Query to reference single-cell integration with transfer learning

Mohammad Lotfollahi, Mohsen Naghipourfar, Malte D. Luecken, Matin Khajavi, Maren Büttner, Ziga Avsec, Alexander V. Misharin, Fabian J Theis
Problem Setting

- Have a set of large single-cell reference atlases
- Want to learn from references for improved analysis of new data
- Many analysis difficulties:
 - May not have access to reference data
 - Technical batch effects between and within datasets
 - Biological perturbations between and within datasets
 - Tedious to cluster and annotate new data
 - May not have computational resources
Goals

● Automate clustering and annotation of new datasets
● Enable easy comparison across tissues, species, and disease conditions
● Share knowledge even with data privacy restrictions
Methods

- Transfer learning
- Model sharing
- Architecture surgery
- Deep generative models
Conditional Variational Autoencoder (cVAE)

Plot from https://towardsdatascience.com/understanding-conditional-variational-autoencoders-cd62b4f57bf8
scArches: Model Setup

- Have N reference datasets
 - Gene expression data X_i
 - Categorical study label S_i
- Pretrain model with $X_{1:N}$, $S_{1:N}$
- Have access to weights from pretrained model
scArches: Model Setup

- Have N reference datasets
 - Gene expression data X_i
 - Categorical study label S_i
- Pretrain model with $X_{1:N}$, $S_{1:N}$
- Have access to weights from pretrained model

- Get M new query datasets
 - Each has X_i, S_i
scArches

Diagram:

(a) Public reference datasets

(b) Goal: Transfer learning across

Query data + architectural surgery

Model repository

Download model

Uploaded model

Fixed

Trained
scArches: Pancreas Experiment

- Reference atlas of 3 pancreas studies
 - Remove all alpha cells, gamma cells
- Query with 2 new pancreas studies
 - Include alpha cells, gamma cells
- All different sequencing technologies

- Expectations:
 - Shared cell types have similar latent representations to reference
 - New cell types (alpha and gamma cells) have different latent representations
scArches: Pancreas Experiment
Evaluation

- **Entropy of batch mixing (EBM)**
 - Higher scores -> better mixing of cells across batches in latent space
- **K-Nearest Neighbors (KNN) purity**
 - Higher scores -> small neighborhood of cells in original data mapped to same neighborhood in latent space
- **Tradeoff between the two**
Transfer Learning Approach

- **scArches approach**
 - Fine-tune newly-introduced weights in first layer of encoder
 - Fine-tune newly-introduced weights in first layer of decoder

- **Other considered approaches**
 - Fine-tune all weights in first layer of encoder, first layer of decoder
 - Fine-tune all model weights
TL Approach Experiment

- Mouse brain datasets
 - 2 reference
 - 2 query

- Look for:
 - Good batch mixing
 - Preservation of distinct clusters for different cell types
Transfer Learning Approach
Benchmarking efforts

- **Batch correction compared to existing fully-trained methods**
 - Seurat v3, Harmony, Liger, Scanorama, MNN correct, Conos, trVAE
 - KNN purity and EBM as performance metrics
 - Tested across 2 organs & 4 data sets
 - scArches + trVAE on par in preserving internal substructures in orig. data
 - Outperformed on mixing across studies
 - Substantially outperforms baseline trVAE without TL

- **Effect of dataset size on integration quality**
 - Subsamples of varying sizes
 - Increasing sample size → increasing KNN & EBM across datasets & sample sizes for scArches and scArches + trVAE
 - Outperforms all other methods in presence of low cell numbers where TL is beneficial
 - Outperforms other models’ integration in large data regimes
scArches: mapping across tissues, trachea experiment

- Reference atlas of 155 cell types across 23 tissues and 5 age groups (1-30 months)
 - Remove tracheal cells
- Query atlas contains 90,120 cells at 3 month time point from 24 tissues
 - Includes tracheal cells
- Reported successful integration across time points and sequencing technologies
 - Distinct cluster of tracheal cells identified (n = 9,330)
- To test transfer of cell type labels from reference:
 - Trained a KNN classifier on reference latent space
 - Each query cell annotated by nearest reference neighbor, given uncertainty score
 - Report 89% label transfer accuracy (except for trachea)
 - Misclassified cells and out of dist. cells received high uncertainty scores
scArches: mapping across tissues, trachea experiment

![Diagram](image_url)
scArches: mapping across species, human-mouse experiment

- Reference model trained on Human Cell Landscape (HCL)
 - 249,845 cells across 63 human tissues
- After architecture surgery, aligned Mouse Cell Atlas (MCA), n=122,944, into reference human cell atlas
- Different profiling and sequencing technologies
- Expectation: all cell types won’t overlap due to species-specific cell types and functions
- Result:
 - similar immune cell types (e.g. neutrophils, macrophages) clustered together across species
 - species-specific cells placed separately
- Strong regularization of transfer from reference via scArches
 - Overcome strong species biological effect
 - Focus on gene expression similarity across major mammalian cell types
scArches: mapping across species, human-mouse experiment
scArches: mapping across disease states

- Essential to contextualize query data with healthy reference to study disease
- 3 criteria for disease-to-healthy data integration
 - Preservation of biological variation of healthy cell states
 - Integration of matching cell types between healthy reference and disease query
 - Preservation of distinct disease variation, e.g. emergence of new cell types unseen during healthy reference building
COVID-19 experiment background

- Reference: bone marrow, PBMCs and normal lung tissue (n = 154,723)
- Query: immune & epithelial cells from healthy controls, and patients with moderate & severe COVID-19 (n = 62,469)
 - airway epithelial cells, plasma and B cells, CD8+ T cells, neutrophils, monocytes, mast, natural killer cells, dendritic cells, and macrophages

- Immunology review
 - Monocytes and macrophages
 - CD8+ T cells
COVID-19 experiment findings

- Healthy query data integrates well with healthy reference
- Macrophage cluster: 2 main groups
 - TRAMs (tissue-resident alveolar macrophages), found in healthy tissue
 - MoMs (monocyte-derived inflammatory macrophages), not found in healthy tissue
- Cell activation/expression state can influence data mixing degree
 - Difference in expression of TRAMs in COVID-19 vs. healthy lung tissue
- MoMs placed in closer proximity to monocytes than TRAMs
 - reflects ontological relationship
 - gradient of C1QA expression use to differentiate between monocytes & MoMs
- Activation of CD8+ T cells in immune response also reflected in distinct clusterings of COVID-19 patients and healthy lung references
scArches: COVID-19 experiment
Let’s discuss...

- The importance of choosing the right reference
- How does this model compare to other implementations (was adequate benchmarking done?)?
- What sort of quality control is done on user query data?
- What methods are there for batch-effect differentiation (e.g. lab-to-lab variation vs. healthy-disease variation)
- What are the security and privacy implications of this system?
- In mapping diverse datasets to each other, e.g. mouse and human atlases, how is bias to one species over the other controlled/balanced over time?