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> Feature attribution: attributing a given prediction 
to the input values of a predictor

> One-hot encoded sequences: 

Feature attribution:

ACACACAGGTCCTGA



> Local approximation methods - base their 
estimation of importance on gradients or local 
linear models 

> Generative masking methods from computer 
vision 

Current feature attribution methods:



> Generative attribution methods allow learning of  
overall patterns of important features from the 
training dataset 

> May not be desirable in some cases - but in 
biology could be useful for uncovering regulatory 
logic 

The advantages of generative masking 
models for feature attribution:



> What kind of backgrounds should we be using for 
one-hot representation trained models when 
masking?

> Fading/blurring, zeros, random samples

Discrete inputs & masking backgrounds:



Scrambling Neural 
Networks 



> Inclusion: finding the smallest 
subset of features which, when 
preserved, preserve the 
prediction

> Occlusion: finding the smallest 
subset of features which, when 
perturbed, destroy the 
prediction

Scrambling neural networks (Scramblers):



Inclusion Objective



Inclusion Objective



Occlusion objective



Protein Attributions



> Set of coiled-coil dimers 
designed to interact 

> HBNet - designed hydrogen 
bond network to induce 
binding specificity (Maguire et 
al., 2018; Chen et al., 2019)

> RNN trained for predicting if 
two dimers were designed to 
interact or not 

Dimerization predictor:

+



> Due to structure of how network takes in inputs, 
there are two ways we can structure Scramblers

Interpreting a Siamese network:

Restricted to seeing one 
binder at a time, should 
learn features which are 
independent of binding 
pair 

Can see both binder at 
a time, should be able 
to learn binding pair 
dependent features



> Tested Scramblers against:
– Perturbation - estimating importance 

by changing one position at a time
– Gradient Saliency (Simonyan et al., 

2013) 
– Integrated gradients (Sundararajan et 

al., 2017)
– DeepSHAP (Lundberg et al., 2017)
– Zero masking (similar to computer 

vision methods L2X (Chen et al., 
2018) & INVASE (Yoon et al., 2018))

– Sufficient Input Subsets (SIS) (Carter et 
al., 2019) 

KL-Divergence & other methods

min

max



Benchmark 1: HBNet Recovery

Test set of n=480 dimers, recovered HBNets from dimer pairs 



> Conducted in silico Ala scanning with PyRosetta for all residues in 
a dimer pair 

> Calculated mean DDG for each & did permutation tests with 
10,000 relabelings - all methods p <0.05 

Benchmark 2: Mean Alanine scanning DDG



Example dimer attribution



> trRosetta predicts distance 
and backbone angles for a 
tertiary structure (Yang  et  
al.,  2020)

> Used same Scrambler for 
protein sequence and MSA 
importance scores 

Protein structure prediction attribution



Protein structure prediction attribution

> Hydrophobic leucines and a 
symmetry-breaking glycine 
in the hairpin region 

> Aligns well with previous 
results (Chen et al., 2019)



> MSA free interpretation of de 
novo proteins without much 
natural sequence homology 
(Anishchenko et al., 2020)

> Unclear standard for 
validation 
– per-residue Rosetta energy 

breakdown

trRosetta de novo protein Scrambler:



Per-residue -REU and scores:

Measured agreement between top 10% of importance score positions & top 10% of -REU 
positions 



> Glycines are known to occur on loops, thought to 
be important for maintaining loop flexibility

Scramblers identify loop glycines

0959

0686

1517



> Scrambler target bit ‘over-explanation’ corrections and 
attributions of sequences which have target values near the  
background 

       Thank you & any questions?

Github: johli/scrambler
Bioarxiv: Coming soon (hopefully end of week) 

Ongoing work 



Example dimer comparison 
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