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Abstract

A high{performance implementation of the Inter-
national Data Encryption Algorithm (IDEA) is pre-
sented in this paper. Using a novel bit{serial archi-
tecture to perform multiplication modulo 2 16 + 1 , the
implementation occupies a minimal amount of hard-
ware. The bit{serial architecture enabled the algorithm
to be deeply pipelined to achieve a system clock rate of
125MHz on a Xilinx Virtex XCV300{6, delivering a
throughput of 500Mb/sec. With a XCV1000{6 device,
the estimated performance is 2Gb/sec, three orders of
magnitude faster than a software implementation on
a 450MHz Intel Pentium II. This design is suitable
for applications in on{line encryption for high{speed
networks.

1 Introduction

Cryptography is concerned with the transfer of in-
formation between parties so that only the intended
parties can read the data. Despite an assumption that
an adversary may have full knowledge of the algo-
rithms used, and has access to the media where data
is transmitted, it is desired that the retrieval of data
without knowledge of a secret piece of information
called a key is intractable.

We believe that cryptography is an ideal applica-
tion for Field{programmable Custom Computing Ma-
chines (FCCMs), since they o�er the following advan-
tages over VLSI technologies

� it is possible to use the same FCCM hardware for
many di�erent cryptographic protocols

� Moore's law continues to o�er improved silicon
technology at exponential rates which is available
to FCCM designers without the costly manufac-
turing process required in VLSI

� it is possible to specialize the hardware to an ex-
tent not possible in VLSI devices to improve per-
formance

� the recon�gurable nature makes it feasible to at-
tempt designs employing more sophisticated al-
gorithms which leads to an improvement in per-
formance.

The Data Encryption Standard (DES) algorithm
has been a popular secret key encryption algorithm
and is used in many commercial and �nancial appli-
cations. Although introduced in 1976, it has proved
resistant to all forms of cryptanalysis. However, its
key size is too small by current standards and its en-
tire 56 bit key space can be searched in approximately
22 hours [1].

In 1990, Lai and Massay introduced an iterated
block cipher known as Proposed Encryption Stan-
dard (PES) [2]. The same authors, joined by Mur-
phy, proposed a modi�cation of PES called Improved
PES (IPES) [3], which improves the security of the
original algorithm against di�erential analysis and
truncated di�erentials [4, 5, 6]. In 1992, IPES was
commercialized and was renamed the International
Data Encryption Algorithm (IDEA). Some believe
that, to date, the algorithm is the best and the most
secure block algorithm available to the public [7].

Although IDEA involves only simple 16{bit opera-
tions, software implementations of this algorithm still
cannot o�er the encryption rate required for on{line
encryption in high{speed networks. Ascom's imple-
mentation of IDEA (Ascom are the holders of the
patent on the IDEA algorithm) achieves 0:37�106 en-
cryptions per seconds, or a equivalent encryption rate
of 23.53Mb/sec, on an Intel Pentium II 450MHz ma-
chine. Our optimized software implementation run-
ning on a Sun Enterprise E4500 machine with twelve
400MHz Ultra{IIi processor, performs 2:30� 106 en-



cryptions per second or a equivalent encryption rate
of 147.13Mb/sec, still cannot be applied to applica-
tions such as encryption for 155Mb/sec Asynchronous
Transfer Mode (ATM) networks.

Hardware implementations o�er signi�cant speed
improvements over software implementations by ex-
ploiting parallelism among operators. In addition,
they are likely to be cheaper, have lower power con-
sumption and smaller footprint in embedded appli-
cations than a high speed software implementation.
A paper design of an IDEA processor which achieves
528Mb/sec on four XC4020XL devices was proposed
by Mencer et. al. [8]. The �rst VLSI implementa-
tion of IDEA was developed and veri�ed by Bonnen-
berg et. al. in 1992 using a 1:5 �m CMOS technol-
ogy [9]. This implementation had an encryption rate
of 44Mb/sec. In 1994, VINCI, a 177Mb/sec VLSI im-
plementation of the IDEA algorithm in 1:2 �m CMOS
technology, was reported by Curiger et. al. [10, 11].
A 355Mb/sec implementation in 0:8 �m technology
of IDEA was reported in 1995 by Wolter et. al. [12].
The fastest single chip implementation of which we
are aware is a 424Mb/sec implementation of 0:7 �m

technology by Salomao et. al. [13]. A commercial im-
plementation of IDEA called the IDEACrypt copro-
cessor, developed by Ascom achieves 300Mb/sec [14].

In this paper, a Xilinx Virtex XCV300{6 based
implementation of the IDEA algorithm is described
with a throughput of 500Mb/sec. Furthermore, with
a XCV1000{6 device, the estimated performance is
2Gb/sec. This design is faster than all VLSI im-
plementations mentioned above. The implementation
employs a novel bit{serial architecture which o�ers the
following advantages

� high degree of �ne{grain parallelism

� scalable so that throughput and area tradeo�s can
be addressed

� high clock rate

� compact implementation.

Applications of this design include Virtual Pri-
vate Networks (VPNs) and embedded encryp-
tion/decryption devices.

This paper is organized as follows. In Section 2 the
IDEA algorithm as well as algorithms for multiplica-
tion modulo 2n + 1 are described. In Section 3 the
bit{serial implementation of IDEA is presented. In
Section 4 results are given. Conclusions are drawn in
Section 5.

2 The IDEA Algorithm

IDEA belongs to a class of cryptosystems called
secret{key cryptosystems which is characterized by
the symmetry of encryption and decryption processes,
and the possibility of implying the decryption key from
the encryption key and vice versa. IDEA takes 64{bit
plaintext inputs and produces 64{bit ciphertext out-
puts using a 128{bit key.

The design philosophy behind IDEA is mixing oper-
ations from di�erent algebraic groups including XOR,
addition modulo 216, and multiplication modulo the
Fermat prime 216 + 1. All these operations work on
16{bit sub{blocks.

The IDEA block cipher [7] (depicted in Figure 1)
consists of a cascade of eight identical blocks known
as rounds, followed by a half{round or output trans-
formation. In each round, XOR, addition and mod-
ular multiplication operations are applied. IDEA is
believed to be of strong cryptographic strength be-
cause its primitive operations are of three distinct al-
gebraic groups of 216 elements, multiplication modulo
216+1 provides desirable statistical independence be-
tween plaintext and ciphertext, and its property of
having iterative rounds made di�erential attacks di�-
cult.

The encryption process is as follows, the 64{bit
plaintext is divided into four 16{bit plaintext sub{
blocks, X1 to X4. The algorithm converts the plain-
text blocks into ciphertext blocks of the same bit{
length, similarly divided into four 16{bit sub{blocks,

Y1 to Y4. 52 16{bit subkeys, Z(r)
i

, where i and r are
the subkey number and round number respectively,
are computed from the 128{bit secret key. Each round
uses six subkeys and the remaining four subkeys are
used in the output transformation. The decryption
process is essentially the same as the encryption pro-
cess except that the subkeys are derived using a dif-
ferent algorithm [7].

The algorithm for computing the encryption sub-
keys (called the key schedule) involves only logical ro-

tations. Order the 52 subkeys as Z
(1)
1 , : : : ; Z

(1)
6 , Z

(2)
1 ,

: : : , Z(2)
6 , : : : , Z(8)

1 , : : : , Z(8)
6 , Z(9)

1 , : : : , Z(9)
4 . The

procedure begins with partitioning the 128{key secret
key Z into eight 16{bit blocks and assigning them di-
rectly to the �rst eight subkeys. Z is then rotated left
by 25 bits, partitioned into eight 16{bit blocks and
again assigned to the next eight subkeys. The pro-
cess continues until all 52 subkeys are assigned. The

decryption subkeys Z0(r)
i

can be computed from the
encryption subkeys with reference to Table 1.

In electronic codebook (ECB) mode [7], the data
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Figure 1: Block diagram of the IDEA algorithm.
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Table 1: IDEA decryption subkeys Z0(i)
r

derived from

encryption subkeys Z
(i)
r . �Zi and Z

�1
i

denote additive
inverse modulo 216 and multiplicative inverse 216 + 1
of Zi respectively.

dependencies of the IDEA algorithm have no feedback
paths. Additionally, in practice, latencies of order of
microseconds are acceptable. These feature make the
algorithm suitable to be implemented as a deep bit{
serial pipeline.

2.1 Multiplication Modulo 2n + 1

Of the basic operations used in the IDEA algo-
rithm, multiplication modulo 216+1 is the most com-
plicated and occupies most of the hardware. Curiger
et. al. [15] described and compared several VLSI ar-
chitectures for multiplicationmodulo 2n+1 and found
that an architecture proposed by Meier and Zimmer-
man [16], using modulo 2n adders with bit{pair recod-
ing o�ers the best performance.

The pseudocode for the modular multiplication op-
eration by module 2n adders using bit{pair recoding
is as follows.

1 uint16 mulmod(uint16 x, uint16 y)

2 {

3 uint32 t;

4 x = (x - 1) & 0xFFFF;

5 y = (y - 1) & 0xFFFF;

6 t = (uint32) x * y + x + y + 1;

7 x = t & 0xFFFF;

8 y = t >> 16;

9 x = (x - y) + (x <= y);

10 return x;

11 }

This algorithm requires a total of six additions and
subtractions, one 16{bit multiplication and one com-
parison. However, in IDEA one of the operands of a
modular multiplication operation is always a subkey,
so the second subtraction can be eliminated if the as-
sociated subkeys are pre{decremented.

3 Implementation

3.1 Bit{Serial Architecture

Bit{serial architectures are characterized by the
property that operators perform their computations
in a bitwise fashion and communications between op-
erators are multiplexed in time over a single wire.
Dataow begins with either the least signi�cant bit
or the most signi�cant bit, but the former is more
commonly used due to its compatibility with two's
complement arithmetic. In a typical bit{serial im-
plementation, each variable is associated with a con-
trol signal which is set high only when the �rst bit
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Figure 2: Bit{serial XOR and addition operators.

is transferred along associated data bus. To reduce
area, control signals can be shared among the vari-
ables. Since bit{serial operators usually require the
�rst bits of their operands to enter the operators on
the same clock cycle, appropriate stage latches must
be inserted for time{alignment [17].

Two of the primitive operators used in IDEA,
namely XOR and addition modulo 216, can be imple-
mented in a bit{serial fashion using the circuits shown
in Figure 2. These two operators have latencies of one
clock cycle and are capable of taking consecutive bit{
serial operands. The multiplication modulo 216 + 1
operator has a latency of 35 clock cycles. The corre-
sponding pipelined datapath for one round of IDEA is
illustrated in Figure 3. For the best area{e�ciency,
stage latches and constants are implemented using
Virtex SRL16E primitives [18, 19]. More speci�cally, a
constant is implemented as a SRL16E primitive, with
its output connected to its input to form a cyclic shift
register.

3.2 Multiplication Modulo 216 + 1

As described in Section 2.1, multiplication modulo
216 + 1 is the most critical operation in the IDEA
algorithm. Choosing a suitable multiplier is therefore
a crucial design issue.

An N �N{bit multiplier generates a 2N{bit result,
and requires 2N cycles to complete. Thus, through-
put of bit{serial multipliers are restricted because the
minimuminterval between consecutive multiplications
must be at least 2N cycles. In the IDEA algorithm
one of the operands of every modular multiplication is
a subkey and treated as a constant.

Recall in the modular multiplication algorithm that
the intermediate result t is divided into two portions
(lines 6 to 8, in Section 2.1). The two portions are
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Figure 3: Pipelined datapath for one round of IDEA.
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respectively the upper and lower 16 bits of the double{
word, which are operands to subsequent operations.
A design that computes the upper and lower words of
t independently is desirable, allowing all the inputs,
outputs and intermediate variables of the operator to
be 16{bit long. Using this scheme and duplicating
hardware, the throughput of a modular multiplication
operation can be doubled.

A modi�ed version of Lyon's serial{parallel multi-
plier [20] was developed which addresses this problem.
The original design of Lyon's multiplier is shown in
Figure 4. To generate two 16{bit results in 16 cycles,
the throughput of the multiplier must be doubled. We
achieved this by duplicating the hardware for multi-
plication, as illustrated in Figure 5. Registers storing
the constant are shared among the two multiplication
pipelines. The outputs p and q correspond to the re-
sults of two consecutive multiplications, where the two
32{bit long variables have a time{di�erence of 16 cy-
cles. The control signal, which is high one clock cycle



before the least signi�cant bit enters the module, tog-
gles the control register. The vector of input variables
an�1 : : :a1a0 is consequently redirected into the two
multiplication pipelines alternately. While the vector
is being redirected to one pipeline, logic zero enters the
other pipeline carrying out zero{padding. A timing di-
agram of the modi�ed multiplier is shown in Figure 6.

To obtain the time{aligned upper and lower words
of t, a 16 stage shift register is required. The input
and output of the shift register are the upper and lower
words of t respectively, 16 cycles after t is valid. In the
implementation the shift register is implemented as a
SRL16E [18] primitive. The complete architecture for
the modular multiplication operation is shown in Fig-
ure 7. Upon initialization, the subkey associated with
the operator is passed into the operator bit{serially.
The pre{decremented subkey is shifted into the regis-
ters of the multiplier, and at the same time stored into
the SRL16E primitive responsible for key storage.

Utilizing the idea of multiple pipelines, the mod-
ular multiplication operation o�ers a throughput of
16 cycles, even though a 32{bit intermediate result is
computed. This scheme doubles the throughput but
since sharing of the b registers can occur, the hardware
cost is less than double.

3.3 IDEA Core

The core implementation of IDEA is obtained by
cascading eight identical rounds of operations shown
in Figure 3, followed by a output transformation. For
convenient interfacing, four parallel{to{serial convert-
ers are inserted before the �rst round and four serial{
to{parallel converters are appended after the output
transformation. The core takes one 64{bit plaintext
once every 16 cycles, yielding an e�ective encryption
rate of f � 64� 16 Mb/sec at a system clock rate of f
MHz.

All the shift registers for key storage are linked dur-
ing initialization cycles. Upon initialization, the pre{
computed 52 16{bit subkeys (a total of 832 bits) are
passed bit{serially into the core via the shift registers.
This key scheduling mechanism is advantageous for its
minimum routing and logic requirements. To further
optimize area, the control circuitry of all the modules
is extracted and is replaced by a global 16{bit one{hot
encoding state machine. The dataow diagram of the
IDEA core is shown in Figure 8.

Each round has a latency of 109 cycles. The output
transformation has a latency of 35 cycles. Each serial{
to{parallel converter at the outputs has a latency of
16 cycles. Therefore, the IDEA core has an overall
latency of 109�8+35+16 = 923 cycles. At a 125MHz

system clock rate, the equivalent latency is 7:384 �s,
which is acceptable for many applications.

3.4 Scalability

Given more resources, the bit{serial implementa-
tion of IDEA can be e�ciently scaled up to achieve
higher encryption rate. This is achieved by instanti-
ating multiple IDEA core instances, but having the
control signals shifted with respect to every other in-
stance. With a single core, the implementation can
be scaled up to 16 times to achieve 16 times the origi-
nal encryption rate without a�ecting latency. A max-
imally scaled version of the implementation is illus-
trated in Figure 9. The timing diagram in Figure 10 il-
lustrates the mechanism of input data forwarding and
output data merging of a maximally scaled implemen-
tation.

4 Results

The bit{serial IDEA processor was veri�ed with
Synopsys VHDL Simulator, and was synthesized us-
ing Synopsys FPGA Express 3.3 and Xilinx Founda-
tion Series 2.1i, with a Xilinx Virtex XCV300{4 as the
target device. The fully{pipelined implementation re-
quires 2801 Virtex slices, accounting for 91.18% of the
total 3072 slices on an XCV300 device.

The basic building block of the Virtex FPGA is the
the logic cell (LC). A LC includes a 4{input function
generator, carry logic and a storage element. Each
Virtex CLB contains four LCs, organized in two slices.
The 4{input function generator are implemented as
4{input look{up tables (LUTs). Each of them can
provide the functions of one 4{input LUT or a 16 �
1{bit synchronous RAM (called \distributed RAM").
Furthermore, two LUTs in a slice can be combined to
create a 16 � 2{bit or 32 � 1{bit synchronous RAM,
or a 16� 1{bit dual{port synchronous RAM.

Our implementation of IDEA was successfully im-
plemented on Annapolis Micro Systems Wildcard Re-
con�gurable Computing Engine [21]. The device is a
Type II PCMCIA Card with a 33MHz 32{bit Card-
Bus interface, consisting of a Xilinx Virtex XCV300
FPGA as Processing Element (PE) and two 64k�32{
bit SDRAMs. The design was found to be operational
at room temperature up to 125MHz and this clock rate
was used for all performance tests. Reliable operation
over the full commercial temperature range would be
expected if a XCV300{6 was used.
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Speed grade {4 {5 {6

Reported clock
106.378 116.229 125.202rate (MHz)

Encryptions per
6.648 7.264 7.825

second (�106)

Encryption rate
425.5 464.9 500.8

(Mb/sec)

Latency (�s) 8.677 7.941 7.372

Table 2: Performance of IDEA core on devices of dif-
ferent speed grades.

Device (XCV) 300{6 600{6 1000{6

Scaling 1� 2� 4�

Number of
2801 5602 11204slices

Device slices
91.18% 81.05% 91.18%utilization

Clock rate
125.202 125.202 125.202

(MHz)

Encryptions per
7.825 15.650 31.300

second (�106)

Encryption rate
500.8 1001.6 2003.2(Mb/sec)

Table 3: Tradeo�s between performance and area of
the IDEA core.

4.1 Performance of IDEA Core

Bit{serial architectures facilitate high system clock
rates compared with traditional bit{parallel imple-
mentations. The performance of the core (assuming
a high bandwidth interface to the data sources and
sinks) is summarized in Table 2. Reported clock rate
refer to the clock frequencies reported by timing anal-
ysis.

In an attempt to explore tradeo�s between perfor-
mance and area, the core was generated for FPGAs
of di�erent capacities. The core was maximally scaled
within the resource limitation of each device using the
method described in Section 3.4. Results are summer-
ized in Table 3.

It is estimated that a maximally scaled implemen-
tation requires 2801 � 16 = 44816 slices, which can
produce an encryption rate of 500� 16 = 8 Gb/sec at
a 125MHz clock rate.

4.2 Performance on the Wildcard Plat-
form

On the Wildcard implementation, the time taken to
complete a transaction between the FPGA and host is
dominated by operating system overheads. When de-
signing the interface between the IDEA core and the
host, it is crucial that the number of discrete Card-
Bus read and write transactions is minimized and the
amount of data transferred per transaction is maxi-
mized.

A block diagram of the interface is shown in Fig-
ure 11. Data is written directly to the core using a
burst mode transfer of 512 64{bit plaintext blocks.
After the latency period, the ciphertext is written to
consecutive locations in the BlockRAM. For XCV300
devices, there are eight 256� 32{bits BlockRAM [22]
on the chip and they are all used in the host/IDEA
interface. The results are read by the host from the
IDEA processor by doing a burst mode transfer of the
contents of the block RAM. The decryption process is
similar except the ciphertext is written to the IDEA
core and the plaintext appears in the BlockRAM.

The maximumtransfer rate of CardBus is 33MHz �
32-bits = 1056 Mb/sec, but the bit{serial core, clocked
at 125MHz, has an encryption rate of approximately
125 � 64 � 16 = 500 Mb/sec. In order to match the
bandwidth of the IDEA core, the host inserts three
blank 32{bit words between every two 64{bit plaintext
double{words. The maximum data rate is therefore
1056�0:4 = 422:4Mb/sec. The interface between host
and IDEA core on Wildcard requires an additional 238
slices, resulting in a total of 3039 slices, or 98.93%
utilization of the XCV300.

Although the CardBus has a 1056Mb/sec maxi-
mum transfer rate, its actual data transfer rate us-
ing programmed I/O is degraded due to very large
operating system overheads in setting up a CardBus
transaction. The implementation achieves a mea-
sured performance of 0:61� 106 encryptions per sec-
ond (39Mb/sec). The situation could be improved by
using Direct Memory Access (DMA) but the DMA in-
terface requires an additional 400 slices and would not
�t on an XCV300. The DMA interface was tested in a
stand-alone con�guration and measured performance
for a write of 5120 words (2048�0:4) followed by a read
of 2048 words was 142Mb/sec. A larger device which
can accommodate both the IDEA core and the DMA
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interface could achieve this performance. In addition,
utilizing the two 64k� 32{bits SDRAMs on Wildcard
could provide a larger bu�er for ciphertext storage,
hence reducing the number of CardBus transactions
and improve the overall performance. Of course, if
a 500Mb/sec data source could be connected to the
FPGA (for example, directly via the I/O pins), the
full bandwidth of the IDEA core presented could be
achieved.

5 Conclusion

A high performance bit{serial implementation of
the IDEA algorithm was presented in this paper. The
architecture minimizes resource requirements, o�ers
high levels of �ne{grain parallelism and allows a high
clock rate. The implementation achieves an encryp-
tion throughput of 500Mb/sec at a 125MHz system
clock rate on a Xilinx Virtex XCV300{6 FPGA.
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