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Protein fitness prediction

> Protein “fitness”: any protein property (stability,
enzyme activity, binding strength, etc.)
> Predicting fitness for protein sequences: assist

with design, potential pathogenicity prediction
— Pathogenicity prediction task != Fitness prediction task
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Protein fitness prediction

> Protein “fitness”: any protein property (stability,
enzyme activity, binding strength, etc.)
> Predicting fitness for protein sequences: assist

with design, potential pathogenicity prediction
— Pathogenicity prediction task != Fitness prediction task

This paper evaluates existing fitness prediction

methods, and proposes a new one




Two main ML strategies

1. Evolutionary models

a. Getasequence alignment for your target protein
b. Model the probability density of these sequences

c. Predict mutant fitness using the probability density
mode]
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Two main ML strategies

1. Evolutionary models

a. Getasequence alignment for your target protein
b. Model the probability density of these sequences

c. Predict mutant fitness using the probability density
mode]

‘Weak positive’ learning - these approaches assume that

evolutionary related sequences have similar functions to the
target
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One limitation is that alignment depth may vary - some
targets may only have hundreds of usable sequences in their
alignment




Two main ML strategies

2. Supervised regression models
a. Models range from simple (linear regression) to
complex (CNN, LSTM, Transformers, etc.)
b. Semi-supervised: Supervised regression models can
also be trained using unsupervised NLP model protein

representations
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Can be limited by number of mutants in training set, coverage
of positions by mutation (few positions vs. many)




A combined strategy

> Weak-positive semi-supervised learning: learning
a distribution of sequences using alignments, with
supervised learning on labelled sequences

> Their ‘baseline’ augmentation combined

approach (Had max performance in 15/19 test
sets)
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Potts models

> TLMutation Potts models SUMMARY GOES HERE




Augmentation combined approach

> Sequence log-likelihoods from a sequence density
model & one-hot encoded protein sequences
> Supervised model is ridge regression (L2)

Assay-labeled training sequences
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Deep mutation scanning (DMS) datasets

> They used 19 of the DMS datasets from
EVMutation (one of the competitor models they
compared against) + a GFP fluorescence data set

> All had mutations throughout a domain or whole
protein

> 16/19 had sequences one missense mutation
away from WT (single mutants)

> Only evaluated mutants at positions with < 30%

gaps in the MSAs generated




Dataset splits

\"

20% test, varying sizes of training sets

80/20 train/test, five fold cross-validation on the
80% where computationally feasible (For comparing
to methods like TLMutation, ESM1-b)

20 random seems were used for data partitioning

for each approach




Ranking metrics

> Spearman rank correlation coefficient:

> Normalized discounted cumulative gain (NDCG):
From information retrieval, similar to a weighted
Spearman rank which focuses on high value
agreement
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Low-N Training Predictions

Spearman correlation
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Low-N Training Predictions
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Additional augmented models

> Augmented other models than just Potts

> Note that the transformer (not eUniRep) is the
only method not using any evolutionary data

> Augmented models outperformed

non-augmented model, regardless of training set
size
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Spearman correlation

Average performance (19 data sets)
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Performance w/ train N = 240

Enzyme activity Binding Other
v
0.8 : ® v V Augmented EVmutation Potts
= v L4 R A/ V Augmented DeepSequence VAE
0.7 - v < ) v v 4 Y| W Augmented eUniRep
w .
‘ e A\ - % ! ; ’ v - 3 i § WV Augmented transformer
'\ o
.5 0.6 - y v ‘ @ ' B b d Augmented HMM
5 ty*t?, ° e i
° ® 7 @ ® © @® EVmutation Potts (Hopf2017)
8 0.5 4 ) ® o e o ® i Y ® @ ® DeepSequence VAE (Riesselman2018)
é | 2 Ps e © ® [ ] @ eUniRep regression (Biswas2021)
] 0.4 4 v e @ Fine-tuned transformer (Rives2021)
o O
& : i Profile HMM
o
0.3 - . ¢ g @ Integrated Potts (Barrat-Charlaix2016)
® @ Linear model with one-hot encoding
0.2 [
e © o o o o o © O o o o o O e o o O
T T T T T T T T T T T T T I I T T T T
. N\ /] N\ o . 5 i i
'55& Q\b‘\ 0\43\ Q\‘b\ f&& \éb\ \\,\ ~b'z;o @QJ\\ ®\® @ ‘b\& q}® Q}& %o_-,?“ Q,\Q,\ 0\"5\ 0\&\ Q)QQ MSA effective size
FTEFPL LS I NN TSNS &P . 48
S & 4 \')\0 S < O g & ('&Q & & & . O 0(\ O L
F I P L TV TN P O PP S ® 4530
O° @é\ e;@ Qrbo L Qbo & ° e?& N 80 & @Q QQ}\ ‘90\ & & o
S S D& NSO O » Q CA. AR 15,462
N N\ GRS TR EEFF K X F &
&K &S & AT ¥ ar 8 &V QF & @ .
F o & L T TH L@ SAININY
Rl MR S A X
N ) Ny @

Augmented DeepSequence VAE was the best (esp. enzyme activity)




Maximal Spearman values w/ train N = 240
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Performance w/ train N = 240

> Models with evolutionary data had better
Spearman correlation w/ larger effective MSA
size

> Relative model ranking appeared to not relate to
MSA size
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Effect of reducing MSA size

> Chose largest MSA data set (poly(A)-binding
protein) and decreased effective size
> Examined aug. Potts model peformance
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Single to higher order mutant prediction

> Trained the model on only single mutant data -
tested on single, double, triple, and quadruple
mutants

> Should capture how much epistasis contributes
to the fitness landscape, and if/how much models
capture it

> Only 3 datasets
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Single to higher order mutant prediction

> Poor performance on ubiquitination factor E4B
(UBE4B) may be due to evolutionary data not
providing much relevant information to assayed
value
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One hot linear model
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What about TLMutation?




TLMutation

> Conceptually similar to the aug. Potts model
(combining density model and supervised
learning)

> Allows for zeroing out Potts model parameters
with supervised learning - learns a mask.

> More computationally expensive, worse than the
aug Potts model
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TLMutation comparison
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What about really simple models?

> They tried using edit distance from WT to predict
fitness & found some correlation with GFP

> Non-aug. predictions were unimodal, but fitness
values were bimodal

> Less correlation with UBE4B
> Tried just encoding position information +

W
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PABP-RRM

UBE4B
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Test on: Single mutants

Double mutants

Triple mutants

Quadruple mutants
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Summary

> Simple linear regression with one-hot encoded
amino acid features and a evolutionary density
feature from density models outperforms said
density models

> Deep learning models may be used with these
features instead - but this was not tested

> Aug. transformer could be used for small MSA
proteins
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Discussion questions

>

Do you think using their augmented features
with a more complicated regression model would

lead to a better predictor?

— Would it be worth (presumably) trade-offs in requiring
higher N training set sizes?

— Would it be worth it for protein design?

Do you think their decision to remove
TLMutation from their comparison figures

throughout was fair to the assessment?
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Existing approaches Our approach (EVmutation)

Independent model Epistatic model

Model constraints on sequences

Predict effects of mutations

:.%, :f%,

X AR A

X A — D wrongly predicted neutral v A — D correctly predicted damaging
Ignoring sequence context needs couplings to other sites
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