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Genomics and the physical chemistry of 
biomolecules are two pillars of molecular biology. 
One of the key branches of the latter is chemical 

thermodynamics, which, curiously, is quite 
marginalized in the current research on 

computational molecular biology (CMB). I shall 
revisit this subject, but no starting from physics nor 

chemistry, but rather through a result from 
probability, beyond the law of large numbers and 
central limit theorem, call large deviations theory.  

I shall show how our theory can be applied to 
Fisher’s FTNS as well as to analyzing data from 

single cells.  



Prologue: The two pillars of 
molecular biology 

• Genetics, genomics, and bioinformatics:
It is about “information”;

• Physical chemistry, molecular dynamics (MD)
and structural biology (SB):

It is abut “molecules, their states, and 
the processes cause their changes”.







Things like …

𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇𝑇𝑇,
𝜕𝜕𝐺𝐺
𝜕𝜕𝑐𝑐𝑖𝑖

= 𝜇𝜇𝑖𝑖

∆𝜇𝜇 = ∆𝜇𝜇𝑜𝑜 + 𝑘𝑘𝑇𝑇ln
𝐶𝐶 [𝐷𝐷]
𝐴𝐴 [𝐵𝐵]

∆𝜇𝜇𝑜𝑜 = −𝑘𝑘𝑇𝑇ln 𝐾𝐾eq



(1) 
How to represent (e.g., 

describe) a biochemical or a 
biological systems, not just 

MD and SB: Its states and its 
changes?



(i) classifying biochemical (or 
biological) individuals into 

populations of kinetic species;
(ii) counting the number of 

individuals in each and every “pure 
kinetic species”; 

(iii) representing changes in terms 
of “stochastic elementary 

processes”. 



A stochastic elementary process

𝐴𝐴 + 2𝐵𝐵 + 𝐶𝐶 + 𝐸𝐸 𝑋𝑋 + 3𝐵𝐵 + 𝐸𝐸
𝑟𝑟𝑗𝑗

𝑃𝑃 𝑵𝑵(𝑡𝑡 + 𝑑𝑑𝑡𝑡) = 𝒏𝒏 + ∆𝒏𝒏| 𝑵𝑵 𝑡𝑡 = 𝒏𝒏
𝑵𝑵 = 𝑁𝑁𝐴𝐴,𝑁𝑁𝐵𝐵, … ,𝑁𝑁𝑍𝑍

= �
𝑟𝑟𝑗𝑗 𝒏𝒏 𝑑𝑑𝑡𝑡 + 𝑜𝑜 𝑑𝑑𝑡𝑡 , 𝑖𝑖𝑖𝑖 ∆𝒏𝒏 = 𝝂𝝂𝑗𝑗

1 − 𝑟𝑟𝑑𝑑𝑡𝑡 + 𝑜𝑜 𝑑𝑑𝑡𝑡 , 𝑖𝑖𝑖𝑖 ∆𝒏𝒏 = 𝟎𝟎
0, 𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜.



instantaneous
rate function

stoichiometric
coefficients



An essential feature of a
stochastic elementary reaction 

with pure kinetic species

𝑃𝑃 𝐓𝐓≥𝑡𝑡+𝜏𝜏
𝑃𝑃 𝐓𝐓≥𝜏𝜏

= 𝑒𝑒−𝑟𝑟(𝑡𝑡+𝜏𝜏)

𝑒𝑒−𝑡𝑡𝜏𝜏
= 𝑜𝑜−𝑟𝑟𝑡𝑡

− 𝑑𝑑 ln 𝑃𝑃 𝐓𝐓≥𝑡𝑡
𝑑𝑑𝑡𝑡

= 𝑟𝑟

𝑃𝑃 𝐓𝐓 ≥ 𝑡𝑡 = 𝑜𝑜−𝑟𝑟𝑡𝑡



The rate for the next event within 
multiple stochastic elementary 

processes among pure kinetic species

𝐓𝐓∗ = min 𝐓𝐓1,𝐓𝐓2,⋯ ,𝐓𝐓𝑀𝑀 ,

𝑃𝑃 𝐓𝐓𝑗𝑗 ≥ 𝑡𝑡 = 𝑜𝑜−𝑟𝑟𝑗𝑗𝑡𝑡 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀

𝑃𝑃 𝐓𝐓∗ ≥ 𝑡𝑡 = 𝑜𝑜−𝑟𝑟∗𝑡𝑡,

𝑟𝑟∗ = 𝑟𝑟1 + 𝑟𝑟2 + ⋯+ 𝑟𝑟𝑀𝑀.



A theorem on the rate for complex 
kinetic species that contain 

heterogeneous subpopulations

−𝑑𝑑 ln 𝑃𝑃 𝐓𝐓≥𝑡𝑡
𝑑𝑑𝑡𝑡

= ∫0
∞ 𝑟𝑟(𝑠𝑠)𝑒𝑒−𝑟𝑟 𝑠𝑠 𝑡𝑡 𝑓𝑓(𝑠𝑠)𝑑𝑑𝑠𝑠

∫0
∞ 𝑒𝑒−𝑟𝑟 𝑠𝑠 𝑡𝑡 𝑓𝑓(𝑠𝑠)𝑑𝑑𝑠𝑠

= �̅�𝑟(𝑡𝑡)

𝑃𝑃 𝐓𝐓 ≥ 𝑡𝑡 = ∫0
∞ 𝑜𝑜−𝑟𝑟 𝑠𝑠 𝑡𝑡 𝑖𝑖(𝑜𝑜)𝑑𝑑𝑜𝑜

𝑑𝑑�̅�𝑟(𝑡𝑡)
𝑑𝑑𝑡𝑡

= − 𝑟𝑟 𝑜𝑜 − �̅�𝑟 𝑡𝑡 2 ≤ 0.



The instantaneous rate for a 
non-elementary process with 

complex kinetic species:

�̅�𝑟 𝐍𝐍 𝑡𝑡 ,𝑋𝑋 𝑡𝑡 , 𝑡𝑡

𝑑𝑑�̅�𝑟(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝜕𝜕�̅�𝑟
𝜕𝜕𝐍𝐍

𝑑𝑑𝐍𝐍
𝑑𝑑𝑡𝑡

+ 𝜕𝜕�̅�𝑟
𝜕𝜕𝑋𝑋

𝑑𝑑𝑋𝑋
𝑑𝑑𝑡𝑡

+ 𝜕𝜕�̅�𝑟
𝜕𝜕𝑡𝑡

𝜕𝜕�̅�𝑟
𝜕𝜕𝑡𝑡

≤ 0 !





Counting, it is everywhere!

• Newtonian particles in fluid mechanics, 
Lagrangian vs. Eulerian representations;
• second quantization in quantum field 

theory;
• atomic numbers in molecules, chemical 

species;
• biological organisms.



(2) 
Thermodynamics of Small 

Systems

Joint work with Prof. Zhiyue Lu, UNC.

Lu and Qian, arXiv:2009.12644 (2020)



What are? 

Gibbs–Duhem equation

Fundamental thermodynamic 
relation

https://en.wikipedia.org/wiki/Gibbs%E2%80%93Duhem_equation
https://en.wikipedia.org/wiki/Fundamental_thermodynamic_relation


Current understanding of the foundation 
of thermodynamics

• The existence of an entropy function or 
entropy functional.

• The entropy is a statistical concept; it is 
an Eulerian homogeneous function of all 
extensive variables with order 1.

• It is a universal result, as a limit, for 
macroscopic large systems.



(1917-2014)

(1919-1993)



How can a small system have 
universal behavior?



The world is stochastic.

The repeated measurements are 
not a way to obtaining truth via 

eliminating uncertainty. Variation 
(heterogeneity) is a part of the 

truth! 



On the border of this stochastic 
world, three major landmarks:

LLN: law of large numbers,
CLT: central limit theorem,

LDP: large deviations principle.



Law of Large Numbers

lim
𝑀𝑀→∞

𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑀𝑀
𝑀𝑀

= 𝔼𝔼 𝑋𝑋

lim
𝑀𝑀→∞

𝑚𝑚𝑘𝑘

𝑀𝑀
= ℙ𝑘𝑘 (𝑘𝑘 = 1,2, … ,𝐾𝐾)



Law of Large Numbers

lim
𝑀𝑀→∞

𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑀𝑀
𝑀𝑀

= 𝔼𝔼 𝑋𝑋

lim
𝑀𝑀→∞

𝑚𝑚𝑘𝑘

𝑀𝑀
= ℙ𝑘𝑘 (𝑘𝑘 = 1,2, … ,𝐾𝐾)

sample frequency

stationary samples expected value

probabilitystatistical concepts
probabilistic concepts



Central Limit Theorem

lim
𝑀𝑀→∞

𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑀𝑀
𝑀𝑀

= ∞

= 𝒩𝒩 0,𝜎𝜎2
lim
𝑀𝑀→∞

𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑀𝑀
𝑀𝑀

− 𝑀𝑀𝔼𝔼 𝑋𝑋

N

∞



Central Limit Theorem

lim
𝑀𝑀→∞

𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑀𝑀
𝑀𝑀

= ∞

variance of 𝑋𝑋

= 𝒩𝒩 0,𝜎𝜎2
lim
𝑀𝑀→∞

𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑀𝑀
𝑀𝑀

− 𝑀𝑀𝔼𝔼 𝑋𝑋

N

normal random variable



Large Deviations Principle

lim
𝑀𝑀→∞

−
1
𝑀𝑀

lnℙ 𝑋𝑋𝑀𝑀 ∈ 𝒜𝒜 ⊂ 𝔖𝔖 = min
𝑥𝑥∈𝒜𝒜

𝜑𝜑 𝑥𝑥 .

𝑖𝑖 �𝑋𝑋𝑀𝑀 𝑥𝑥;𝑀𝑀 ~ 𝑜𝑜−𝑀𝑀𝑀𝑀(𝑥𝑥),
min
𝑥𝑥∈𝔖𝔖

𝜑𝜑 𝑥𝑥 = 𝜑𝜑(𝑥𝑥∗) = 0,

𝑖𝑖 �𝑋𝑋𝑀𝑀 𝑥𝑥;𝑀𝑀 → 𝛿𝛿 𝑥𝑥 − 𝑥𝑥∗ , 𝑥𝑥∗ = 𝔼𝔼 𝑋𝑋
the premise 

the existence

its property



When the M tends to infinite …

sample mean value x

𝑖𝑖 �𝑋𝑋𝑀𝑀 𝑥𝑥;𝑀𝑀 , 𝑖𝑖 �𝑋𝑋𝑀𝑀(𝑥𝑥;𝑀𝑀) ≈ 𝐴𝐴 𝑜𝑜−𝑀𝑀𝑀𝑀(𝑥𝑥)



rate function 𝜑𝜑 as entropy

𝜑𝜑(𝑥𝑥)

𝑥𝑥 𝑎𝑎

ln Pr �𝑋𝑋𝑀𝑀 ≥ 𝑎𝑎 = ln�
𝑎𝑎

∞
𝐴𝐴𝑜𝑜−𝑀𝑀𝑀𝑀(𝑥𝑥)d𝑥𝑥

= −𝑀𝑀 min
𝑎𝑎≤𝑥𝑥≤∞

𝜑𝜑(𝑥𝑥) + 𝑜𝑜(𝑀𝑀)



Cramér’s theorem for 
arbitrary distribution 𝑝𝑝𝑋𝑋(𝑥𝑥)

Harald Cramér (1893-1985)



Cumulant Generating Function and 
Legendre-Fenchel transform

𝜓𝜓 𝛽𝛽 = ln�𝑝𝑝𝑋𝑋(𝑥𝑥)𝑜𝑜−𝛽𝛽𝑥𝑥𝑑𝑑𝑥𝑥

−𝜑𝜑 𝑥𝑥 = inf
𝛽𝛽

𝜷𝜷 � 𝒙𝒙 + 𝜓𝜓(𝜷𝜷)

𝜓𝜓 𝜷𝜷 = sup
𝒙𝒙

−𝜷𝜷 � 𝒙𝒙 + 𝜂𝜂(𝒙𝒙)



Massieu-Guggenheim (free) entropy 
𝜓𝜓 and Gibbs entropy 𝜂𝜂

𝜓𝜓 𝛽𝛽 = ln�𝑝𝑝𝑋𝑋(𝑥𝑥)𝑜𝑜−𝛽𝛽𝑥𝑥𝑑𝑑𝑥𝑥

Massieu-Guggenheim entropy

𝜂𝜂 𝑥𝑥 = −𝜑𝜑(𝑥𝑥) =
𝑑𝑑[𝜓𝜓(𝛽𝛽)/𝛽𝛽]
𝑑𝑑[1/𝛽𝛽] Gibbs entropy

−𝜑𝜑 𝑥𝑥 = inf
𝛽𝛽
𝜷𝜷 � 𝒙𝒙 + 𝜓𝜓(𝜷𝜷)



𝑑𝑑𝜓𝜓 𝜷𝜷 = −𝒚𝒚 � 𝑑𝑑𝜷𝜷 = −𝑦𝑦1𝑑𝑑𝛽𝛽1 − 𝑦𝑦2𝑑𝑑𝛽𝛽2 + ⋯

𝜓𝜓 𝜷𝜷 = sup
𝒚𝒚

−𝜷𝜷 � 𝒚𝒚 + 𝜂𝜂(𝒚𝒚)

𝜂𝜂 𝒚𝒚 = inf
𝜷𝜷
𝜷𝜷 � 𝒚𝒚 + 𝜓𝜓(𝜷𝜷)

𝑑𝑑𝜂𝜂 𝒚𝒚 = 𝜷𝜷 � 𝑑𝑑𝒚𝒚 = 𝛽𝛽1𝑑𝑑𝑦𝑦1 + 𝛽𝛽2𝑑𝑑𝑦𝑦2 + ⋯

Legendre-Fenchel Transform and Free 
Entropy-Gibbs Entropy Duality

fundamental thermodynamic 
relationHill-Gibbs-Duhem equation



T. L. Hill’s Nanothermodynamics

𝑇𝑇 𝑈𝑈,𝑉𝑉,𝑁𝑁 =
1
𝑇𝑇

𝑈𝑈 +
𝑝𝑝
𝑇𝑇

𝑉𝑉 −
𝜇𝜇
𝑇𝑇

𝑁𝑁 −
1
𝑇𝑇

ℰ

extensive quantities sub-extensive

d𝑇𝑇 𝑈𝑈,𝑉𝑉,𝑁𝑁 =
1
𝑇𝑇

d𝑈𝑈 +
𝑝𝑝
𝑇𝑇

d𝑉𝑉 −
𝜇𝜇
𝑇𝑇

d𝑁𝑁

dℰ 𝑇𝑇, 𝑝𝑝, 𝜇𝜇 = −𝑇𝑇d𝑇𝑇 + 𝑉𝑉d𝑝𝑝 − 𝑁𝑁d𝜇𝜇



In the Large System Limit: 
Entropy is an order 1 homogeneous 
function of all extensive variables

𝜓𝜓 𝜷𝜷 = sup
𝒚𝒚

−𝜷𝜷 � 𝒚𝒚 + 𝜂𝜂(𝒚𝒚)

= 0 !

𝜂𝜂 𝒚𝒚 = 𝒚𝒚 � 𝛻𝛻𝑦𝑦𝜂𝜂(𝒚𝒚),

𝜷𝜷(𝒚𝒚) = 𝛻𝛻𝑦𝑦𝜂𝜂 𝒚𝒚 ,



In summary, not just one 
entropy and one limit, but 
three entropies and two 

limits!



Three Entropies and Two Limits
Boltzmann entropy Massieu-Guggenheim  

entropy
Gibbs entropy

big data limit
large system limit



Three Entropies and Two Limits

subextensive function homogeneous function

convex functions



From here to things like …

𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇𝑇𝑇,
𝜕𝜕𝐺𝐺
𝜕𝜕𝑐𝑐𝑖𝑖

= 𝜇𝜇𝑖𝑖

∆𝜇𝜇 = ∆𝜇𝜇𝑜𝑜 + 𝑘𝑘𝑇𝑇ln
𝐶𝐶 [𝐷𝐷]
𝐴𝐴 [𝐵𝐵]

∆𝜇𝜇𝑜𝑜 = −𝑘𝑘𝑇𝑇ln 𝐾𝐾eq



Stochastic biochemical kinetic 
description dictates a 

macroscopic, deterministic 
biochemical kinetics (as LLN) 

as well as a biochemical 
thermodynamics (as LDP)!





Conclusions
(1) The thermodynamic structure presented in the 

present work, while assumes a probability distribution 
a priori, does not require the concept of equilibrium in 
connection to detailed balance in stochastic dynamics, 

nor ergodicity. Therefore, it is applicable to 
measurements on biomarkers from isogenic single 

living cells.   Of course, if a large system consists of 
many statistically identical but independent smaller 

parts, then the entire argument based on i.i.d. 
measurements can be applied to a single measurement 
of extensive variables of the large system as a whole



Conclusions – cont.
(2) The present result augments the current 

understanding of the nature of 
thermodynamic behavior, which so far has 
been focused on large systems. We now see 

there is actually a large measurements 
limit that generates a different kind of 

emergent order, a duality symmetry, for any 
small stochastic systems. This symmetry is 

lost, however, in the large systems limit.



(3)
Application to Single-cell Biology:

counting frequencies for phenotypic 
heterogeneity and mean value of a 

quantitative biomarker 

Joint work with Mr. Yu-Chen Cheng , UW.

Qian and Cheng, Quant. Biol. 8, 172 (2020)



Consider total M isogenic cells, 

assuming there are K phenotypic states 
(clusters), with m1, m2, …, mK number of 

cells within different phenotypes,

Let 𝑔𝑔𝑘𝑘 be the value of a single-cell 
biomarker when the cell is in the 

phenotype k.



The standard LLN for mean 
value and the Borel’s LLN for 

frequencies

lim
𝑀𝑀→∞

𝑔𝑔1 + 𝑔𝑔2 + ⋯+ 𝑔𝑔𝑀𝑀
𝑀𝑀

= 𝔼𝔼 𝑔𝑔

lim
𝑀𝑀→∞

𝑚𝑚𝑘𝑘

𝑀𝑀
= ℙ𝑘𝑘 (𝑘𝑘 = 1,2, … ,𝐾𝐾)



𝐼𝐼 𝐱𝐱 = �
𝑘𝑘=1

𝐾𝐾

𝑥𝑥𝑘𝑘 log
𝑥𝑥𝑘𝑘
𝑝𝑝𝑘𝑘

�̅�𝑔(𝑀𝑀) =
𝑚𝑚1𝑔𝑔1 + ⋯+ 𝑚𝑚𝐾𝐾𝑔𝑔𝐾𝐾

𝑀𝑀
= �

𝑘𝑘=1

𝐾𝐾
𝑥𝑥𝑘𝑘𝑔𝑔𝑘𝑘 → 𝔼𝔼 𝑔𝑔

Pr 𝑚𝑚1 = 𝑥𝑥1,⋯ ,𝑚𝑚𝐾𝐾 = 𝑥𝑥𝐾𝐾 ~ 𝑜𝑜−𝑀𝑀𝑀𝑀(𝐱𝐱)



Pr �̅�𝑔(𝑀𝑀) = 𝑦𝑦 ~ 𝑜𝑜−𝑀𝑀𝑀𝑀(𝑦𝑦)

𝜑𝜑 𝑦𝑦 = inf 𝐼𝐼(𝐱𝐱)
𝐱𝐱: �

𝑘𝑘=1

𝑀𝑀
𝑥𝑥𝑘𝑘𝑔𝑔𝑘𝑘 = 𝑦𝑦

Contraction Principle



min
𝐱𝐱
�

𝑘𝑘=1

𝑀𝑀
𝑥𝑥𝑘𝑘 log

𝑥𝑥𝑘𝑘
𝑝𝑝𝑘𝑘

,

�
𝑘𝑘=1

𝑀𝑀
𝑥𝑥𝑘𝑘𝑔𝑔𝑘𝑘 = 𝑦𝑦,

�
𝑘𝑘=1

𝑀𝑀
𝑥𝑥𝑘𝑘 = 1.

An Optimization Problem



Using the method of Lagrangian
multiplier

𝜑𝜑 = −𝛽𝛽𝑦𝑦 − log�
𝑘𝑘=1

𝑀𝑀
𝑝𝑝𝑘𝑘𝑜𝑜−𝛽𝛽𝑔𝑔𝑘𝑘

𝑦𝑦 = −
𝑑𝑑
𝑑𝑑𝛽𝛽

log�
𝑘𝑘=1

𝑀𝑀
𝑝𝑝𝑘𝑘𝑜𝑜−𝛽𝛽𝑔𝑔𝑘𝑘



Using the method of Lagrangian
multiplier

𝜑𝜑 = −𝛽𝛽𝑦𝑦 − log�
𝑘𝑘=1

𝑀𝑀
𝑝𝑝𝑘𝑘𝑜𝑜−𝛽𝛽𝑔𝑔𝑘𝑘

𝑦𝑦 = −
𝑑𝑑
𝑑𝑑𝛽𝛽

log�
𝑘𝑘=1

𝑀𝑀
𝑝𝑝𝑘𝑘𝑜𝑜−𝛽𝛽𝑔𝑔𝑘𝑘

𝜑𝜑 𝑦𝑦 = −min
𝛽𝛽

𝜷𝜷 � 𝒚𝒚 + 𝜓𝜓(𝜷𝜷)

cumulant generating function



Cramér’s theorem for 
arbitrary distribution 𝑝𝑝𝑋𝑋(𝑥𝑥)

Harald Cramér (1893-1985)



The Shannon entropy is to Borel’s
LLN what the Gibbs entropy is to 

standard LLN for mean value!

lim
𝑀𝑀→∞

𝑔𝑔1 + 𝑔𝑔2 + ⋯+ 𝑔𝑔𝑀𝑀
𝑀𝑀

= 𝔼𝔼 𝑔𝑔

lim
𝑀𝑀→∞

𝑚𝑚𝑘𝑘

𝑀𝑀
= ℙ𝑘𝑘 (𝑘𝑘 = 1,2, … ,𝐾𝐾)



Tentative Summary
• Applying the theory of large deviations to 

the statistical analysis of single cells, there 
could be a “thermodynamic behavior” in 
the date;

• There is a relation at the fundamental level 
between Waddington’s single cell 
phenotypic landscape and Gibbsian
thermodynamic;

• Large deviations theory offers nonlinear 
statistical dependency beyond Gaussian 
fluctuations. 
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