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Abstract

This paper ewaluates performance daracteristics of the
Compaq ES40 shared memory multiprocessor. The ES40
system contains up to four Alpha 21264CPU’s together

with a Hgh-performance memory system. We quditativey
describe architedural features included in the 21264
microprocesr and the surroundng system chipset. We
further quartitativey show the performance dfeds of these
features using henchmark results and pofiling dda
colleded from indwstry-standard commercial and technical

workloads. The profile data includes basic performance
infformation — such as instructions per cyde, branch

mispredicts, and cache misses — as well as other data that

spedfically characterizes the 21264 Whereve possble, we
compare and contrast the ES40to the Alpha%rver 4100 — a
previous-generation Alpha system containing four Alpha
21164 microprocesors — to highlight the architedural

advances in the ES4Q We find that the Compaq ES40 dten

provides 2 to 3 times the performance of the Alpha%rver

4100 4 similar clock frequencies. We also find that the
ES40 memory system has abou five times the memory
bandvidth of the 4100 These performance improvements
come from numerous microprocesr and patform
enharcements, including ou-of-order exeation, branch
prediction, functiond units, andthe memory system.

1. INTRODUCTION

The Compag ES40 is a shared memory multi processor
containing y to four third-generation Alpha 21264
microprocesrs [1][2]. Figures 1 and 2 ill ustrate the ESA0
performance relative to other vendor systems on the
SPEC95 kenchmarks. Figure 1 compares sngle processor
SPEC95 performance using published results as of March
200Q Figure 2 shows a similar comparison in the
multiprocesor  SPECrate fp95 (We use SPECfp95
workloads rather than SPECint95 for the multi procesor
comparison since several of the SPECfp95 kenchmarks
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Figure 3 — The Basic Alpha 21264Instruction Pipeline

stressthe memory system, while dl SPECint95 benchmarks
fit well in 4AMB cades and thus are not a goodindicaor of
memory system performance)

The single processor results gow the ES40 between 3% to
a fador of threefaster than other leading-vendor systems.
The multi procesr results indicae that ES40 scdeswell in
memory-bandwidth intensive workloads and has between
60% and a fador of 3.5 advantage over other vendor
platforms. We analyze key performance daraderistics of
the ES40 in this paper to expose the techniques that were
needed to readt these performancelevels.

The E40 contains many architecural advances — bah in
the microprocesor and in the surrounding memory system
- that contribute to its performance The 21264 includes
many tedchniques to expose instruction-level parall elism:
numerous prediction techniques, out-of-order exeaution,
and the hardware to manage many in-flight instructions.
The surrounding memory system services many parallel
catde mises at high-bandwidth with low latency. We
describe and analyze these achitedural advances and
present key results and profili ng data to clarify the analysis.
We evaluate the benefits of these achitedural techniques.
We quantify the performance improvements with
performanceprofiling data gathered from hardware
measurements. We use a previous-generation Alpha four-
processor system (the AlphaServer 4100 as a cmparison
point when possble to highlight the achitedural advances
made from the 21164 Alpha generation [3][ 8] to the 21264

[12][13].

We include on-line transadion processng (pseudo TPC-C
workload [9]) and technicd/scientific workloads (SPEC95
[1Q]) in our results. The transadion-processng workload
exercises procesor power, but also memory interface as
well as I/0. The SPEC95 benchmarks exercise processor,
memory hierarchy, and compil er performance

We use profile data from the ProfileMe axd DCPI toodls
based on built-in non-intrusive CPU hardware monitors
[4][5]. These monitors colled various events including
stalls, retired and non-retired instructions, branch
mispredicts, replay traps, TB misss, cade misss, etc. The
monitors are useful tools for analyzing system behavior
with various workloads. We use the data from these tools
extensively in our architedural analysis. The detailed
program profil es (at image, procedure, or instruction level)
generated with these todls can also be used by compil er and
appli cation developers for code optimization.

The remainder of this paper is organized as follows:
Sedion 2 describes the achitedure of the 21264
microprocesor and the ES40 system. Sedion 3 describes
the fetch and exeaution improvements in the 21264
Sedion 4 describes the memory system improvements.
Sedion 5 concludes.

2. SYSTEM OVERVIEW

Figure 3 shows the instruction exeadution pipeline in the
21264 microprocesr. The 21264 is a superscdar
microprocesor that can fetch up to four instructions and
exeaute up to six instructions in any given cycle. Like the
previous-generation Alpha procesors, the 21064 and
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21164 high clock speed is a large antributor to the
industry-leading performance of the 21264 But the 21264
also adds out-of-order and speaulative exeaution to expose
more ingtruction paralelism — ultimately improving
(retired) instructions per cycle. The 21264 manages up to
80 in-flight instructions — a large number compared to
some airrently avail able processors.

Figure 4 — ES40Block Diagram

Sedion 3 analyzes many of the achitedural feauresin the
ealy stages of the instruction pipeline. The first stage
(stage 0) fetches four instructions per cycle. The large (64
KB) and asociative ingruction cade, line-and-way
prediction, and branch prediction all enable high
bandwidth instruction fetch. Stage 1 is largely consumed
transferring instructions from fetch to map. It dots
instructions to the integer or floating-point pipelines.

Stages 2 and 3 —the map and queue stages - implement the
out-of-order exeaution in the 21264 Here the user-visible
(virtual) registers are remapped into internaly-visible
(physicd) registers. This process removes all except for
read-after-write register dependencies. It aso alows for
more internal registers than are programmer visible (e.g.
there ae 31 visble floating-point registers and 72
internally). The queues issue up to six instructions.
Instructions exeaute out-of-order from the issue queue,
prioritized from oldest to newest. Once they issue, they
procea through pipeline stages 4, 5, and beyond.
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T eor

Sedion 4 describes the memory system of the ES40. Pipe
stages 5, 6, and beyond in Figure 3 depict some feaures of
the 21264s interna memory system. The queue can issue
up to two memory operations per cycle. These two
operations smultaneously access the large (64 KB) and
asciative level-one data cate. References that missin
this cache accss the off-chip level-two cade (of 8 MB,
dired-mapped). References that missin the level-two (L2)
cate ae serviced by the surrounding off-chip memory
system.

Figure 4 shows a block diagram of a 4-procesor ESAQ.
The mntrol chip manages the system and enforces write-
invalidate catie wherence The 21264s passthe L2 miss
requests to the ontrol chip. The ntrol chip then
simultaneously forwards the request to read the DRAM and
broadcasts the aldress of the request (i.e. probes) to the
other 21264s. The other 21264s chedk for necessary
coherence violations and respond to the probe. The cntrol
chip examines the probe responses and responds to the
requesting 21264with data from either the DRAM memory
or another 21264 as appropriate. Note that the control chip
does not kegp a wpy of the L2 tags from the four CPU’s to
determine @herence adions. It shares the 21264s L2
cade tags via the probing mechanism. This coherence
implementation is lower cost than an implementation that
duplicates the L2 tags. It is also lower latency for requests
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ES40 4100 Ratio
MHz 667 600 111
SPECint95 1-CPU 400 188 213
SPECfp95 1-CPU 827 292 2.83
SPECfp95 4-CPU 147 514 286
SPECint_rate954-CPU 1390 657 212
SPECfp_rated5 4-CPU 2686 858 3.13
Linpack 1000x1000
(MFLOPS) 4-CPU 3721 2634 141
TransactionsPer Minute 31K 16K 194

Table 1 - Benchmark Performance of the ES40 and 4100

that must be serviced by data from another 21264s cade.
It performs well for the four-procesor systems we analyze
in this paper but can be limited by the available probe
bandwidth (as discussed later).

The ESA0 architedure has an address broadcasting
coherence scheme that is $milar to those cmmonly used in
bus-based multiprocesrs, but is a aosdar-based design.
The interconneds in Figure 4 are unidiredional point-to-
point. This allows for very high bandwidth transfers. The
eight switch chips provide the aosdar functionality
between the four 21264s, the DRAM memory, and the
(PCI) 10 interface

We mmpare the 21264based Compag ESAO to the 21164
based AlphaServer 4100at many points in this paper. The
4100 is the previous-generation four-procesor Alpha
server. It is bus-based, unlike the ES40. Table 1 compares
the performance results of the two generations from some
important benchmarks. The ES40 rovides 2 to 3times the
performance of the 4100 server for most benchmarks. The
clock spead improvement (667 MHz vs. 600 MH2z)
provides a maximum 11% potential gain; the mgority of
the gain comes from 21264 microprocesor and system
platform improvements.

The technicd-scientific workloads (SPECfp95) benefit the
most from memory bandwidth and thus sow the highest
improvement on ESA0 vs. 410Q The small integer
workloads (SPECint95) benefit mostly from the procesor
architedural and compiler improvements. The Linpadk
benchmark does benefit from procesoor and Bcade
improvements, but the number of floating-point pipelines
limits its improvement to lessthan other benchmarks. The
commercial workloads benefited from both system/memory
improvements and procesor enhancements. In addition to
procesoor and platform-spedfic enhancements, re-
compiling with compilers tuned for 21264 povides
additional performance improvement: typicdly 5-15% (up
to 30% in some gplicdions). That is due to better code
scheduling and enhanced prefetching.
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Figure 5 — Instruction Cache MissRate Comparison

More detailed descriptions of the 21264 and 21164 and
systems based on those dips can be found in
[202][3][6][ 71[8][13], and in the remainder of this paper.

3. FETCH AND EXECUTION IMPROVEMENTS IN
THE 21264

3.2 INSTRUCTION FETCH

The level one instruction cade in the 21164 is 8 KB
dired-mapped and the 21264s is 64 KB two-way
asciative. Figure 5 compares the instruction cade miss
rates in the two cases. The 64KB Icade in 21264 gredly
reduces the number of Istream misses compared to 21164
There ae dmost no remaining misses in SPECfp95 since
their code sizes are so small. Increased instruction cade
size ad asociativity is a very important contributor to
improved fetch efficiency in the 21264

The 21264 pefetches more gggressvely when there is an
instruction cade miss It can prefetch up to 256 bytes
sequentially ahead while the 21164 can only prefetch 96
bytes aheal. Note that the 21264 instruction cade miss
counter does not consider a prefetched block to be amiss

Instruction cace misses dill remain highin the transadion
processng workload on the 21264 indicating that there is
room for further improvement in future systems. The
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Branch Mispredicts: 21264 vs. 21164
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Figure 6 — Branch Mispredicts Comparison

instruction misses in the transadion processng workload
are caused by frequent branches, process context switches,
TB misses, subroutine cdls, run time library, and system
cdls. Larger and faster cadhes can provide more benefitsin
future designs. Even more instruction prefetching may
improve performance, but strict linea prefetching may only
benefit the highly-sequential code segments.

The 21264implements line and way prediction to improve
instruction fetching. This predictor indicaes the next four
instructions to be fetched from the instruction cade. It can
eiminate branch-taken salls and improve fetch
performance for other non-sequential control flows. It aso
can predict indired subroutine jumps.

The 21264 lanch predictor is more sophisticaed than the
21164s smple two-bit scheme. Branch prediction is very
important in speaulative-exeaution architedure like the
21264sinceit alows the out-of-order exeaution engine to
speallatively isaue the instructions down the predicted
path. If the prediction is incorred, al the instructions
exeauted down the mispredicted path are wasted.

The 21264 anch predictor kegps both locd and global
history in a tournament branch predictor. The predictor
leans complex patterns predicted by the (locd) history of
individual instructions, leans complex patterns predicted
by the (global) history of multiple branch instructions, and
choases the best predictor of the two. This led to a
significant reduction in mispredicted branches, as indicated

196

in Figure 6. The branch mispredicts are dmost completely
eliminated in the floating-point codes, and are mnsiderably
reduced in most of the integer benchmarks.

The transadion processng workload is an interesting case
since there ae dightly more branch mispredicts in the
21264 than in the 21164 The instruction footprint of
transadion processng workloads is large, with many
branches, so it is challenging for the 1024entry locd
history file and the 4096-entry global history file to contain
history for all the relevant branches. The 21164s much
simpler 2048entry by two-bit predictor, indexed by
program counter, provides dightly better branch prediction
performance under the same overflow condition. This data
hints that there is an oppatunity for improved transadion
processng branch prediction in future systems.

3.3INSTRUCTION MAP AND QUEUEING

The map and queue pipeline stages provide much of the
out-of-order and speaulative exeaution functionality in the
21264 that was not present in the 21164 Register results
are renamed to one of the 80 avail able integer registers and
72 available floating-point registers. An instruction is
considered in-flight from the map stage until the instruction
retires. The 21264 can alow up to 80instructions to be in
flight.

Figure 7 shows the average number of in-flight instructions
on the 21264 for the gplications we analyze The results
show that few applicaions average more than half the 80
maximum in-flight instructions. This indicaes that the
average number of in-flight instructionsis lessoften limited
by the maximum in-flight count. Queue overflows, physicd
register availability, and instruction cade misses more
often stop instruction fetch. Branch (and other) mispredicts
also limit the number of in-flight instructions becaise they
remove mis-speadlated instructions from the in-flight
inventory.

The floating-point applications generally have more
instructions in flight than the other applicaions. They tend
to have more large loops with fewer control-flow changes
and longer-latency instructions. They also have integer
instructions, so bah the integer and floating-point queues
and registers can be utilized. Load and other integer
instructions are sloed only in the integer queue,
independent of the floating-point operation instructions,
providing more buffering. All of these fadors make it
eaier to ke more ingtructions in flight in the floating-
point appli cations.

The integer and transadion applicaions have fewer
instructions in flight. This is likely limited by branch
mispredicts, instruction cache misses, and queue overflows.
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Instructions in Flight: 21264
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Figure 7 — Average Instructionsin Flight

Figure 8 compares the instructions per cycle (IPC) for the
ES40 (21264 and the 4100(21164 systems. Note that |PC
in 21264 adualy measures number of retired instructions
per cycle (the number of retired instructions is lower than
the number of iswed instructions). The Compaq ES40
results were obtained with code spedficdly scheduled for
the 21264 It also benefited from other generic compil er
enhancements not included in the AlphaServer 4100code.

The 21264acdieves an average IPC in the range of 1.5 to
2.5 for the majority of workloads. Thisis 2 to 3 times the
21164 Note that IPC improvements exclude gains due to
clock speed.

All the achitedural improvements discussed in this paper
contribute to the IPC improvement of the 21264 Perhaps
out-of-order exeaution — primarily implemented by the map
and queue pipeline stages — is the primary contributor. Out-
of-order exeaution reduces procesor stalls by exeauting
younger instructions sooner. Earlier exeaution reduces the
latency to exeaute aiticd-path computations. For example,
the 21264 can exeaute load instructions ealier, alowing
other operations to be overlapped with the data accss of
the load. This increases functional unit utilization and
lowers dependency on the detailed instruction schedule.
The obtained 21164 prformance is very dependent on the
instruction schedule, as are other static compil er-scheduled
microprocesors. The 21264 hardware, however, can

IPC: 21264 vs. 21164
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Figure 8 — IPC Comparison

schedule aound stalls that are difficult to predict at
compile time, such as many cade misses. It also can
improve performance on workloads that have not been
tuned for optimum schedule.

The improvement in IPC is higher in floating-point than
integer workloads. This is partialy due to the achitecural
advancements discussed so far, and also due to the memory
system improvements that will be discussed in the next
sedion.

Though the 21264 substantially improved the transadion-
processng IPC, it till requires more than two cycles to
exeaute evsery instruction. This is substantially higher than
in the other workloads we examined. The transadion-
processng workload contains many mispredicts and cade
misses and is ensitive to memory latency. It presents an
oppatunity for further improvements in the future-
generation Alpha systems.

3.4 INSTRUCTION EXECUTION

The 21264 has four integer exeaution pipelines while the
21164 has only two. The 21264 has lower floating-point
divide latency and new sguare-root instructions, but
otherwise the floating-point functional units are similar.
Functional unit improvements are only a small contributor
to faster floating-point exeaution.
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A few of the gplicaions (m88ksim in particular) sustain
integer IPC’'s on the 21264 that are more than the pe&k
integer performance of the 21164 - two instructions per
cycle. Clealy, the extra 21264integer functional units are
necessary for the highest performancein those cases.

The fastest floating-point appli cations sustain about 50% of
the pe&k floating point performance Thoughmore floating-
point functional units could improve performance in some
cases, they are not as advantageous, in general, as the two
additional integer pipelines included in the 21264 (An
exception to this rule may be the Linpadk benchmark,
shown in Table 1, which could benefit from additional
floating-point pipelines.)

3.5INSTRUCTION RETIRE AND KILL

As explained ealier, the 21264 fetches and speaulatively
isaies a sequence of ingtructions — often down the path
predicted by the branch predictor. An instruction result is
committed to the achitedural state & retire time. If the
wrong path is taken, the instructions are not retired (kill ed).
This geallative exeaution expaoses instruction parall elism
and improves performance when the speaulation is corred.
On the other hand, the penalty for speaulative exeaution is
in the overhead for kill ed instructions.

Figure 9 shows the percentage of all i ssued instructions that
don't retire (killed). The percentages for the integer and
transadion processng workloads closely mirror the branch
mispredicts. This data shows that the floating-point
workloads have fewer killed instructions than the other
workloads. This is expeded since there ae so few branch
mispredicts in the floating-point workloads (Figure 6).
However the percent of non-retired instructions remains
significant for the floating-point applicaions. That is
becaise memory traps (described in the next sedion and
more prevalent in the memory-intensive floating-point
workloads) are another key contributor to non-retired
instructions.

Instruction kill s reduce performance because they limit the
number of in-flight instructions and the exposed instruction
paralelism. The issue dots wasted by kill ed instructions
are not a large performance problem, even though more
than 40% of the isaued instructions are kill ed in some of the
applications. The queues issue older instructions before
younger ones © an isaue sot used by a kill ed instruction
would be idle in a non-speaulative procesor anyway.
Speadlation provides the oppatunity to expose more
instruction parallelism with little down-side performance
risk. A high fradion of kill s indicates that this oppatunity
was not fully redized in some workloads.

Early and Late Kills in 21264
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Figure 9 — Non-retired Instructions

Figure 9 also gplits the kill s into ealy and late. Early Kill
indicates that the instruction was kill ed before it entered an
issue queue (stage 2 or sooner). Late kill i ndicaes that the
instruction was kill ed later. The data indicates that late Kkill
ismore frequent than ealy_kill —ealy kill i stypicdly 25%
or lessof the total kills. There ae simply fewer ealy pipe
stages than there ae later ones. For example, the branch
and jump/jsr mispredict latencies are seven or more gy/cles
— only three of which are ealy. Instruction kill s can occur
long after an instruction enters the isaue queue, particularly
if theinstruction causing the kill stalls.

4. MEMORY SYSTEM IMPROVEMENTS

The memory systems of the 21264and 21164are atirely
different. Table 2 summarizes the differences. Like the
ealier stages in the instruction pipeline, the 21264s
memory system is highly parallel and out-of-order. It can
manage up to 32 in-flight loads and 32 in-flight stores as
well as 8 outstanding off-chip cade mises and 8
outstanding cade victims. This paralelism is exposed
(automaticdly) throughout the memory system of the ES40.
The ESA0 crosdar memory system (surrounding the
21264 can manage more than 24 autstanding cace miss
requests and cade victims. It aso schedules memory
operations out-of-order within this 24-entry in-flight
window for the highest efficiency.
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ES40 4100

CPU 21264 21164
Outstanding References

Loads 32 21

Stores 32 21

CacheMises 8 2
Prefetches yes yes

Modify Intent  yes no

WH64 yes no
Trandation Buffer (TB)

ITB 128entry 48-entry

DTB 128entry 64-entry
On-chip Caches
1st-leved Dcache 64KB, 2-way 8KB

Latency 4.4 ns(3cy) 3.3ns(2cy)

Pe&k Bandwidth 10.6 GB/sec 9.6 GB/s
1st-levé Icache 64KB, 2-way 8KB
2nd-leve unified cache  N/A 96K, 3-way

Latency (min) 12ns (7 cy)

Pedk Bandwidth 9.6 GB/s
Off-chip Cache 8MB 8MB

Latency 24ns(16¢y) 42ns (25cy)

Ped Bandwidth 7.1 GB/sec 1.33GB/sec

Bus Dedicaed Shared
Memory Latency (min) 183ns 210ns

Pe&k Bandwidth 5.3 GB/sec 1.1 GB/sec
Copy Bandwidth

1-CPU MB/sec 1197 263

4-CPU MB/sec 2547 470

Table 2 - Key Memory System Feaures of the ES40 and 410!

In addition to the astomatic hardware techniques, the
memory system parallelism can also be explicitly exposed
with software cade block prefetches of different flavors:
normal (read-only), modify-intent (writeable), and the new
Alpha WH64 (write-only). The modify-intent prefetch
loads a block into the cate in a state that can be
immediately written. The WH64 pefetch is a hint to
hardware that the block is write-only; this makes the read
of the previous value of the cade block unrecessary on a
cade miss

The 21264has only a single on-chip cade level while the
21164has two. Althoughthe total amourt of on-chip cade
is comparable for the 21264and 21164 the 21264 lenefits
from more dficient on-chip cades. The data cate has
longer latency than the first-level cade in the 21164 but
the 21264sfirst-level cadeislarger and more asociative.
The latency-tolerant instruction exeaution cgpabiliti es of
the 21264make the first-level load latency lesscriticd.

The off-chip cades are the same size ad asciativity in
the ES40 and 4100 systems - 8MB, dired-mapped.
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Consequently, the cate misss per instruction are similar
in the two systems. However, the ES40 memory system
outperforms the 4100 memory system in other aspeds.
Some of the benchmarks hit frequently in the off-chip
cade. They benefit from the lower latency (about half) and
higher bandwidth (about five times) of the ESA0 df-chip
cate. Some of the workloads we study, like the
transadion-processng workload and some of the floating-
point benchmarks, have high cade missrates even with the
8MB cades. These gpli cations benefit from the improved
DRAM memory system in the ES40.

41 MEMORY BANDWIDTH AND LATENCY
IMPROVEMENTS
Table 2 shows the large improvement in memory

bandwidth in ES40vs. 410Q Thisis largely responsible for
the floating-point performance improvement from the
21164to the 21264 The STREAM benchmark measures
sustainable memory bandwidth in megabytes per second
(MB/s) aaossfour vedor kernels: Copy, Scde, Sum, and
SAXPY[12]. We show only the results for the Copy loop
(the other loops have similar results). The raw bandwidth
improvements of the off-chip cades and the aossar
memory system of the ES40 enabled this capahility, as did
the memory system parallelism. The 21264 also benefits
from the new WH64 prefetch.

Not only does the ES40 have higher memory bandwidth
performance for a single processor, it also scdes better
with multiple procesors. With 4 processors the ESA0 is
more than five times faster than the 410Q The aossar
interconned of the ES40 has more bandwidth and is more
adept at exposing memory system parall elism than the bus-
based 4100 This capability is a antributor to the high
throughput of the ES40, as evidenced by the
SPECfp_rate95 resultsin Figure 2 and Table 1.

Figure 10 compares memory bandwidth of the STREAM
Copy loop aaoss Alpha servers as well as other leading-
vendor systems [12]. Note that the ES4A0/66MHz data is
based on preliminary engineeing measurements and not
yet submitted for publicaion. This data shows that the
memory bandwidth on ES40 is a fador of 1.6 to 3 times
higher than all other systems gown.

The mmparison between the ESAC's of different speed in
Figure 10 is interesting. The four-CPU memory bandwidth
improves by more than 40% though the procesor speal
improved by only 33% (500 to 667, and the DRAM
bandwidth did not improve. The 667 MHz ESAQ df-chip
cade has more than twice & much bandwidth as the 500
MHz E40. This is crucia for the ES4A0 system memory
bandwidth since, at maximum copy bandwidth, the off- chip
cade of the 500 MHz system is more than 50% utili zed
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servicing probe requests from remote procesors. The
faster off-chip cade gives the 667 MHz ES40 much more
performance The original 500Mhz ES40 design is not as
well optimized for memory performance

Note that the memory bandwidth improvement from three
to four CPUs is gill modest in the 667 MHz ES40. This
platform may need additional independent paths to memory
(to reduce memory conflicts) and additional probe
bandwidth to suppat more than four CPUs at full
bandwidth.

Figure 11 compares ES40 and 4100using both “dependent-
load” and “independent-load” latency. The “dependent-
load latency” [11] measures load-to-use latency where eat
load depends on the result from the previous load. It is
largely a measure of memory latency. The “independent-
load latency” is a measure of bandwidth, since there is no
dependency between conseadutive loads. It is lower in
platforms that allow more simultaneous outstanding
reguests (which can overlap), like the ES40. The lower axis
in Figure 11 varies the referenced data size to fit in
different levels of the memory system hierarchy.

The results in Figure 11 show that ESAQ is 40% faster in
“dependent-load” memory latency (16M size) vs. the 4100Q
The alvantage is much higher (a fador of 4 times) in the
“independent-load” memory latency (bandwidth). Note that
the 21264 allows eight outstanding read requests while
21164 allows only two, therefore the improvement in the
“independent-load latency” on ES40 is © substantial. The
memory system of ES40 is designed to expose such
memory parallelism. The goplications that show the highest
improvement on ES4A0 vs. 4100are likely to allow multiple
outstanding independent memory references.
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Figure 11 — Load Latency (and Bandwidth) Comparison

4.2 FEWER MEMORY TRAPS

A replay trap is a mechanism that kills and restarts all
instructions in the 21264 This is needed in situations
where aload or store instruction cannot be exeauted due to
a (relatively infrequent) condition that is deteded after that
instruction is isued, and often only after the memory
address is cdculated and compared to other in-flight
memory references.

The 21264 and the 21164 use memory traps in similar
circumstances. Some @mmon 21264 traps are: (same
addres9 store-load order traps, load queue or store queue
overflow conditions, and some cade index match
conditions. Some mmmon 21164traps are: write or miss
buffer overflows, potential ordering violations, and load-
missand-use traps. One notable difference is the 21264s
store-load order traps. These occur becaise alater load
issied before aprior store to the same aldress This can't
happen on the in-order 21164 Another difference is the
21164s load-missand-use trap. This occurs when the
consumer of load data speaulatively issues assuming the
load would hit, though the load redly misses. The 21264
issues a mini-restart in this case rather than atrap.

Figure 12 compares the number of replay traps in the
21264 and the 21164 The data indicaes that there ae
many fewer replay traps in the 21264 compared to the
21164 However, the number of traps in several floating-
point workloads and the transadion processng workload
remains substantial (around 10 per 1000 instructions).
Perhaps the biggest reason for the reduction in replay traps
in the 21264 is the more highly-parallel memory system.
Write and miss buffer overflow conditions cause many of
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Replay Traps: 21264 vs. 21164
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the 21164replay traps. The 32 autstanding loads and stores
in the 21264 as well as the compiler use of prefetch
instructions, provide ample paralelism for the 21264 to
avoid many of the overflows.

The ProfileMe and DCPI toadls allow a program to be tuned
by identifying areas in the program with a high number of
traps and then reducing traps by a variety of techniques,
including: memory padding to prevent cache index matches
and changing the order of loads/stores. Such simple
code/compiler modificaions gave 10-15% improvement in
several SPEC95 workloads.

Figure 13 shows the breakdown of all traps on the 21264
including memory replay traps, branch mispredict traps,
and memory trandlation buffer misstraps. The number of
trandation buffer misses (dtb miss dtb2 misg is gmall on
al of the workloads we eamined. The transadion
processng workload shows the highest number of all traps
combined. Mispredict traps are prevalent in both integer
and transadion processng workloads, but not in floating-
point workloads. Replay traps are present in all workload
classs, but are more prevaent in the transadion
processng and some of the floating-point workloads.
Replay traps occur in these floating-point workloads
primarily since they stress the memory system. This can
cause overflow traps despite 21264s large number of in-
flight memory references.

Trap Breakdown on 21264
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Figure 13 — 21264Trap Breakdown
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5. CONCLUSIONS

We eamined the achitedure ad performance
charaderistics of the Compag Alpha ES40 shared memory
multi processor — afour processor system that is 3% to three
times faster than other similar systems on some important
industry standard benchmarks. We described the
architedure of the 21264 microprocesor and the
surrounding memory system logic included in the ES40 and
compared it to the previous-generation four-processor
Alpha system. The benchmark results diow the ES40 is
often 2-3 times the performance of the previous-generation
system a nealy the same procesor clock rate. We
analyzed the achitedural techniques that enabled this
performance improvement.

The fetch and exeaution improvements include: a larger
instruction cace, a more sophisticaed branch predictor,
out-of-order and speadlative eeaution, and more
functional units. We showed that these improvements
contributed to the reduction in cycles per instruction. We
also showed that these mechanisms siccesSully kept many
instructions in flight — a key requirement to extrad
instruction parall elism.

The fetch and exeaution improvements are complemented
by memory system improvements. The (DRAM) memory
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system in the ES40 is lower latency than the previous
generation system on off-chip cacde misses by a small
amount — giving a modest performance benefit. But the
primary improvement in the ES40 is its higher bandwidth
and ability to expose axd manage many parallel memory
system requests smultaneously. Both the off-chip cade
and the dosdar memory system deliver about five times
more bandwidth than the previous generation Alpha
system. This and the parallel capabiliti es of al levelsin the
memory hierarchy makes the ESA0 substantially faster than
the previous generation on memory-bandwidth intensive
workloads.

We use only a sample of commercial and technicd
workload in our analysis. The SPEC benchmarks do not
generate a lot of operating system adivity and fit in
megabyte-sized cacdes. Many other red applications have
different charaderistics. Further study is needed on a
broader range of workloads and applications to expand the
charaderizaion of the ESA0 presented in this paper.
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