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High-Throughput Sequencing of Microbial 
Communities

• Motivation: how can we determine what microbes live in a given 
environment?


• Isolation/culturing 

• Useful but limited: most microbes aren’t culturable!


• Sequencing 

• Attempt to detect and identify microbes by sequencing 
genetic material in samples


• Feasible with high-throughput sequencing techniques 
developed and refined over ~ the past two decades
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• High-throughput sequencing (whole-genome or marker gene)


• Complex measurement process with many steps


• Sample collection and storage


• DNA extraction


• DNA amplification


• Sequencing


• Taxonomic assignment
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High-Throughput Sequencing of Microbial 
Communities



• Measurement output: table  of taxon counts


• : count of reads assigned to taxon  in sample 


Wn×J

Wij j i
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High-Throughput Sequencing of Microbial 
Communities



What Do Read Counts (Allegedly) Tell Us?

According to microbiome folk wisdom,  (# of reads 
assigned to taxon  and sample )


• Does not to reflect “absolute abundance” 


• i.e.,  does not imply that taxon  is present 
in higher concentration in sample  than in sample  

Wij
j i

Wi′￼j > Wij j
i′￼ i
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What Do Read Counts (Allegedly) Tell Us?

Also according to microbiome folk wisdom,  (# of reads 
assigned to taxon  and sample )


• reflects “relative abundance” in sense that , 
where  is the true proportion of detectable microbes 
in sample  belonging to taxon 


• T

Wij
j i

Wij ∝ pij
pij

i j

̂pij =
Wij

∑J
j=1 Wij
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What Do Read Counts (Allegedly) Tell Us?

• “Relative abundance” interpretation motivates 
estimator for  (true prop. of microbes in sample  
belonging to taxon )





pij i
j

̂pij =
Wij

∑J
j=1 Wij
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What Do Read Counts (Allegedly) Tell Us?

• “Relative abundance” interpretation motivates 
estimator for  (true prop. of microbes in sample  
belonging to taxon )





• Focus of this talk:  a reasonable estimator of ?


pij i
j

̂pij =
Wij

∑J
j=1 Wij

̂pij pij
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• How can we evaluate performance?

• Can we do better?



  

Some Statistical Framing
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States of Nature 
True microbial composition(s)    

 of communities of interest
{pij}
Observations 

Read counts by 

sample and taxon

Data Generating Mechanism 
Sample collection, preparation,

sequencing, taxonomic assignment, 
etc.


+
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States of Nature 
True microbial composition(s)    

 of communities of interest
{pij}
Observations 

Read counts by 

sample and taxon

Data Generating Mechanism 
Sample collection, preparation,

sequencing, taxonomic assignment, 
etc.


+

Goal: reason about states of nature / 
data-generating mechanism using 
observations + what we know about  
how they were generated



  

Some Statistical Framing
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States of Nature 
True microbial composition(s)    

 of communities of interest
{pij}
Observations 

Read counts by 

sample and taxon

Data Generating Mechanism 
Sample collection, preparation,

sequencing, taxonomic assignment, 
etc.


+

Goal: reason about states of nature / 
data-generating mechanism using 
observations + what we know about  
how they were generated

One approach: sequence  
samples of known 
composition {



How Well Does the Naive Estimator Perform?
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• Ideally, points close to this line ( ̂pij ≈ pij)
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•  for L. iners in 

both samples, but  

very different!

pij = 1/2
̂pij



What’s Going On?

• McLaren et al. (2019)


• Observe  does not perform well as an estimator of 


• Suggesting that  does not hold in general 


• i.e., read counts across taxa in a sample are not 
approximately proportional to true relative abundances


• Hypothesis: any given sequencing protocol will be better at 
detecting some microbial taxa than others


̂pij pij

Wij ∝ pij
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Multiplicative Distortion: “Efficiencies”

• McLaren et al. (2019)


• A given sample handling/sequencing/postprocessing protocol 
will preferentially detect some microbes over others 


• Formalize this idea in terms of a detection “efficiency”  of 
taxon j 


• Instead of , posit  (at least approximately)


 

ej

Wij ∝ pij Wij ∝ ejpij

⇒ ̂pij =
Wij

∑J
j=1 Wij

≈
ejpij

∑J
j=1 ejpij

≠ pij (in general)
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Efficiencies: An Example
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Consider a specimen 

• containing taxa A, B, and C 


• in relative abundances 0.5, 
0.25, and 0.25, respectively


We can simulate* sequencing data 
under


• assumption 

• assumption 


• with 


* First setting (with same efficiencies across taxa): each 
count simulated as a negative binomial with mean 

 and size parameter  (s.t. 
)


* Second setting (differing efficiencies): each count 
simulated as a negative binomial with 

 and size parameter  (s.t. 
)

𝔼[Wi⋅] ∝ ρi⋅
𝔼[Wi⋅] ∝ exp(β) ∘ ρi⋅

exp(β) = (2,8,1)

μj = 500 * ρj s = 5
Var(Wij) = μj + μ2

j /s

μj = [500/exp(β )] * ρij s = 5
Var(Wij) = μj + μ2

j /s

Truth
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Consider a specimen 

• containing taxa A, B, and C 


• in relative abundances 0.5, 
0.25, and 0.25, respectively


We can simulate* sequencing data 
under


• assumption 

• assumption 


• with 


* First setting (with same efficiencies across taxa): each 
count simulated as a negative binomial with mean 

 and size parameter  (s.t. 
)


* Second setting (differing efficiencies): each count 
simulated as a negative binomial with 

 and size parameter  (s.t. 
)

𝔼[Wi⋅] ∝ ρi⋅
𝔼[Wi⋅] ∝ exp(β) ∘ ρi⋅

exp(β) = (2,8,1)

μj = 500 * ρj s = 5
Var(Wij) = μj + μ2

j /s
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Var(Wij) = μj + μ2

j /s

Truth W/O Efficiencies
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Consider a specimen 

• containing taxa A, B, and C 


• in relative abundances 0.5, 
0.25, and 0.25, respectively


We can simulate* sequencing data 
under


• assumption 
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• with 
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count simulated as a negative binomial with mean 
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Ratio of counts in taxon B 
to counts in taxon C  
times too large

exp(β2) = 8

≈ 8
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Estimating Relative Abundance in

Presence of Efficiencies

• McLaren et al. (2019)


• Method for estimating  and  via a centered log-ratio 
transformation of counts 


• Need to know presence/absence in advance


• Zero counts, spurious counts an issue


•

pij ej
Wij
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• McLaren et al. (2019)


• Method for estimating  and  via a centered log-ratio 
transformation of counts 


• Need to know presence/absence in advance


• Zero counts, spurious counts an issue


•

pij ej
Wij
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Log(0)  
undefined

Estimating Relative Abundance in

Presence of Efficiencies



• McLaren et al. (2019)


• Method for estimating  and  via a centered log-ratio 
transformation of counts 


• Need to know presence/absence in advance


• Zero counts, spurious counts an issue


•

pij ej
Wij
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 when Wij > 0 pij = 0
Log(0)  
undefined

Estimating Relative Abundance in

Presence of Efficiencies



Generalizing McLaren et al.

• Clausen-Willis approach: model counts  directly


• Attempt to model spurious reads (due to, e.g., 
contamination) in addition to detection efficiencies


• Mean model for a count 


W

Wij
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= pijexp(γi + βj)

contribution of sample

+ p̃ijexp(γ̃)

 " " spurious read sources

μij := 𝔼[Wij |β, p, γ, p̃, γ̃]



Mean Model Details
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= pijexp(γi + βj)

contribution of sample

+ p̃ijexp(γ̃)

 " " spurious read sources

μij := 𝔼[Wij |β, p, γ, p̃, γ̃]



Mean Model Details
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= pijexp(γi + βj)

contribution of sample

+ p̃ijexp(γ̃)

 " " spurious read sources

μij := 𝔼[Wij |β, p, γ, p̃, γ̃]True relative abundance  
of taxon j in sample I



Mean Model Details
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= pijexp(γi + βj)

contribution of sample

+ p̃ijexp(γ̃)

 " " spurious read sources

μij := 𝔼[Wij |β, p, γ, p̃, γ̃]True relative abundance  
of taxon j in sample I

Proportionality  
constant



Mean Model Details
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= pijexp(γi + βj)

contribution of sample

+ p̃ijexp(γ̃)

 " " spurious read sources

μij := 𝔼[Wij |β, p, γ, p̃, γ̃]True relative abundance  
of taxon j in sample I

Proportionality  
constant Log efficiency ej



Mean Model Details
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= pijexp(γi + βj)

contribution of sample

+ p̃ijexp(γ̃)

 " " spurious read sources

μij := 𝔼[Wij |β, p, γ, p̃, γ̃]True relative abundance  
of taxon j in sample I

Proportionality  
constant Log effiej

(Unknown) relative  
abundance profile of  
spurious read source



Mean Model Details
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= pijexp(γi + βj)

contribution of sample

+ p̃ijexp(γ̃)

 " " spurious read sources

μij := 𝔼[Wij |β, p, γ, p̃, γ̃]True relative abundance  
of taxon j in sample I

Proportionality  
constant Log effiej

(Unknown) relative  
abundance profi
spurious read source

Intensity of  
spurious reads



Mean Model Details: A Bit More Generality

= pijexp(γi + βj)

contribution of sample

+ p̃ijexp(γ̃)

 " " spurious read sources

μij := 𝔼[Wij |β, p, γ, p̃, γ̃]

= Zipjexp(γi + Xiβ j)

contribution of sample

+ Z̃i(p̃ j ∘ exp(γ̃))

 " " spurious read sources

= [(Zp ∘ exp(γ1T
J + Xβ)

contribution of samples

+ Z̃[p̃ ∘ exp(γ̃1T
J + X̃β)]]ij

contribution of spurious read sources
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Mean Model Details: A Bit More Generality

μij := 𝔼[Wij |β, p, γ, p̃, γ̃]

= [(Zp ∘ exp(γ1T
J + Xβ)

contribution of samples

+ Z̃[p̃ ∘ exp(γ̃1T
J + X̃β)]]ij

contribution of spurious read sources

33

More general form allows us to 
• Easily incorporate technical replicates

• Model differing efficiencies across samples 

• E.g., due to different protocols in different batches


• Model multiple sources of spurious reads

• And more


More details in supplemental slides if you’re interested



Defining an Estimator

We estimate unknown parameters in mean model 





by modeling


   


and estimate parameters via maximum likelihood


μij := 𝔼[Wij |β, p, γ, p̃, γ̃]

Wij |β, p, γ, p̃, γ̃ ∼ Poisson(μij)
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An Applied Example

• Data from Brooks et al. (2015)


• 40 whole-cell samples of known composition prepped and 
sequenced (via 16S) together


• All specimens composed of some combination of 7 
common bacterial species in the vaginal microbiome


• We observe some spurious reads (nonzero number of 
reads in taxa known to be absent in a particular sample)


• Probably reasonable to model a single detection efficiency 
for each taxon

35



An Applied Example (cont.)

Proposed mean model:



(p ∘ exp(γ1T
J + β) + 1n[p̃ ∘ exp(γ̃1T

J + β)]

36

•  = 40 samples sequenced 
•  = 40 unique specimens 
•  = 7 taxa considered 
•  = 1 ( ) efficiency effect 
•  = 1 spurious read source

n
K
J
p 1 × J
ñ

E[Wn×J |p, γ, β, p̃, γ̃] =



An Applied Example (cont.)

Proposed mean model:



(p ∘ exp(γ1T
J + β) + 1n[p̃ ∘ exp(γ̃1T

J + β)]

37

 matrix of  
true relative abundances 

 for  and 
 

n × J = 40 × 7

pij i = 1,…,40
j = 1,…,7

•  = 40 samples sequenced 
•  = 40 unique specimens 
•  = 7 taxa considered 
•  = 1 ( ) efficiency effect 
•  = 1 spurious read source

n
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An Applied Example (cont.)

Proposed mean model:



(p ∘ exp(γ1T
J + β) + 1n[p̃ ∘ exp(γ̃1T

J + β)]
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•  = 40 samples sequenced 
•  = 40 unique specimens 
•  = 7 taxa considered 
•  = 1 ( ) efficiency effect 
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matrix of read depth 
values for samples  

n × 1 = 40 × 1

i = 1,…,40
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An Applied Example (cont.)

Proposed mean model:



(p ∘ exp(γ1T
J + β) + 1n[p̃ ∘ exp(γ̃1T

J + β)]
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true relative abundances 
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pij i = 1,…,40
j = 1,…,7

•  = 40 samples sequenced 
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taxon 7  
(for )

β = [β1, …, β7]T

β7 = 0
βj

j

j = 1,…,6

E[Wn×J |p, γ, β, p̃, γ̃] =



An Applied Example (cont.)

Proposed mean model:



(p ∘ exp(γ1T
J + β) + 1n[p̃ ∘ exp(γ̃1T
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Model all samples as having 
on average same abundance  
of spurious reads

E[Wn×J |p, γ, β, p̃, γ̃] =



Mean Model Example (cont.)

Proposed mean model:



(p ∘ exp(γ1T
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Mean Model Example (cont.)

Proposed mean model:
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Performance on Brooks (2015) Data

Fit mean model





• One sample per unique specimen


• One set of log efficiencies 


• One source of spurious reads  modeled as having same read abundance 
across samples


To data from 40 samples sequenced together


• Use known true compositions of first 10 samples


• All other compositions estimated from data

E[Wn×J |p, γ, β, p̃, γ̃] = (p ∘ exp(γ1T
J + β) + 1n[p̃ ∘ exp(γ̃1T

J + β)]

β

p̃
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Performance on Brooks (2015) Data
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Our Estimator Naive Estimator



Performance on Brooks (2015) Data

• Additionally, this model fit estimated 6 relative 
abundances with spurious counts to be zero


• of taxon-sample pairs with spurious reads 
(with true relative abundance zero)


• Better choice of  might perform better

≈ 10 %

Z̃
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Future Work

• Inference via a modified bootstrap


• Predicting efficiencies in taxa not present in specimens of 
known composition


• Investigating use of covariates for spurious reads (e.g., 
DNA concentration)
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Thank You!
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Mean Model Details
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(Zp ∘ exp(γ1T
J + Xβ)

contribution of samples

+ Z̃[p̃ ∘ exp(γ̃1T
J + X̃β)]

contribution of spurious read sources

 matrix  
linking samples  
to originating  
specimens;  

 if  
sample   
was taken  
from  
specimen k 

n × K

Zik = 1
i

 matrix of true 
relative abundances  
of taxa  in 
specimens 

K × J

j = 1,…, J
k = 1,…, K

 matrix  
of read depth  
values

n × 1

 design matrixn × p

 matrix of  
(log) effi
parameters

p × J

• : # samples sequenced 
• : # unique specimens 
• : # taxa considered 
• : #( ) efficiency effects 
• : # spurious read sources

n
K
J
p 1 × J
ñ

 matrix linking  
samples to sources  
of spurious reads: 
columns may depend  
on  

n × K̃

exp(γ)

 matrix of true 
relative abundances  
of taxa  in 
specimens 

K̃ × J

j = 1,…, J
k = 1,…, K

 matrix of spurious  
read intensities
ñ × 1

 design matrixñ × 1


