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1. Introduction: Next-generation sequencing

Genomics and epigenomics Transcriptomics
The study of the DNA sequence and The study of the RNA molecules
associated heritable biochemical present in a sample

modifications

Phenotype
Proteomics Metabolomics
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The study of the proteins present in a sample. The study of the metabolites present in a sample.
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Next-
generation
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to study
genomes and
transcriptomes
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1. Introduction: Limitations of bulk approaches

* “Bulk” approaches
* Combining thousands of cells from a single tissue
* Treating them as a single unit
* Ignoring the role of each individual cell

* We now appreciate the heterogeneous nature of various tissues

* different cell populations may have vastly different transcriptomes and
different contributions to cellular processes



1. Introduction: Single-Cell Omics
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Fig. 1. Applications of SCG in cancer.

Si ng I e-Ce I I Cells, CTCs, primary tumor cells, and cell of origin all can be subjected to a variety of analyses involving SCG.

Genomics (SCG)

SCG aims to provide a new understanding of genetics and
transcriptomics at the single-cell level



1. Introduction: History of single-cell genomics
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2.1 SCG Technology: Isolation of Single Cells

15t step = isolation of an intact single cell

Micromanipulation Flow cytometry Microdissection
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Hwang, B., Lee, J.H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med 50, 96 (2018).



2.1 SCG Technology: Isolation of Single Cells
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2.1 SCG Technology: Isolation of Single Cells
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Hwang, B., Lee, J.H. & Bang, D. Single-cell RNA sequencing
technologies and bioinformatics pipelines. Exp Mol
Med 50, 96 (2018).

Clinical applications of SCG
involves the isolation of single
cells from body fluids

CellSearch semiautomated
cell-isolation system

Enables analysis of circulating
tumor cells (CTCs)



2.2 SCG Technology: Amplification

1%t step = isolation of an intact single cell

For sequencing we need enough genetic material to be analyzed
So, amplification is a crucial step

2"d step = amplification (WTA or WGA)

Amplification remains a major challenge for SCG
Goal = minimize artifacts without loss in sensitivity and specificity



2.2 SCG Technology: Whole-Transcriptome
Amplification (WTA)

1. Full-length methods 2. Tag-based methods
* Full representation of poly A- * Enable sequencing of either the 5" or 3’
containing transcripts end
e Examples: * Allow strand specificity
* SMART-seqQuartz-Seq * CEL-seq is one of the most common

More recent protocols:
Label cells by using molecular barcodes
Examples:

* CytoSeq (lllumina) (oligonucleotide beads)
e inDrop and Drop-seq (lllumina) (droplets using a microfluidic device )
* SPLiT-seq (does not require encapsulating a single cell in droplets or
microwells)
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2.2 SCG Technology: Whole-Transcriptome
Amplification (WTA)
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2.2 SCG Technology: Whole-Transcriptome
Amplification (WTA)

into 48 wells, and cDNA is generated with an in-cell reverse

| In the first round of barcoding, fixed cell samples are distributed
transcription (RT) reaction using well-specific barcoded primers.

Cells from sample
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SPLiT-seq pipeline

Cells are then distributed into 96 wells, and an in-cell ligation
reaction appends a second well-specific barcode to the cDNA.

Split

(Lysis + PCR)
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After sequencing, each single cell transcriptome is assembled by
combining reads containing the same four-barcode combination.
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2.2 SCG Technology: Whole-Genome
Amplification (WGA)

1. PCR ampilification

* First WGA method
developed for SC

* Degenerate oligonucleotide
primers (DOP- PCR) are used

Disadvantages:
* Amplification bias
* Variability in efficiency
* High error rate owing to

the thermostable
polymerase

3. Hybrid Methods

e Combines
advantages of the
first 2 and reduces
associated biases

2. Isothermal

Amplification (MDA)

* Most widely used protocol
for WGA

* Has lower error rate

* Better genome coverage and Examples:
reduced false-positive rates * PicoPLEX
 MALBAC

Disadvantages:
* Reduced uniformity and a
high rate of allelic dropout
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2.2 SCG Technology: WTA and WGA

Particular approach used should be based on
* specific application
* relative scarcity or abundance of the single cell to be isolated
* ease of DNA and/or RNA isolation from the target cell
* required depth of sequencing coverage

14



3. Applications of SCG: Epigenomics

e Methyl Group

Epigenetic marks
on chromatin

across the
- Chromatin genome _>
PR 4 changes in gene
Histone expression
Histone Tails
Chromosome | 2
Epigenomics = genome-wide studies of
* DNA accessibility
* higher-order chromosome organization
* DNA/protein modifications 15
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How can SCG help?
Information about chromatin modifications and their regulatory effects
can be analyzed at single-cell resolution

DNA accessibility

. L scNOME-seq
Transcription factor binding SCATAC-seq
TF binding interacts with DNA scDNAse-seq

methylation and chromatin accessibility i -
romosome organization

scHIC
Transcription and RNA maturation
Histone modifications
Modifications can be active marks .
(e.g.,H3K4me3 in green) or repressive Transcription
%) marks (e.g.. H2K27m3 in red) SIS
DNA modifications
Oc @ smc
§ 5hmC / 5fC / 5caC DNA modifications
scBS-seq
Chromosome organization scAba-seq
Higher-order chromatin organization
into LADs and TADs CLEVER-seq

Histone modifications
scChiP-seq

Kelsey et al., Single-cell epigenomics:
Recording the past and predicting the future 16



3. Applications of SGC: Cancer Genomics

Cancer = high inter-tumor and intratumor variability

The ability to molecularly phenotype every clone or population within a
tumor -> key to treatment

How can SCG help?
Monitoring disease progression and predict treatment resistance
Isolation and characterization of CTCs
Tumor heterogeneity, tumor microenvironment, and clonal evolution
|dentification of cancer cells of origin, rare cell subpopulations, tumor—tissue hierarchies

17



3. Applications of SGC: Cancer Genomics

Drug resistant clone identification

Tumor cell heterogeneity
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Hwang et al., Single-cell RNA sequencing technologies and bioinformatics pipelines



3. Applications of SGC: Immunology

Immune system = high degree
of genetic diversity representing
multiple different cell types

P
How can SCG hEIP- THE INNATE IMMUNE

Cellular complexity of the immune e SYSTEM
system '

Characterize/classify the different
cell types

Immunotherapy
Neurodegenerative disease

Hematopoietic
lab-a-porter.com stem cell 19



3. Applications of SGC

Microbiology
 Evaluating microbiome biodiversity

Prenatal Screening

* Detecting clinically significant genetic alterations with noninvasive
prenatal diagnostic procedures

Cell Lineage and Differential Markers

* Inferring lineage information from the early developmental stage
* |dentifying novel differential markers

20



4. Bioinformatics for SGC

Challenges in organizing, archiving, and mining the data

Sparsity (dropouts) and high rates of technical artifacts
(low-quality sequence data or batch effects)

Batch effect
Condition A Condition B

=F

No Batch effect
Condition A  Condition B

Hwang et al., Single-cell RNA sequencing technologies and bioinformatics pipelines
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4. Bioinformatics for SGC

Basic approach for analyzing SCG data:

W

. Quality control and mapping of the sequence reads to

the genome (as done with bulk sequencing)

. Counting the number of genes
. Normalization of the molecular counts
. Clustering cells by the expressed genes

22



4. Bioinformatics for SGC: Example from scRNA-seq
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4. Bioinformatics for SGC: Example from scRNA-seq

Problem of quantification of expression in scRNA-seq
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4. Bioinformatics for SGC: Example from scRNA-seq

Observed data

~ Phase2:Datacleaning |
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Acids Res, 48, #8 (2020) e43
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Hwang, B., Lee, J.H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med 50, 96 (2018). 25
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4. Bioinformatics for SGC: Example from scRNA-seq

Cell hierarchy reconstruction

Cell differentiation, or response to stimulus

Linear

Fate A

Component 2

Hwang, B., Lee, J.H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med 50, 96 (2018).
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Discussion and Conclusions

e Use of single-cell genomics technology has grown rapidly
* Major advances in the SCG methodology
* Applications to diverse fields of biological research

* SCG allows:
* Analysis of single-cell variants in both normal and disease states

* Identification of new biomarkers for disease diagnosis, staging of disease
progression, and prediction of optimal treatment regimen

* Has potential in the future to generate a much more comprehensive
understanding of hereditary and somatic genetics
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Discussion and Conclusions

What is next?

 Standardized protocols for reproducibility of studies and
comparison of data sets generated by different groups

* Improved sequencing technologies and better amplification
methods that minimize errors

* Development of improved methods coupling single-cell and bulk
NGS data

* SCG coupled with other multiomics technologies

28



Discussion and Conclusions

Limitations:

 Various artifacts caused by suboptimal sample sizes, nonrepresentative
starting samples, and other issues

 Difficult to interpret increasingly larger data sets

Discussion Questions:
What other limitations exist?
What do you think is the next step?
How do we select between bulk vs single-cell?
Can we combine bulk and single-cell?
Can we combine different omics data?
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