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Problem Setting

e Have a set of large single-cell reference atlases
e \Want to learn from references for improved analysis of new data

e Many analysis difficulties:

May not have access to reference data

Technical batch effects between and within datasets
Biological perturbations between and within datasets
Tedious to cluster and annotate new data

May not have computational resources
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Goals

e Automate clustering and annotation of new datasets
e Enable easy comparison across tissues, species, and disease conditions
e Share knowledge even with data privacy restrictions



Methods

Transfer learning

Model sharing
Architecture surgery
Deep generative models



Conditional Variational Autoencoder (cVAE)
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scArches: Model Setup

e Have N reference datasets

o (Gene expression data X;
o Categorical study label S;

e Pretrain model with X;.n, S;.n
e Have access to weights from pretrained model



scArches: Model Setup

e Have N reference datasets

o (Gene expression data X;
o Categorical study label S;

e Pretrain model with X;.n, S;.n
e Have access to weights from pretrained model

e Get M new query datasets
o Eachhas X;, S;
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scArches: Pancreas Experiment

e Reference atlas of 3 pancreas studies
o Remove all alpha cells, gamma cells

e Query with 2 new pancreas studies
o Include alpha cells, gamma cells

e All different sequencing technologies

e Expectations:
o Shared cell types have similar latent representations to reference
o New cell types (alpha and gamma cells) have different latent representations



scArches: Pancreas Experiment
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Evaluation

e Entropy of batch mixing (EBM)
o Higher scores -> better mixing of cells across batches in latent space
e K-Nearest Neighbors (KNN) purity
o Higher scores -> small neighborhood of cells in original data mapped to same neighborhood in
latent space

e Tradeoff between the two



Transfer Learning Approach

e scArches approach
o Fine-tune newly-introduced weights in first layer of encoder
o Fine-tune newly-introduced weights in first layer of decoder
e Other considered approaches

o Fine-tune all weights in first layer of encoder, first layer of decoder
o Fine-tune all model weights



TL Approach Experiment

e Mouse brain datasets
o 2reference
o 2 query

e Look for:

o Good batch mixing
o Preservation of distinct clusters for different cell types
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Benchmarking efforts

e Batch correction compared to existing fully-trained methods
o Seurat v3, Harmony, Liger, Scanorama, MNN correct, Conos, trVAE
o KNN purity and EBM as performance metrics
o Tested across 2 organs & 4 data sets
m scArches + trVAE on par in preserving internal substructures in orig. data
m Outperformed on mixing across studies
m Substantially outperforms baseline trVAE without TL

e Effect of dataset size on integration quality

o Subsamples of varying sizes
o Increasing sample size — increasing KNN & EBM across datasets & sample sizes for scArches

and scArches + trVAE
Outperforms all other methods in presence of low cell numbers where TL is beneficial

Outperforms other models’ integration in large data regimes



scArches: mapping across tissues, trachea experiment

e Reference atlas of 155 cell types across 23 tissues and 5 age groups (1-30

months)
o Remove tracheal cells
e Query atlas contains 90,120 cells at 3 month time point from 24 tissues
o Includes tracheal cells

e Reported successful integration across time points and sequencing

technologies
o Distinct cluster of tracheal cells identified (n = 9,330)

e To test transfer of cell type labels from reference:
o Trained a KNN classifier on reference latent space
o Each query cell annotated by nearest reference neighbor, given uncertainty score
o Report 89% label transfer accuracy (except for trachea)
o Misclassified cells and out of dist. cells received high uncertainty scores



scArches:

Uncertainty

e Correct
o InCorrect
Unknown
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scArches: mapping across species, human-mouse

experiment
e Reference model trained on Human Cell Landscape (HCL)
o 249,845 cells across 63 human tissues
e After architecture surgery, aligned Mouse Cell Atlas (MCA), n=122,944, into
reference human cell atlas
e Different profiling and sequencing technologies
e Expectation: all cell types won’t overlap due to species-specific cell types and
functions
e Result:
o similar immune cell types (e.g. neutrophils, macrophages) clustered together across species
o species-specific cells placed separately
e Strong regularization of transfer from reference via scArches

o Overcome strong species biological effect
o Focus on gene expression similarity across major mammalian cell types



scArches: mapping across species, human-mouse
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scArches: mapping across disease states

e Essential to contextualize query data with healthy reference to study disease

e 3 criteria for disease-to-healthy data integration
o Preservation of biological variation of healthy cell states
o Integration of matching cell types between healthy reference and disease query
o Preservation of distinct disease variation, e.g. emergence of new cell types unseen during
healthy reference building



COVID-19 experiment background

e Reference: bone marrow, PBMCs and normal lung tissue (n = 154,723)
e Query: immune & epithelial cells from healthy controls, and patients with
moderate & severe COVID-19 (n = 62,469)

o airway epithelial cells, plasma and B cells, CD8+ T cells, neutrophils, monocytes, mast, natural
killer cells, dendritic cells, and macrophages
e Immunology review

o Monocytes and macrophages
o CD8+T cells



COVID-19 experiment findings

e Healthy query data integrates well with healthy reference

e Macrophage cluster: 2 main groups

o TRAMs (tissue-resident alveolar macrophages), found in healthy tissue
o MoMs (monocyte-derived inflammatory macrophages), not found in healthy tissue

e Cell activation/expression state can influence data mixing degree
o Difference in expression of TRAMs in COVID-19 vs. healthy lung tissue

e MoMs placed in closer proximity to monocytes than TRAMs
o reflects ontological relationship
o gradient of C1QA expression use to differentiate between monocytes & MoMs

e Activation of CD8+ T cells in immune response also reflected in distinct
clusterings of COVID-19 patients and healthy lung references



scArches: COVID-19 experiment
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Let's discuss...

e The importance of choosing the right reference

e How does this model compare to other implementations (was adequate
benchmarking done?)?

e \What sort of quality control is done on user query data?

e \What methods are there for batch-effect differentiation (e.g. lab-to-lab
variation vs. healthy-disease variation)

e \What are the security and privacy implications of this system?

e In mapping diverse datasets to each other, e.g. mouse and human atlases,
how is bias to one species over the other controlled/balanced over time?



