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Genomics and the physical chemistry of
biomolecules are two pillars of molecular biology.
One of the key branches of the latter is chemical
thermodynamics, which, curiously, Is quite
marginalized in the current research on
computational molecular biology (CMB). | shall
revisit this subject, but no starting from physics nor
chemistry, but rather through a result from
probability, beyond the law of large numbers and
central limit theorem, call large deviations theory.
| shall show how our theory can be applied to
Fisher’s FTNS as well as to analyzing data from
single cells.



Prologue: The two pillars of
molecular biology

» Genetics, genomics, and bioinformatics:
It Is about “information’;

* Physical chemistry, molecular dynamics (MD)

and structural biology (SB):
It Is abut “molecules, their states, and
the processes cause their changes”.
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Things like ...

6= H-Ts, 2=

Au = Au® + kTIn
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(1)
How to represent (e.g.,
describe) a biochemical or a
biological systems, not just

MD and SB: Its states and Its

changes?



(1) classifying biochemical (or
biological) individuals into
populations of kinetic species;
(11) counting the number of
Individuals In each and every “pure
Kinetic specles™;

(111) representing changes In terms
of “stochastic elementary
processes’”.




A stochastic elementary process

A+2B+C+E— > X+3B+E
N = (NAJNBJ"'JNZ)
P{N(t+dt) =n+ An| N(t) = n}

ri(n)dt + o(dt),if An = v;
=4 1—rdt+o(dt),if An=0
0, otherwise.



A stochastic elementary process
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An essential feature of a
stochastic elementary reaction
with pure Kinetic species

P{T>t}=e

P{Tzt+1t} e T(+7) o
P{T>t} = e~tT
dIn P{T=t}

dt

—1t

r



The rate for the next event within
multiple stochastic elementary
processes among pure kinetic species

PIT, >t} ="' (1<j<M)
T* - min{Tl, Tz,“',TM},
P{T, >t} = e "¢,

T, — 7‘1-|-7"2+°°°-|-7"M.



A theorem on the rate for complex
Kinetic species that contain
heterogeneous subpopulations

P{T >t} = fooo e Tt £(5)ds

dinP{T=t} _ [, 1(8)e TOt f(s)ds

= 7(t)

dt [,° e Tt f(s)ds

d’;ff) — _Tr(s) = 7(D]? <O0.




The Instantaneous rate for a
non-elementary process with
complex Kinetic species:

r[N(t), X(¢), t]

dF(t)  oF (dN) Lo (dX) L o7

dt ~ oN\dt/ ' ax\at/) ' ot




The genetical
theory of
natural selection
- Primary
Source Edition

Ronald Aylmer Fisher

FUNDAMENTAL THEOREM OF NATURAL SELECTION 3

and, taking all factors into consideration, the total incregse in fitness,
2(adp) = Z(pgaa)dt = Wdt.

If therefore the time element dt is positive, the total change of fit-
ness Wdt is also positive, and indeed the rate of increase in fitness due
to all changes in gene ratio is exactly equal to the genetic variance of
fitness W which the population exhibits. We may consequently state
the fundamental theorem of Natural Selection in the form:

The rate of increase in fitness of any organism at any time 18 equal
to its genetic variance in fitness at that time.

The rigour of the demonstration requires that the terms employed
should be used strictly as defined ; the ease of its interpretation may
be increased by appropriate conventions of measurement. For
example, the ratio p : ¢ should strictly be evaluated at any instant
by the enumeration, not necessarily of the census population, but of
all individuals having reproductive value, weighted according to the
reproductive value of each.

Since the theorem is exact only for idealized populations, in which
fortuitous fluctuations in genetic composition have been excluded,
it is important to obtain an estimate of the magnitude of the effect
of these fluctuations, or in other words to obtain a standard error
appropriate to the calculated, or expected, rate of increase in
fitness. It will be sufficient for this purpose to consider the special
case of a population mating and reproducing at random. It is
easy to see that if such chance fluctuations cause a differcnce dp
between the actual value of p obtained in any generation and that
expected, the variance of p will be

P,
2n
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Counting, It IS everywhere!

Newtonia
Lagrangia

e second @

n particles In fluid mechanics,
n vs. Eulerian representations;

uantization in quantum field
theory;

* biological organisms.



Lu and Qian, arXiv:2009.12644 (2020)

(2)
Thermodynamics of Small
Systems

Joint work with Prof. Zhiyue Lu, UNC.



What are?

Fundamental thermodynamic

relation

Gibbs—Duhem equation



https://en.wikipedia.org/wiki/Gibbs%E2%80%93Duhem_equation
https://en.wikipedia.org/wiki/Fundamental_thermodynamic_relation

Current understanding of the foundation
of thermodynamics

e The existence of an entropy function or
entropy functional.

e The entropy Is a statistical concept; It Is
an Eulerian homogeneous function of all
extensive variables with order 1.

e It i1s a universal result, as a limit, for
macroscopic large systems.




EE—— D/ NAMICS
Mt | OF SMALL |
THERMOSTATISTICS SYSTEMS |

——— arts | &EE )
SECOND EDITION

!

1 (1917-2014)

Y

Terrell L. H|II




How can a small system have
universal behavior?




The world Is stochastic.

The repeated measurements are
not a way to obtaining truth via
eliminating uncertainty. Variation
(heterogenelty) Is a part of the
truth!



On the border of this stochastic
world, three major landmarks:

LLN: law of large numbers,
CLT: central limit theorem,
LDP: large deviations principle.



Law of Large Numbers

Xl XZ XM
. .
T M Al
m
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M —oco M

sample frequency

my,

im —= P k = 1,2,...,K
M—-oo M k‘(\ )
e statistical concepts probability

 probabilistic concepts



Central Limit Theorem

1 Xy + Xy + o+ Ky
1m = OO
M— o0 \W
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Central Limit Theorem

X1 +X2+ XM

i N - %
(X Xy 4+ Xy
o, [P v
= 47(0,0°)
/ \

normal random variable

variance of X




Large Deviations Principle

Fi, (M) > 8(x — x*), %" = B[]

the premise

fz,, (6 M)~ e~ MP),
the existence| MR @ (x) = @(x") =0,

. 1 .
Alll_r)rgo—ﬁln IP’{X{V, EACGC)= min o (x).
its property




When the M tends to infinite ...

fr,, (6 M), f2,,(6; M) =~ A e™MP)

/

sample mean value x



rate function ¢ as entropy

In Pr{X,, = a} = lnf Ae M) dx
a

= —M min {@(x)}+ o(M)

A=X<00




Cramér’s theorem for
arbitrary distribution py (x)

Harald Cramer (1893-1985)



Cumulant Generating Function and
Legendre-Fenchel transform

W(B) = In j px(x)e Fxdx

Y(p) = Sl;p{—ﬁ - x +n(x)}
—p(x) = i%f B-x+Y(p)}




Massieu-Guggenheim (free) entropy
Y and Gibbs entropy n

W(B) = In j px(x)e Fxdx

Massieu-Guggenheim entropy

—p(x) = irﬁlf{ﬁ - x+Y(B)}

d
00 = —o() = APBI/E]

Gibbs entropy

d|1/5]



Legendre-Fenchel Transform and Free
Entropy-Gibbs Entropy Duality

n(y) =infig -y +v(B)
dn(y) = B-dy = pidy;, + Body, + -

fundamental thermodynamic
relation

Hill-Gibbs-Duhem equation

AN

Y(B) =sup{—B-y+n)}
dp(B) = —y-df = —y,dp; —y,df; + -




T. L. Hill’s Nanothermodynamics

S(U,V,N) = (1

oGy -Ev-(7)e
e

extensive quantities sub-extensive

dS(U,V,N) = G) dU + (g) dv — (%) dN

dE(T,p,n) = —SdT + Vdp — Ndu




In the Large System Limit:
Entropy Is an order 1 homogeneous
function of all extensive variables

n) =y-"n®),
B(y) = Vyn(J’);

Y(p) = sgp{—ﬁ -y +n(y)}
=0




In summary, not just one
entropy and one limit, but
three entropies and two
limits!



Three Entropies and Two Limits

Boltzmann entropy | | Massieu-Guggenheim | | Gibbs entropy

e

n(y) —— {¥(8) < n(y)}
LB ) _dn_ g
y dy

.Y
big data limit

large system limit




Three Entropies and Two Limits

convex functions

/
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From here to things like ...
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Stochastic biochemical Kinetic
description dictates a
macroscopic, deterministic
biochemical kinetics (as LLN)
as well as a biochemical
thermodynamics (as LDP)!
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Gibbs’ macroscopic chemical thermodynamics is one of the most important theories in chemistry.
Generalizing it to mesoscaled nonequilibrium systems is essential to biophysics. The nonequilibrium stochastic
thermodynamics of chemical reaction kinetics suggested a free energy balance equation d F ™% /dt = E;, — ¢,
in which the free energy input rate Ei, and dissipation rate ¢, are both non-negative, and Ei, < e,. We prove that
in the macroscopic limit by merely allowing the molecular numbers to be infinite, the generalized mesoscopic
free energy F'™° converges to ¢, the large deviation rate function for the stationary distributions. This
generalized macroscopic free energy > now satisfies a balance equation dg*(x)/dt = cmf(x) — o (x), in which
x represents chemical concentration. The chemical motive force cmf(x) and entropy production rate o (x) are
both non-negative, and cmf(x) < o(x). The balance equation is valid generally in isothermal driven systems and
is different from mechanical energy conservation and the first law; it is actually an unknown form of the second
law. Consequences of the emergent thermodynamic quantities and equalities are further discussed. The emergent
“law” is independent of underlying kinetic details. OQur theory provides an example showing how a macroscopic
law emerges from a level below.

J Stat Phys (2017) 166:190-209 @ CrossMark
DOI 10.1007/510955-016-1678-6

Mathematical Formalism of Nonequilibrium
Thermodynamics for Nonlinear Chemical Reaction
Systems with General Rate Law

Hao Ge! - Hong Qian?



Conclusions

(1) The thermodynamic structure presented in the
present work, while assumes a probability distribution
a priori, does not require the concept of equilibrium in
connection to detailed balance in stochastic dynamics,

nor ergodicity. Therefore, it is applicable to
measurements on biomarkers from isogenic single
living cells. Of course, if a large system consists of
many statistically identical but independent smaller
parts, then the entire argument based on i1.1.d.
measurements can be applied to a single measurement
of extensive variables of the large system as a whole



Conclusions — cont.

(2) The present result augments the current
understanding of the nature of
thermodynamic behavior, which so far has
been focused on large systems. We now see
there 1s actually a large measurements
limit that generates a different kind of
emergent order, a duality symmetry, for any
small stochastic systems. This symmetry is
lost, however, In the large systems limit.



Qian and Cheng, Quant. Biol. 8, 172 (2020)

(3)

Application to Single-cell Biology:
counting frequencies for phenotypic
heterogeneity and mean value of a
guantitative biomarker

Joint work with Mr. Yu-Chen Cheng , UW. £



Consider total M 1sogenic cells,

assuming there are K phenotypic states
(clusters), with m;, m,, ..., m, number of
cells within different phenotypes,

Let g, be the value of a single-cell
biomarker when the cell i1s In the
phenotype k.



The standard LLN for mean
value and the Borel’s LLN for
frequencies

1 grt 9+ t9gu
im =
M — o0 M

‘9]

lim X = P, (k=12 .. K
1mM— r(k=12,..,K)

M—-o00



Pr{ml — xl,'“’mK — XK} ~ e_MI(X)

K

X
[(x) = z X, log—k
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Contraction Principle

Pr{g_(M) _ y} ~ e_M(P(Y)

p(y) = inf [(x)

M
{X: z X9k = J’}
k=1



An Optimization Problem

. M Xk
min x; log—,
X k=1 Pk

M
2 XYk = Y,
k=1
M
2 Xl = 1.
k=1



Using the method of Lagrangian
multiplier

M
@ =—Py — logz: pre Pk
k=1

d M 8
= lo E e Pk
y dp 8 k=1pk



Using the method of Lagrangian

multiplier
@ =—Py —
B d

p(y) = —r}gin{ﬁ -y + }




Cramér’s theorem for
arbitrary distribution py (x)

Harald Cramer (1893-1985)



The Shannon entropy is to Borel’s
LLN what the Gibbs entropy is to
standard LLN for mean value!




Tentative Summary

* Applying the theory of large deviations to
the statistical analysis of single cells, there
could be a “thermodynamic behavior” in
the date;

e There Is a relation at the fundamental level
between Waddington’s single cell
phenotypic landscape and Gibbsian
thermodynamic;

 Large deviations theory offers nonlinear
statistical dependency beyond Gaussian
fluctuations.
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