
The Effects of Pair-Programming on Performance in an
Introductory Programming Course

Charlie McDowell and Linda Werner
Computer Science Department

University of California

Santa Cruz, CA 95064
{charlie,linda}@cs.ucsc.edu

Heather Bullock and Julian Fernald
Psychology Department
University of California

Santa Cruz, CA 95064
{hbullock,jfernald}@cats.ucsc.edu

Abstract

The purpose of this study was to investigate the effects of
pair-programming on student performance in an
introductory programming class. Data was collected from
approximately 600 students who either completed
programming assignments with a partner or programmed
independently. Students who programmed in pairs
produced better programs, completed the course at higher
rates, and performed about as well on the final exam as
students who programmed independently. Our findings
suggest that collaboration is an effective pedagogical tool
for teaching introductory programming.

1. Introduction

In the academic literature, cooperative or collaborative
learning models involve two or more individuals taking
turns helping one another learn information [1]. The
consensus from numerous field and laboratory
investigations is that academic achievement (i.e.,
performance on a test) is enhanced when an individual
learns information with others as opposed to when she or
he is alone [2, 3, 4].

Although collaboration has been employed in some
software development tasks, computer programming has
traditionally been taught and practiced as a solitary activity
[5, 6, 7, 8, 9]. Over the last decade, however, a number of
advocates of collaborative programming have emerged
[10]. In 1991, Flor observed and recorded verbal and non-
verbal exchanges between two programmers working
collaboratively on a software maintenance task. He [11]
found that collaboration allowed each member of the

programming dyad to contribute his unique prior
experience, task relevant knowledge, and perspective to the
problem, resulting in a greater potential for the generation
of more diverse plans, and ultimately a greater capacity to
solve the problem. His observations both underscore the
effectiveness of collaborative programming, and provide
evidence for the theory of distributed cognition which
asserts that "knowledge is commonly socially constructed,
through collaborative efforts toward shared objectives or by
dialogues and challenges brought about by differences in
persons’ perspectives" [12].

In 1995 two additional popular books which discussed
collaborative software development practices were
published. In "Constantine on Peopleware," Constantine
reported observing programming pairs at Whitesmith Ltd.
producing code more quickly and with fewer bugs than
would be expected of independent programmers [13].
During the same year, Coplien, in “Pattern Languages of
Program Design” suggested the "Developing in Pairs
Organizational Pattern," which argued that organizations
could produce software more efficiently by pairing
designers to work collaboratively [14].

In recent years, the growth of extreme programming (XP)
has brought considerable attention to collaborative
programming. Developed over a fifteen year period by
Kent Beck and his colleagues, Ron Jeffries and Ward
Cunningham [15], XP is a computer software development
approach that credits much of its success to the use of pair-
programming by all of their programmers, regardless of
experience [16]. The pair-programming dimension of XP
requires that teams of two programmers work
simultaneously on the same design, algorithm, code, or test
[17, 10]. Sitting shoulder to shoulder at one computer, one
member of the pair is the "designated driver," and controls
the keyboard and mouse while actively creating code. The
"non-driver" constantly reviews the keyed data in order to
identify tactical and strategic deficiencies, including
erroneous syntax and logic, misspelling, and
implementations that don't map to the design [10]. After a
designated period of time, the partners reverse their roles,
or work with other co-workers from the same team on

Presented at The 33rd ACM Technical Symposium on
Computer Science Education, February 7-March 3,
2002.

another piece of code. Code produced by only one partner
is discarded, or reviewed collaboratively before it is
integrated.

Anecdotal evidence within industry suggests that the
collaborative nature of XP is highly effective. Perhaps the
largest and best-known example of successful pair-
programming is the Chrysler Comprehensive
Compensation system [18]. Plagued by significant
development problems, Beck and Jeffries restarted the
project using XP programming principles, including the
exclusive use of pair-programming. Today, the payroll
system pays approximately 10,000 employees and has
2,000 classes and 30,000 methods. The system’s success is
largely credited to the reduction in defects and improved
functionality brought about by pair-programming. Despite
the anecdotal evidence, many managers and programmers
who have no experience with collaborative programming
remain skeptical [5], assuming it will be too costly in terms
of scarce programmer hours, or that it will slow
programmers down.

In addition to anecdotal evidence, empirical evidence also
supports the effectiveness of "pair-programming" or
"collaborative learning.” Nosek [17] found that students
who programmed in pairs outperformed those who worked
alone. In a related follow-up study, Nosek randomly
assigned 15 full-time experienced programmers to either
work as part of a two-member team or to work by
themselves on a programming problem for 45 minutes.
Final products were assessed in terms of readability (e.g.,
the degree to which the problem solving strategy could be
determined from the subjects’ work) and functionality (e.g.,
the degree to which the strategy accomplishes the
objectives stated in the problem description). Teams were
found to significantly outperform individual programmers
in terms of functionality and readability, to report greater
satisfaction with the problem-solving process, and to have
greater confidence in their solutions. However, it should be
noted that pair-programming was found to take more total
programmer time than traditional solo programming,
although the elapsed time was less. Pairs required an
average of 60 programmer-minutes to complete
programming assignments compared to the 42
programmer-minutes used by solo programmers. It should
not be concluded, however, that pair-programming requires
more time. Nosek did not include time spent debugging in
his analysis and this debugging may be expedited in pairs.
This point is particularly salient when code quality is
considered; Nosek found that code produced by individuals
is more error prone than code created by pairs.

Further empirical evidence of the effectiveness of pair-
programming is provided by an experimental study
conducted by Williams and Kessler at the University of
Utah [19]. In this study, 41 upper level students enrolled in
a course on web design were randomly assigned to
complete four programming projects either independently
or in pairs. During each programming cycle, the 13 solo

programmers completed one program, while the 14 pairs
completed two. Across all four cycles, the collaborators
had a mean 15% fewer defects in their programs than the
individuals. The difference in the rate of defects was
statistically significant (p<.05) for all but the first cycle.
Furthermore, collaborators spent, on average, only 15%
more time completing two projects than the solo
programmers spent completing one, suggesting that pair-
programming is 40-50% faster than programming alone.

In addition to producing more bug free code, pair-
programming appears to enhance the programmers'
enjoyment and confidence. Students practicing
collaborative programming, as well as professional pair
programmers were anonymously surveyed. Over 90%
reported enjoying their jobs more when working in pairs,
and 95% reported feeling more confident in their solutions
[20].

2. Method

The findings reported in this paper are part of a larger study
funded by the National Science Foundation to assess the
effectiveness of pair programming on the performance and
retention of women in computer science and related fields.
The results reported here are based on a small subsection of
the data that examined the effects of pair programming on
the quality of the programs produced, and on the extent to
which new programming skills were acquired. We
expected that programmers who worked in pairs would
produce better programs than those who worked
independently. Furthermore, we did not anticipate that pair-
programming would compromise learning to program.

During the 2000-2001 academic year, data was gathered
from approximately 600 students enrolled in four sections
of an introductory programming course at the University of
California – Santa Cruz designed for CS, ISM and CE
majors. The results reported in this paper examine data
collected from two sections of the course taught by the
same instructor. One of the two sections reported here
required students to complete programming assignments in
pairs (N=172), while the other required students to write
programs independently(N=141). The programming
assignments, lectures, and quizzes were comparable, and
the final exam was identical in both sections. The other two
sections were not considered for the study reported here
because they were taught by different instructors.

In the pairing section taught in fall 2000, students were
required to complete five programming assignments with a
partner. On the first day of class, each student made a list
of three potential partners and was assigned one partner by
the researchers. Pairs were instructed to alternate “driver”
and “nondriver” roles from hour to hour on each
assignment. The importance of working together was
emphasized throughout the quarter and all students
completed a variety of measures to assess the amount of
time they spent in each role. In the non-pairing section

taught in spring 2001, students were required to
independently complete comparable programming
assignments.

Scores on programming assignments and scores on the
final exam served as the dependent measures.
Programming assignments were scored for functionality
and readability. The final exam assessed students’
knowledge of programming concepts and their ability to
write new code.

3. Results

3.1 Scores on programming assignments

To compare whether programming scores differed as a
function of pair-programming experience, analysis of
variance (ANOVA) was conducted. Among all students
who completed the course, students in the pairing class
scored significantly higher on the programming
assignments (M=86%) than those in the non-pairing class
(M=67%), F(1, 264)=79.24, p<.001. That the difference
between the two classes was statistically significant at the
.001 level indicates that we could have expected to obtain
means this far apart less than 1 time in 1,000 just by
chance. In other words, it is highly unlikely that we would
have obtained these results if pairing didn't actually
influence the quality of the programs. To review means and
standard deviations, see the first two lines of Table 1.

Table 1: Overall program scores

Mean Med. Std. dev.

Pairing (all) 86.3% 88% 13.9%

Non-pairing (all) 67% 68% 21.4%

Non-pairing (top half) 77.1% 80% 19.6%

There are at least two possible explanations for this
difference. First, it may be that pair-programming enhanced
the quality of the output resulting in programs that were
more functional and readable. A second possibility is that
the mean programming score in the pairing class was
artificially inflated. Because both members of the pairs
earned the same grade on each of the programming
assignments, overall scores in the class may have simply
reflected the performance of the stronger student in each
pair. In the most extreme case, it is possible that each of the
pairs in the pairing section consisted of one partner in the
top half and one partner in the bottom half of the class,
resulting in a mean programming score for the whole class
that only represented the performance of the top 50%. If
pair-programming did not improve the quality of the
programming assignments, then the scores in the pairing
class should have been approximately equal to the scores of
the strongest 50% of students in the non-pairing class
(assuming students in the two classes were similar to begin
with). To test this, we performed an ANOVA to compare

the programming scores of all students in the pairing class
to the students in the top half of the non-pairing class
(student ranking was determined by final exam scores).
Overall, the scores from the entire pair-programming
section (M=86%) were significantly higher than the scores
of the top half of the non-pairing class (M=77%), F(1,
210)=14.03, p<.001. Please see bottom line of Table 1 to
review means. This suggests that the best 50 programs
from a group of 100 students working alone, would not be
as good as the programs produced by 50 pairs of students.
Thus, it appears that the very process of working
collaboratively improves the quality of programs.

3.2 Pair-programming and final exam scores

In addition to the quality of the programs produced, we also
examined the effect of pair-programming on students’
conceptual understanding of, and ability to program
independently. Final exam scores in the two classes were
compared using ANOVA. As indicated in Table 2 the mean
exam score in the non-pairing class (M= 75%) was slightly
higher than the mean exam score in the pairing class (M=
73%). This small difference, however, was not statistically
significant, F(1,264)=.46, p >.05, indicating that the
difference between the two classes was not large enough to
attribute to anything other than chance. This finding
suggests that despite the fact that pair-programming results
in improved programs, when used to teach programming it
appears not to affect the extent to which students master
course material and are able to independently apply their
knowledge to new problems.

Table 2: Final exam score

Mean Median Std. dev.

Pairing 72.9% 79.2% 21.6%

Non-pairing. 74.6% 78.3% 18.7%

One factor that may have contributed to the overall class
averages on the final exam is the percentage of students
who did not finish the class. As Table 3 indicates the
percentage of students who finished the final was
dramatically higher in the pairing section (92% vs. 76%).

Table 3: Retention through final exam

attempted
class

took final
exam

took final

Pairing 172 159 92.4%

Non-pairing 141 107 75.9%

Fall 1999 168 142 84.5%

Any number of factors may have contributed to differential
attrition rates. For example, students drop rates may be
higher during the spring than fall quarter. It is also possible

that students in the non-pairing class hoped to work in pairs
and dropped the spring class in order to take it another
quarter in which pairing might be utilized. Pairing may
increase the likelihood that students complete introductory
programming class. Course completion rates were
significantly higher in the pairing class (fall 2000) than in
the non-pairing section offered in spring 2001,
χ2(1)=16.64, p <.001.

For comparative purposes, we also examined course
completion rates in a section of introductory programming
offered in fall 1999. This section, which was taught by the
same instructor as the other two sections and did not
employ pair programming, had a completion rate of 85%.
Chi-square analyses revealed that the completion rate in the
pair programming section was significantly higher (92%)
than the completion rates in the fall 1999 class, χ2(1)=5.25,
p <.05. The course completion rates in the two non-pairing
sections did not significantly differ from one another,
χ2(1)=3.66, p >.05.

Regardless of the reasons, the difference in attrition rates
between the fall 2000 pairing class and the spring 2001
non-pairing class may have contributed to the slightly
higher final exam average in the non-pairing class. If
weaker students in the non-pairing class drop, while their
counterparts in the pair-programming class chose to stay,
these “weak” students may have pulled down the overall
exam performance for the class.

In an attempt to compensate for the significant difference in
drop rates, we compared the performance of equal
percentages of students from each of the two classes (fall
2000 with pair-programming, and spring 2001 without
pair-programming). For the non-pairing class (with higher
attrition), we included all students that took the final exam
(76% of those that attempted the class). For the pairing
class, we included only the “top” 76% of those that
attempted the class. The top 76% were selected in two
ways: (1) by final exam score and (2) by overall class
grade.

Table 4: Final exam score for equal percentages of
students that attempted the class.

Mean Med. Std. Dev.

Pairing (all students that
took final)

72.9% 79.2% 21.6%

Pairing (top 76% by grade) 82.5% 83% 10.7%

Pairing (top 76% by final) 82.7% 83% 9.8%

Non-pairing (all students
that took final)

74.6% 78.3% 18.7%

Not surprisingly, this affected “class performance” on the
final as Table 4 indicates. As previously discussed the
difference between all students in the non-pairing class that
took the final (76% of those who attempted the class) and

all students in the pairing class that took the final (92% of
those that attempted the class) was not significant. On the
other hand, the top 76% of students in the pairing class
scored significantly higher on the final (M= 83%) than
students in the non-pairing class (M= 75%) regardless of
which method was used to select the top 76%
[F(1,239)=15.44, p <.001 and F(1, 237)=14.21, p <.001 for
top 76% based on final and top 76% based on grade,
respectively]. Of course, we recognize that there are many
reasons why students drop a course other than poor
performance, but the current findings are provocative.

4. Conclusion

It appears plausible that as a result of pair-programming,
students that might otherwise have dropped the course,
completed the course. It also appears that the programs of
even the better students benefited from pair-programming.
This is consistent with collaborative learning research,
which shows that academic achievement is enhanced when
an individual learns information with others.

We remain optimistic that pair-programming can be used
effectively in an introductory programming class. The data
suggest that students who work in pairs produce better
programs. Furthermore, they perform comparably on
exams (when not adjusted for varying attrition rates), and
possibly significantly better (when adjusted for attrition
rates) on a final exam, to students required to program
individually.

Acknowledgments

The authors wish to thank Jennifer Bevan, Tristan Thomte,
and Wendy Williams for their assistance with data
collection, entry, and management, and Scott Brandt, and
Alex Pang for allowing us to collect data for this study
from their winter sections of UCSC’s introductory
programming course. This work was partially funded by a
National Science Foundation grant, EIA-0089989. Any
opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the National Science
Foundation.

References

1. E. M. Horn, W. G. Collier, J. A. Oxford, C. F.
Bond, and D. F. Dansereu, “Individual
Differences in Dyadic Cooperative Learning,”
Journal of Educational Psychology, 90(1), pages
153-160, 1998.

2. A. M. O'Donnell and D. F. Dansereu, “Scripted
Cooperation in Student Dyads: A Method for
Analyzing and Enhancing Academic Learning and
Performance,” in R. Hartz-Lazarowitz and N.
Miller (Eds.) Interactions in Cooperative Groups:
The Theoretical Anatomy of Group Learning,

pages 120-141, London: Cambridge University
Press, 1992.

3. R. E. Slavin” “Research on Cooperative Learning
and Achievement: When We Know, What We
Need to Know,” Contemporary Educational
Psychology, 21, pages 43-69, 1996.

4. S. Totten, T. Sills, A.. Digby, and P. Russ.
Cooperative Learning. New York: Garland, 1991.

5. A. Cockburn and L. Williams, “The Costs and
Benefits of Pair Programming,” in Extreme
Programming Examined, Addison Wesley-
Longman, 2001.

6. M. E. Fagan, “Advances in Software Inspections,”
IEEE Transactions on Software Engineering,
12(7), pages 744-751, July 1986.

7. V. R. Basili, S. Green, O.Laitenburger, F.
Lanubile, F. Shull, S. Sorumgard, and M.
Zelkowitz, “The Empirical Investigation of
Perspective-Based Reading,” Journal of Empirical
Software Engineering, 1(2), pages 133-164,
1996.

8. J. C. Schlimmer, J. B. Fletcher, and L. A.
Hermens, “Team-Oriented Software Practicum,”
IEEE Transactions on Education, 37(2), pages
212-220, May 1994.

9. C. Sauer, D. R. Jeffrey, L. Land, and P. Yetton,
“The Effectiveness of Software Development
Technical Review: A Behaviorally Motivated
Program of Research,” IEEE Transactions on
Software Engineering, 26(1), pages 1-14, Jan.
2000.

10. L. A. Williams and R. R. Kessler, “The Effects of
‘Pair-Pressure’ and ‘Pair-Learning’ on Software
Engineering Education,” Proceedings of
Thirteenth Conference on Software Engineering
Education and Training, pages 59-65, March
2000.

11. N. V. Flor and E. L. Hutchins, “Analyzing
Distributed Cognition in Software Teams: A Case
Study of Team Programming During Perfective
Software Maintenance,” presented at Empirical
Studies of Programmers: Fourth Workshop, 1991.

12. G. Salomon. Distributed Cognitions:
Psychological and Educational Considerations.
Cambridge: Cambridge Press, 1993.

13. L. L. Constantine. Constantine on Peopleware,
Englewood Cliffs, NJ: Yourdon Press, 1995.

14. J. O. Coplien, “A Development Process
Generative Pattern Language,” in Pattern
Languages of Program Design, J. O. Coplien and
D. C. Schmidt, Ed. Reading Mass: Addison-
Wesley, pages 183-237, 1995.

15. K. Beck. Extreme Programming Explained:
Embrace Change. Reading, Mass: Addison-
Wesley, 2000.

16. L. Williams, R. A. Kessler, W. Cunningham, and
R. Jeffries, “Strengthening the Case for Pair-
Programming,” IEEE Software, July/Aug. 2000.

17. J. T. Nosek, “The Case for Collaborative
Programming,” Communications of the ACM,
pages 105-108, 1998.

18. A. Anderson, R. Beattie, K. Beck et al., “Chrysler
Goes to Extremes,” Distributed Computing, pages
24-28, Oct.1998.

19. L. Williams and R. R. Kessler, “Experimenting
with Industry’s ‘Pair-Programming’ Model in the
Computer Science Classroom,” Journal on SW
Engineering Education, Dec. 2000.

20. L. Williams. Pair Programming Questionnaire.
2000. Can be found at
http://collaboration.csc.ncsu.edu/questionnaire/qu
estionnaire.htm.

