)+Xl(002) 'x2(022) (022)'~2(002) +x I

This can be implemented using 6 unary gates, 5
MAX gates and 5 MIN gates.

B. SFS Checkers for Two-rail Codes

Checkers for two-rail codes have for an in-
put code space a product of basic two-rail
codes and produce a single two-rail coded out-
put. Let k be the degree of the product of two-
rail input code spaces. Let a k and b k be the
k th two-rail input. The output functions f. and
gk can be expressed recursively as follows: k

fk = fk-i "bk + gk-l'ak

gk = fk-i "ak + gk~l'bk where fl=aland gl=bl

We shall not prove this result. However, it
should be apparent from the example below that
these formulae work in general.

Example: For k=2, the functions become

f2 = alb2 + bla2

g2 = ala2 + blb2

The checker's outputs f2 and g2 for code space
inputs are as follows:

al bl a2 b2 f2 g2

0 2 0 2 2 0
0 2 2 0 0 2
0 2 1 1 1 1
2 0 0 2 0 2
2 0 2 0 2 0
2 0 1 1 1 1
1 1 0 2 1 1
1 1 2 0 1 1
1 1 1 1 1 1

It can be verified that the code disjoint pro-
perty is satisfied. Checkers for two rail codes
with larger k's can be obtained by cascading in
a tree fashion the two-rail checkers for k=2
hence suggesting a proof to the generalized
expression for f and g. The two-rail checker

k k"
for k=2 is shown in Fig. 3.

This is a MIN-MAX implementation. A MAX-
MIN implementation can be obtained from the
following formulae:

fk = (fk-i + ak) " (gk-i + bk)

gk = (fk-i + bk) " (gk-i + ak) with

fl = al and gl = bl

The two-rail checkers can be used as duplication
comparators if one set of inputs (e.g. all a.

i

or all b.) is inverted using x (m-l'm-2''''l'O)
1

This unary operator, however, is negative unate,
hence some of the structural properties are lost
and the checker is no longer SFS with respect
to F .

U

C. SFS Checkers for Berger Codes

Checkers for separable unordered codes
under the structural constraints enunciated be-
fore possess little well-established theory
and implementation methods. This is true for
any valued system. Figure 4 gives a schematic
of how checking could be achieved. It is
highly likely that such an approach would result
in a non-unate implementation, However, it may
be the only practical implementation. Other
ideas can be borrowed from [7,8].

D. General Comments

It is apparent from the previous discus-
sions on checkers that there are several open
questions concerning checkers for multi-valued
unordered codes. For the fixed-weight codes
it would be desirable to be able to determine
the existence and the construction rules for
checkers with the smallest number of levels.
Also modular checkers would enhance the practi-
cability of the codes. Clearly the results on
Berger checkers need further development. These
topics will be discussed in a subsequent paper.

294

Vl. Conclusions

This paper presents a scheme for decreasing
undetected errors that can be produced by faulty
multiple-valued combinational logic networks. It
is based on a fault model that we believe is much
more realistic than the more common stuck-at model.
An added feature that we feel is very important is
the protection provided against intermittent faults.

Fault secure networks depend on encoded inputs
and outputs, and in multiple-valued technologies
where pin counts will be of less importance than
in current binary technologies, these encodings
should cost relatively little in relation to the
savings gained from added output reliability.

Constraints on network structure are rela-
tively loose. Future study will be directed at
specific network realizations. Emphasis will be
placed on more common functional blocks such as
adders and check circuits.

[i]

[2]

I3]

[4]

15]

[6]

[7]

References

Su, S. Y. H., "Symposium Chairman's
Message," Proceedings of Sixth International
Symposium on MultiplgcValued Logic, p. i
May 1976.

Von Neumann, J., "Probabilistic Logics and
Synthesis of Reliable Organisms from
Unreliable Components," Automata Studies,
Annals of Math. Studies No. 34, C. E.
Shannon and J. McCarthy, eds., Princeton
University Press, Princeton, NJ, pp. 43-98,
1956.

Anderson, D. A., "Design of Self-checking
Digital Networks Using Coding Techniques,"
Coordinated Science Laboratory Report R-527,
University of Illinois, Sept. 1971.

Carter, W. C., and P. R. Schneider, "Design
of Dynamically Checked Computers," IFIP 68,
vol. 2, Edinburg, Scotland, pp. 878-883,
Aug. 1968.

Smith, J. E., and G. Metze, "Strongly Fault
Secure Logic Networks," to appear IEEE Trans.
on Computers, June 1978.

Dussault, J., "On the Design of Self-Check-
ing Systems under Various Fault Models,"
Coordinated Science Laboratory Report R-791,
University of Illinois, October 1977.

Smith, J. E., "The Design of Totally Self-
Checking Check Circuits for a Class of Un-
ordered Codes," Journal of Design Automation
and Fault-Tolerant Computing, vol. i, pp.
321£342, October 1977.

18]

I9]

[10]

[11]

[12]

113]

[14]

115]

116]

[17]

[18]

[19]

AshJaee, M. J., "Totally Self-Checking
Check Circuits for Separable Codes," Ph.D
Thesis, University of Iowa, July 1976.

Breuer, M. A., and A. D. Friedman, Diagnosis
and Reliable Design of Digital Systems,
Computer Science Press, 1976.

Shooman, M. L., Probabilistic Reliability:
an Engineering Approach~ McGraw-Hill, 1968.

Reddy, S. M., "A Note on Self-Checking
Checkers," IEEE Trans. on Computers, vol.
C-23, pp. 1100-1102, Oct. 1974.

Anderson, D. A., and G. Metze, "Design of
Totally Self-Checking Check Circuits for
m-out-of-n Codes," IEEE Trans. on Computers,
vol. C-22, pp. 263-269, March 1973.

Diaz, M., "Design of Totally Self-Checking
and Fail-Safe Sequential Machines," Digest
of the Fourth AnnualSymposium on Fault-
Tolerant Computing, pp. 3-19 to 3-24,
June 1974.

Smith, J. E., "The Design of Totally Self-
Checking Combinational Circuits," Coordi-
nated Science Laboratory Report R-737,
University of Illinois, Aug. 1976.

Armstrong, D. B., "On Finding a Nearly
Minimal Set of Fault Detection Tests for
Combinational Logic Networks," IEEE Trans.
on Electronic Computers, vol. EC-15, pp.
66-73, Feb. 1966.

Post, E. L., "Introduction to a General
Theory of Elementary Propositions,"
American Journal of Math., vol. 43, pp.
163-185, 1921.

Rosenbloom, P. C., "Post Algebras I.
Postulates and General Theory," American
Journal of Math., vol. 64, pp. i67-188,
1942.

Lubell, D., "A Short Proof of Sperner's
Lemma," Journal of Comb. Theory, vol. i,
p. 299, Sept. 1966.

Berger, J. M., "A Note on Error Detection
Codes for Asymmetric Channels," Information
and Control, vol. 4, pp. 68-73, March 1961.

295

1

/ 2 \

ii 20

\/\/
OXO / lO

222

_122 J212 ~ , o 2 1 ' .

i! o

Figure i. The lattices p, p x p, p x p x p.

x 1

x 2

x
P

L I--,
, I

cab

x 1

x

x
P

Cb)

Figure 2. a) A functional block G with faulty gate g.

b) The block G' with the output of g treated as an input.

2 9 6

two-rail

a I

two-tall

b I s 2

I

f2 g2
two-rall

b 2

I

Figure 3. An SFS two-rail checker.

Figure 4.

I
Information digits

11'I
Combinational circuit
that computes the
weight.

I

Check digits

I

• Duplication Comparator

i
I

A proposed Berger code checker, f g

297

