Learning protein fitness models from evolutionary and assay-labeled data

Hsu, C., Nisonoff, H., Fannjiang, C. *et al.* Learning protein fitness models from evolutionary and assay-labeled data. *Nat Biotechnol* (2022). https://doi.org/10.1038/s41587-021-01146-5

(CSE 590C WI 22 - Alyssa La Fleur)

W

UNIVERSITY of WASHINGTON

Protein fitness prediction

- > Protein "fitness": any protein property (stability, enzyme activity, binding strength, etc.)
- > Predicting fitness for protein sequences: assist with design, potential pathogenicity prediction
 - Pathogenicity prediction task != Fitness prediction task

Protein fitness prediction

- > Protein "fitness": any protein property (stability, enzyme activity, binding strength, etc.)
- > Predicting fitness for protein sequences: assist with design, potential pathogenicity prediction
 - Pathogenicity prediction task != Fitness prediction task

This paper evaluates existing fitness prediction methods, and proposes a new one

Two main ML strategies

1. Evolutionary models

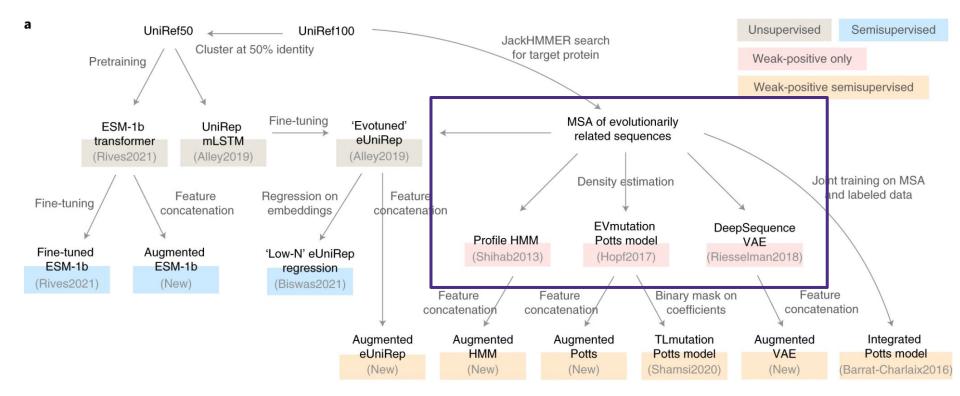
- a. Get a sequence alignment for your target protein
- b. Model the probability density of these sequences
- c. Predict mutant fitness using the probability density model

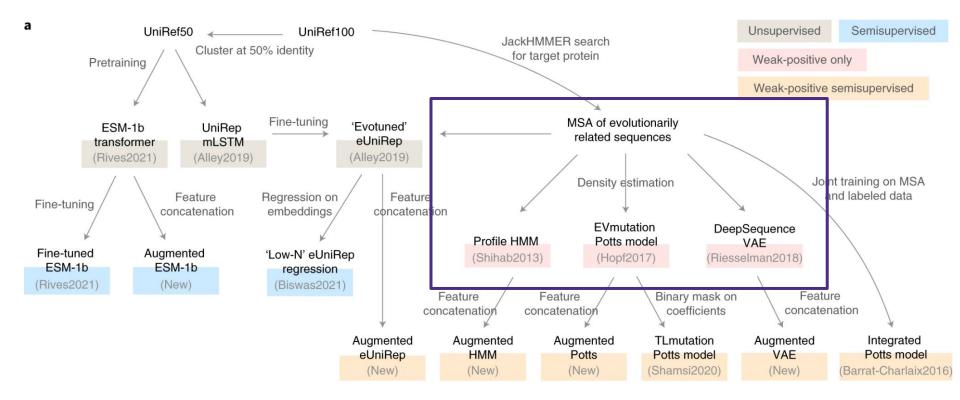
Two main ML strategies

1. Evolutionary models

- a. Get a sequence alignment for your target protein
- b. Model the probability density of these sequences
- c. Predict mutant fitness using the probability density model

'Weak positive' learning - these approaches assume that evolutionary related sequences have similar functions to the target



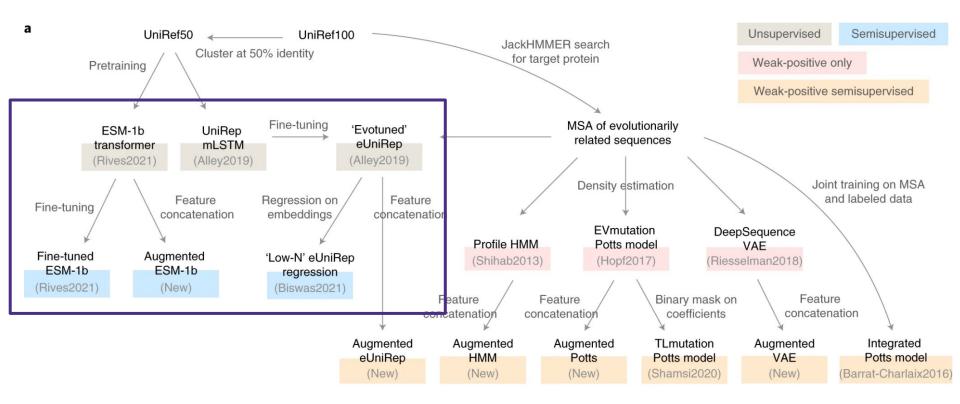


One limitation is that alignment depth may vary - some targets may only have hundreds of usable sequences in their alignment

Two main ML strategies

2. Supervised regression models

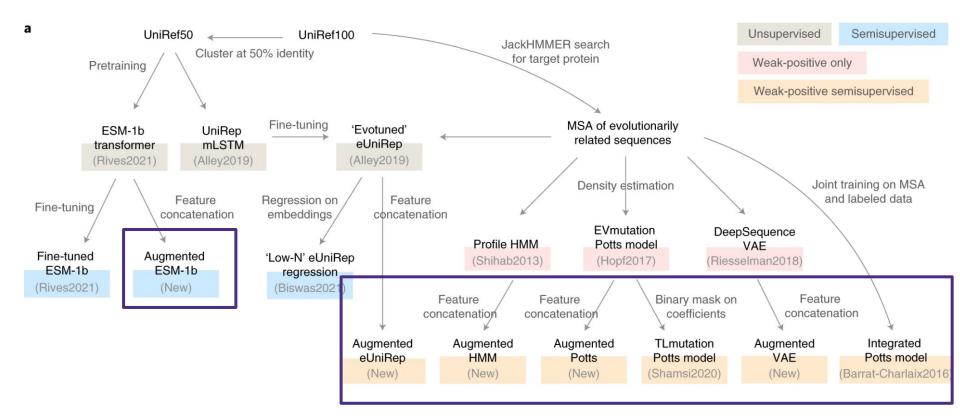
- a. Models range from simple (linear regression) to complex (CNN, LSTM, Transformers, etc.)
- Semi-supervised: Supervised regression models can also be trained using unsupervised NLP model protein representations



Can be limited by number of mutants in training set, coverage of positions by mutation (few positions vs. many)

A combined strategy

- > Weak-positive semi-supervised learning: learning a distribution of sequences using alignments, with supervised learning on labelled sequences
- > Their 'baseline' augmentation combined approach (Had max performance in 15/19 test sets)



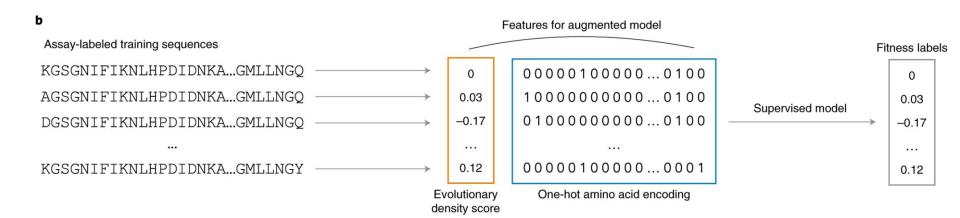
Can be limited by number of mutants in training set, coverage of positions by mutation (few positions vs. many)

Potts models

> TLMutation Potts models SUMMARY GOES HERE

Augmentation combined approach

- > Sequence log-likelihoods from a sequence density model & one-hot encoded protein sequences
- > Supervised model is ridge regression (L2)



Deep mutation scanning (DMS) datasets

- > They used 19 of the DMS datasets from EVMutation (one of the competitor models they compared against) + a GFP fluorescence data set
- > All had mutations throughout a domain or whole protein
- > 16/19 had sequences one missense mutation away from WT (single mutants)
- > Only evaluated mutants at positions with < 30% gaps in the MSAs generated</p>

Dataset splits

- > **20% test**, varying sizes of training sets
- > 80/20 train/test, five fold cross-validation on the 80% where computationally feasible (For comparing to methods like TLMutation, ESM1-b)

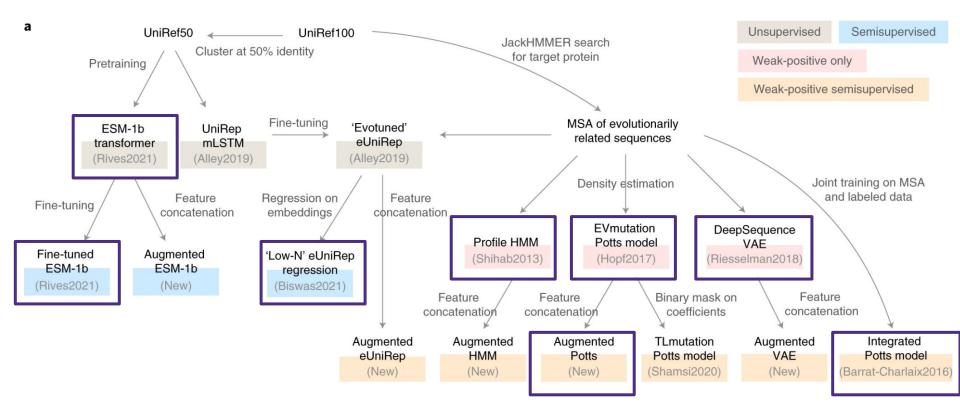
20 random seems were used for data partitioning for each approach

Ranking metrics

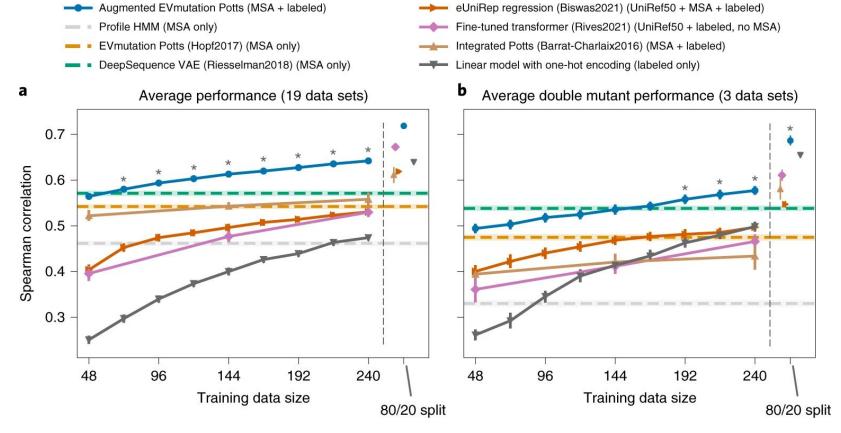
> Spearman rank correlation coefficient:

> Normalized discounted cumulative gain (NDCG): From information retrieval, similar to a weighted Spearman rank which focuses on high value agreement

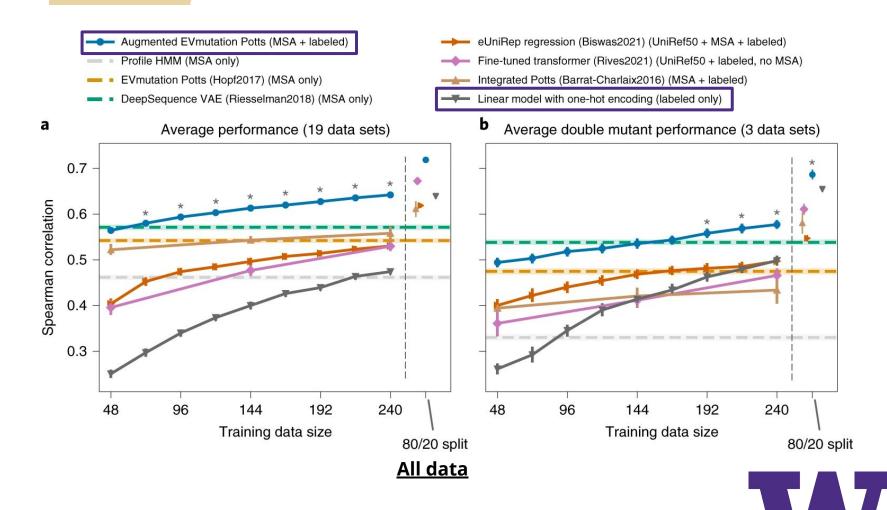
One hot linear model



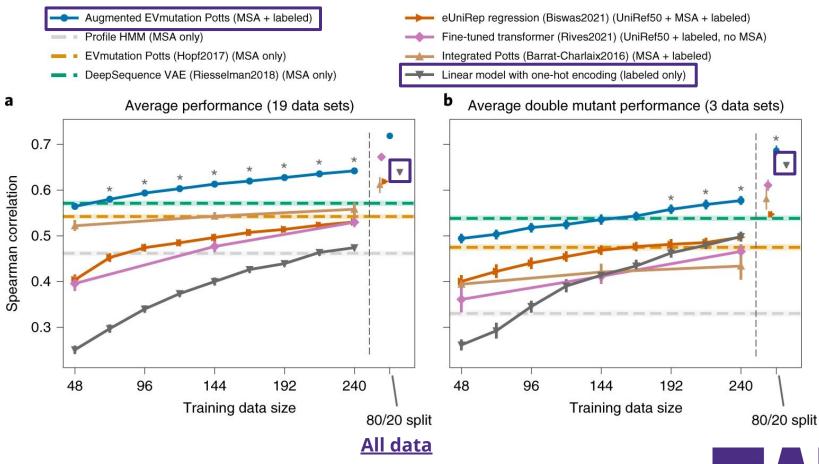
Low-N Training Predictions



Low-N Training Predictions



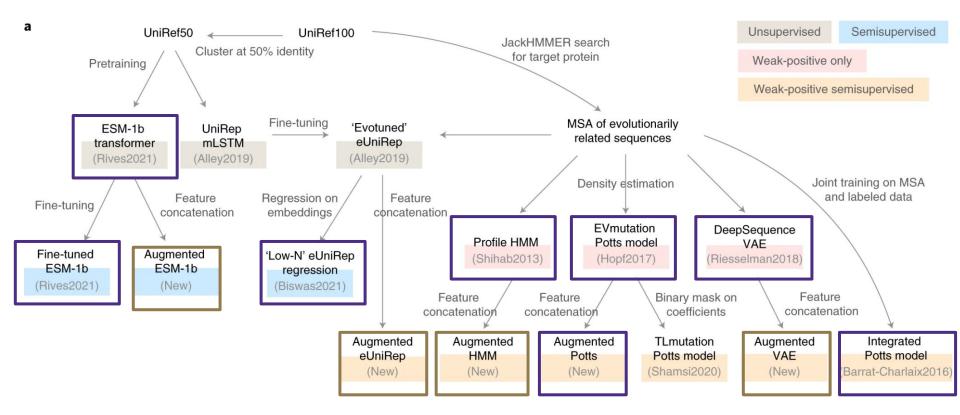
Low-N Training Predictions

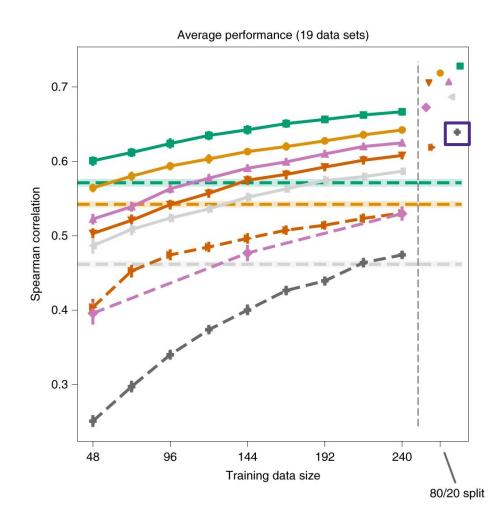


Additional augmented models

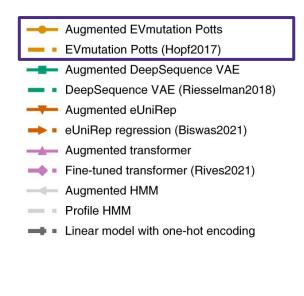
- > Augmented other models than just Potts
- > Note that the transformer (not eUniRep) is the only method not using any evolutionary data
- > Augmented models outperformed non-augmented model, regardless of training set size

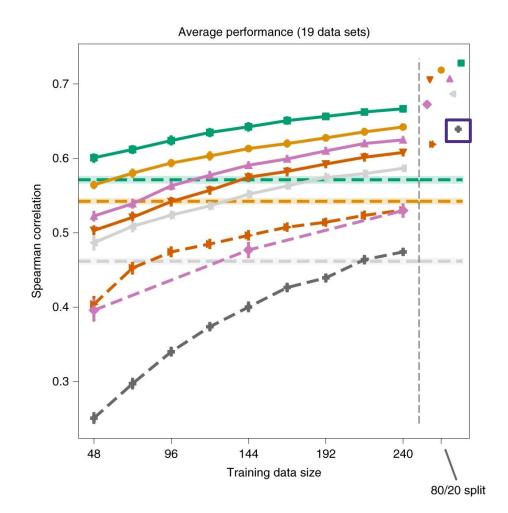
One hot linear model

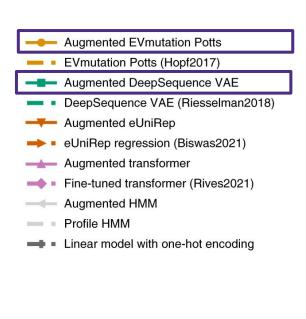




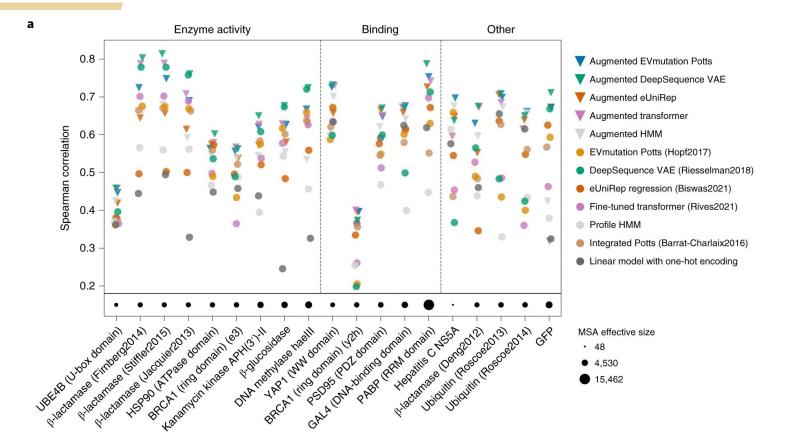
Solid and dashed lines of the same color are the aug. and non-aug. versions, respectively





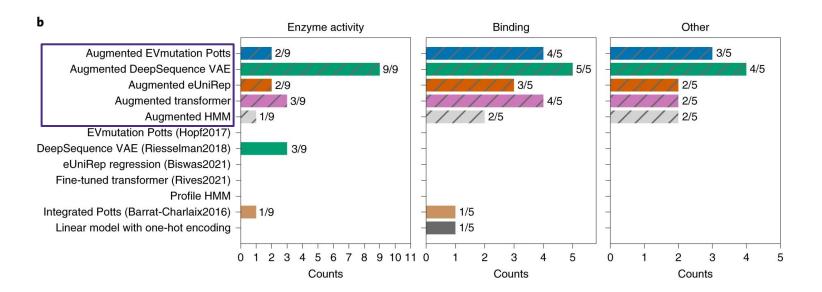


Performance w/ train N = 240



Augmented DeepSequence VAE was the best (esp. enzyme activity)

Maximal Spearman values w/ train N = 240



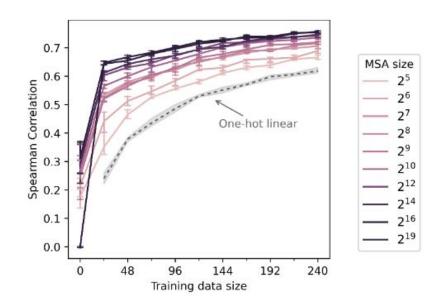
Augmented DeepSequence VAE was the best (esp. enzyme activity)

Performance w/ train N = 240

- > Models with evolutionary data had better Spearman correlation w/ larger effective MSA size
- > Relative model ranking appeared to not relate to MSA size

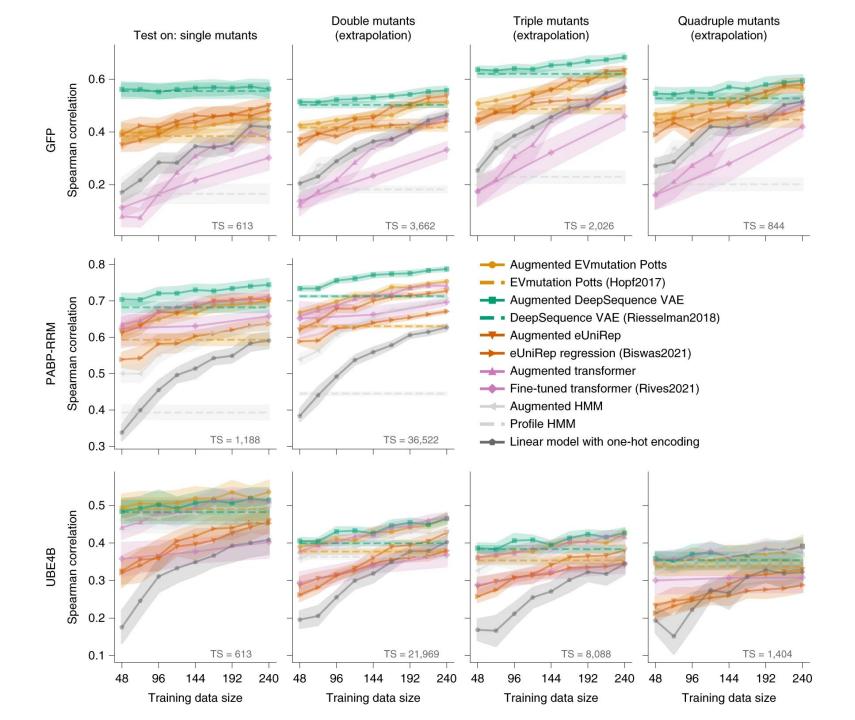
Effect of reducing MSA size

- > Chose largest MSA data set (poly(A)-binding protein) and decreased effective size
- > Examined aug. Potts model peformance



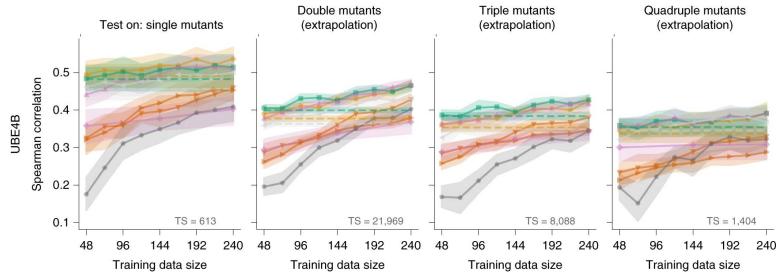
Single to higher order mutant prediction

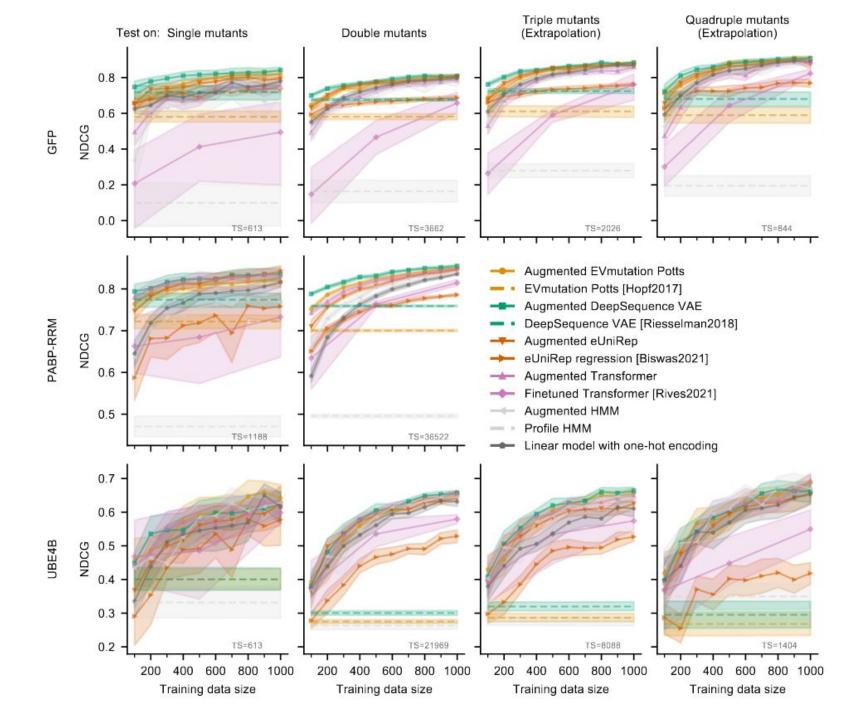
- > Trained the model on only single mutant data tested on single, double, triple, and quadruple mutants
- > Should capture how much epistasis contributes to the fitness landscape, and if/how much models capture it
- > Only 3 datasets

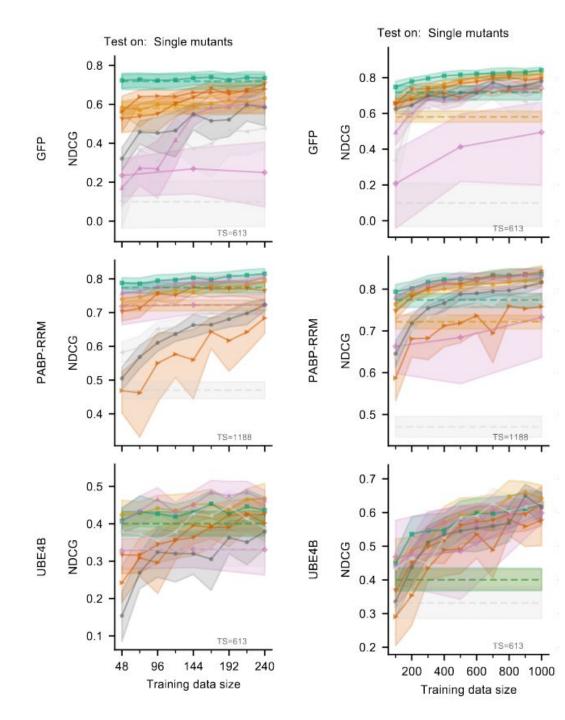


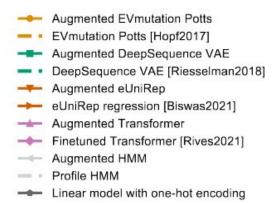
Single to higher order mutant prediction

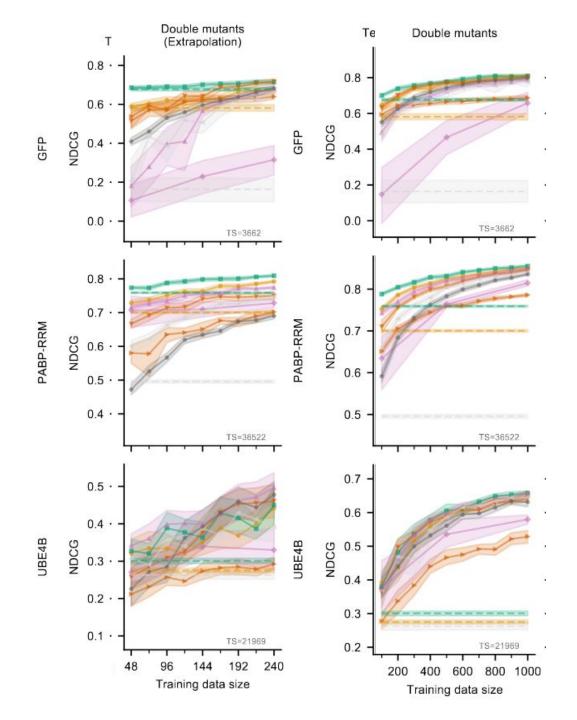
> Poor performance on ubiquitination factor E4B (UBE4B) may be due to evolutionary data not providing much relevant information to assayed value

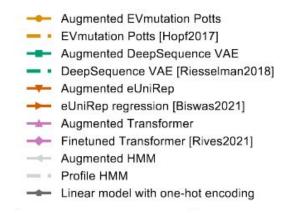


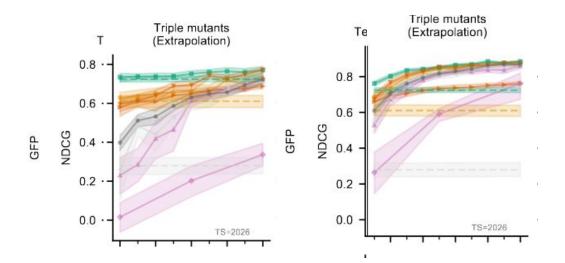


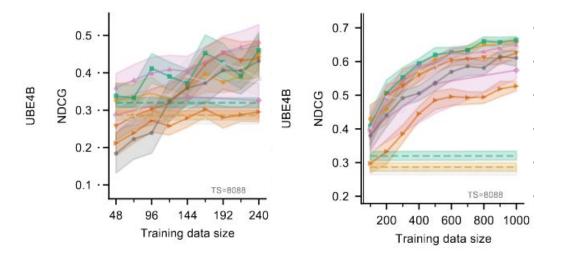




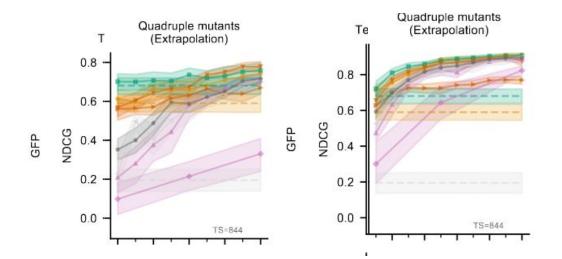


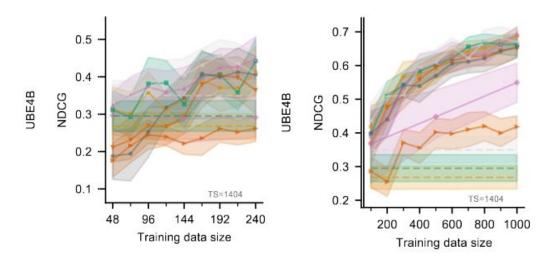






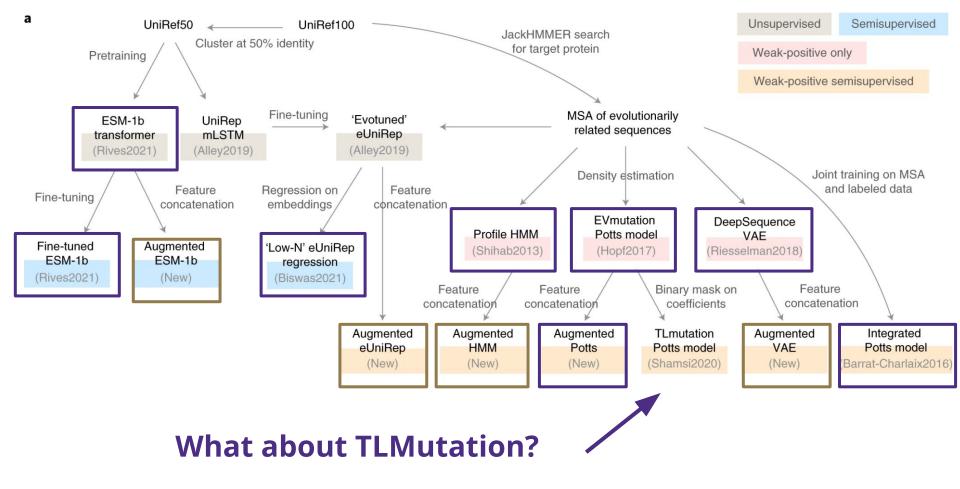
- Profile HMM
- Linear model with one-hot encoding





- Profile HMM
- Linear model with one-hot encoding

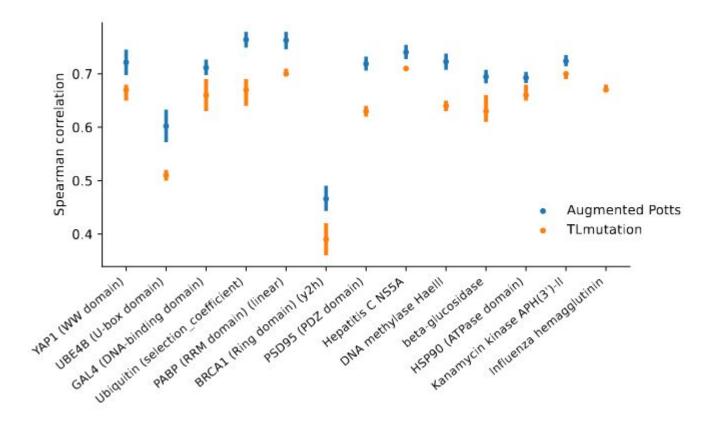
One hot linear model



TLMutation

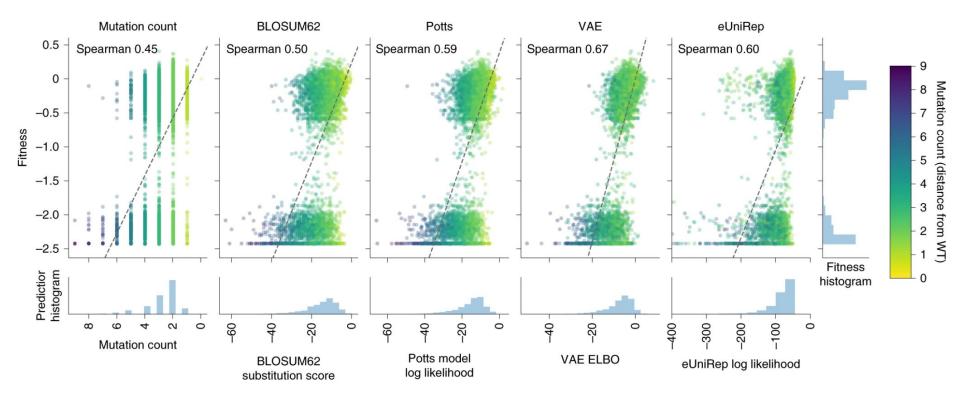
- Conceptually similar to the aug. Potts model (combining density model and supervised learning)
- > Allows for zeroing out Potts model parameters with supervised learning - learns a mask.
- > More computationally expensive, worse than the aug Potts model

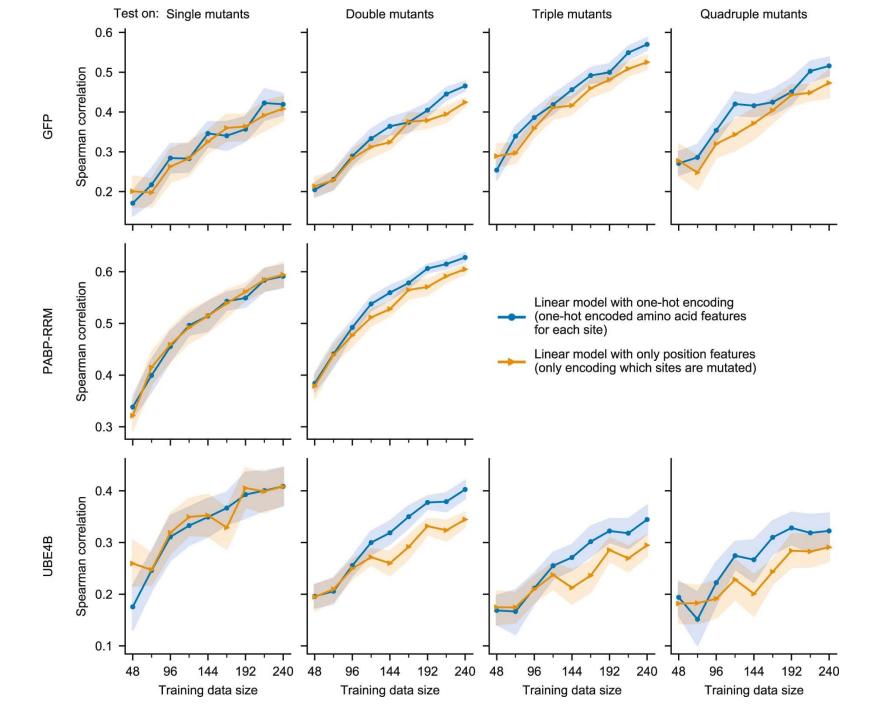
TLMutation comparison



What about really simple models?

- > They tried using edit distance from WT to predict fitness & found some correlation with GFP
- > Non-aug. predictions were unimodal, but fitness values were bimodal
- > Less correlation with UBE4B
- > Tried just encoding position information +





Summary

- Simple linear regression with one-hot encoded amino acid features and a evolutionary density feature from density models outperforms said density models
- > Deep learning models may be used with these features instead - but this was not tested
- > Aug. transformer could be used for small MSA proteins

Discussion questions

- > Do you think using their augmented features with a more complicated regression model would lead to a better predictor?
 - Would it be worth (presumably) trade-offs in requiring higher N training set sizes?
 - Would it be worth it for protein design?
- > Do you think their decision to remove TLMutation from their comparison figures throughout was fair to the assessment?

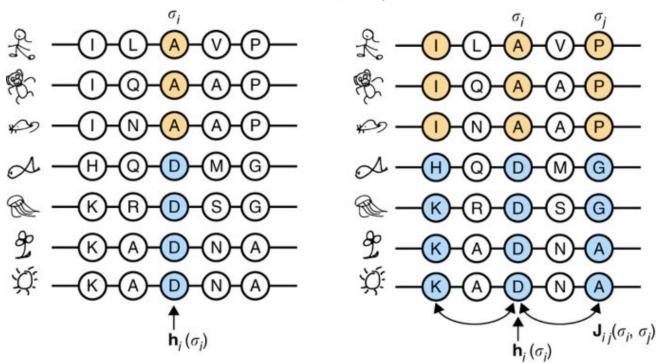
UNIVERSITY of WASHINGTON

Our approach (EVmutation)

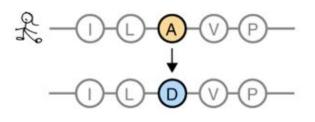
Independent model

Epistatic model

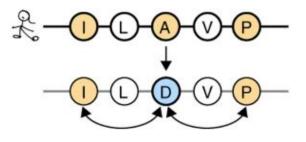
Model constraints on sequences

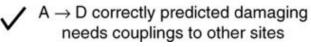


Predict effects of mutations



 $X \stackrel{A \to D \text{ wrongly predicted neutral}}{\text{ignoring sequence context}}$





Protein	UniProt 1D	Measurement	# Mutations before exclu- sion	# Mutations after excluding positions with $\geq 30\%$ gaps	MSA size	Reference
ß-glucosidase	(Custom sequence)	Enzyme activity	3000(1)	2634(1)	28048	Romero et al., PNA5, 2015
β-lactamase	BLAT, ECOLX	Ampicillin resistance Ampicillin resistance Amosicillin resistance Stability	5199(1) 4997(1) 990(1) 4998(1)	4611(1) 4807(1) 951(1) 4808(1)	8403	Firnberg et al., Mol Biol Evol, 2014 Stiffler et al., Cell, 2015 Jacquier et al., PNAS 2013 Deng et al., JMB, 2012
BRCA 1 (RING domain)	BRCAL-HUMAN	E3 ligase activity BARD1 interaction	4872(1) 1748(1)	1382 (1) 1335 (1)	25828	Starita et al., Genetics, 2015
PSD95 (PDZ domain)	DLG4,RAT	Peptide binding	1578(1)	1578 (1)	102410	McLaughlin et al., Nature, 2012
GAL4 (DNA-binding domain)	GAL4_YEAST	Transcriptional activity	1196(1)	1123(1)	17521	Kitzmann et al., Nature Methods, 2015
HSP90 (ATPase domain)	HSP82_YEAST	ATPase activity	4324(1)	4104 (1)	15329	Mishra et al., Cell Reports, 2016
Kanamycin kinase APH(3')-II	KKA2,KLEPN	Kinase activity	4582(1)	4385(1)	12861	Melnikov et al., NAR, 2014
DNA methylase HaelII	(Custom sequence)	DNA methyltransferase activity	1778 (1, filtered)	1634(1)	14115	Rockah-Shmuel et al., PLOS Comp Bio, 201
Poly(A)-hinding protein (RRM domain)	PABP_YEAST	RNA binding	1188 (1) 36522 (2)	1188 (1) 36522 (2)	152041	Melamed et al., RNA, 2013
Hepatitis C NS5A	POLG_HCVJF	Viral replication	1632(1)	1632(1)	8106	Qi et al., PLOS Pathogens, 2014
Ubiquitin	RL401_YEAST	Growth E1 reactivity	1196 (1) 1360 (1)	1161(1) 1295(1)	21448	Rescue et al, JMB, 2013 Rescue et al, JMB, 2014
UBE48 (U-box domain)	UBE48_MOUSE	Ligase activity	91031 (1-9 mut.)	613 (1) 21969 (2) 8088 (3) 1404 (4) 216 (2 5)	9172	Starita et al., PNAS, 2013
YAP1 (WW domain 1)	YAPI-HUMAN	Peptide binding	363 (1)	319 (1)	40302	Araya et al., PNAS, 2012
Green Fluorescent Protein	(Custom sequence)	Fluorescence	51715 (1-14 mut.)	613 (1) 3662 (2) 2026 (3) 844 (4) 630 (≥ 5)	22535	Sarkiayan et al., Nature, 2016