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Feature attribution:

> Feature attribution: attributing a given prediction
to the input values of a predictor
> One-hot encoded sequences:

ACACACAGGTCCTGA
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Current feature attribution methods:

> Local approximation methods - base their
estimation of importance on gradients or local

linear models
> Generative masking methods from computer

vision
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The advantages of generative masking
models for feature attribution:

> @Generative attribution methods allow learning of

overall patterns of important features from the
training dataset

> May not be desirable in some cases - but in

biology could be useful for uncovering regulatory
logic
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Discrete inputs & masking backgrounds:

> What kind of backgrounds should we be using for

one-hot representation trained models when
masking?

> Fading/blurring, zeros, random samples
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Scrambling Neural
Networks



Scrambling neural networks (Scramblers):

Scrambler Networks

> Inclusion: finding the smallest
subset of features which, when
preserved, preserve the
prediction

> Occlusion: finding the smallest
subset of features which, when
perturbed, destroy the o
orediction

L1 L 1 1]
Inclusion Occlusion
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Inclusion Objective

Pre-trained predictor: P

One-hot encoded input pattern: x € {0,1}V*M

Non-informative background distribution: b € RV*M

Scrambler trainable network: S, learns to generate real-valued importance scores S(x) €

s =o(logb+z x S(z))
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Where o denotes the softmax o(l);; = <3——— and S (x) € (0,00]N*M represent the importance scores

Yo ek

S(x) which have been broadcasted at position i to all channels j.
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Scrambler
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Inclusion Objective

Minimize KL[b]|&s] Minimize KL[P(z3))||P(x)]

To train, K discrete samples mg) are drawn from &g are passed to the predictor P ==
Scrambled predictions P(:ifsk)), original prediction P(x)
Scrambler S Predictor P
K 2 S(x) P(x)
min (= S KL[P@@)[[P(@)] ) +A- (toiee — - KL[Blles]
S \ K = N
T
Data
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Occlusion objective

Maximize KL [i)| |:i:s] Maximize KL ['P(:l:fgk))H'P(z)]
Occlusion scrambling operation: ; :
ACACACA..__CCC
- G
s :a(logb+m/8(:c)) &s

Occlusion objective: Scrambler S l
S(z)
ACACACATTGGTT

K 2
. 1 (k) 1 i
min ( s ,;leL [P(xg )||73(a:)]) + A (tbits e - KL [bH:nS})
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Protein Attributions



Dimerization predictor:

> Set of coiled-coil dimers s
designed to interact 57;/

> HBNet - designed hydrogen
bond network to induce P, )
binding specificity (Maguire et Dense(t) s
al., 2018; Chen et al., 2019) Dense(128) s s

> RNN trained for predicting if oo | |
two dimers were designed to | Zopi| Joe]
interact or not Buvadi bt ) e

i R

UNIVERSITY of WASHINGTON



Interpreting a Siamese network:

> Due to structure of how network takes in inputs,
there are two ways we can structure Scramblers

Can see both binder at
a time, should be able
to learn binding pair
dependent features
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Joint Scrambler

Architecture

N7 D i i

Siamese Scrambler
Architecture

Scrambler

Scrambler Scrambler

Training Data

Training Data

Restricted to seeing one
binder at a time, should
learn features which are
independent of binding
pair



KL-Divergence & other methods

> Tested Scramblers against:
— Perturbation - estimating importance
by changing one position at a time

Inclusion

— Gradient Saliency (Simonyan et al., 2 min
2013)

— Integrated gradients (Sundararajan et
al., 2017)

— DeepSHAP (Lundberg et al., 2017) max

KL-Div

— Zero masking (similar to computer :
vision methods L2X (Chen et al., ; Occlusion
2018) & INVASE (Yoon et al., 2018))

— Sufficient Input Subsets (SIS) (Carter et
al., 2019)
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Benchmark 1: HBNet Recovery

HBNet AP
Scrambler (Inclusion, Siamese) 0.42 [— HENet I?;:::;e;x
Scrambler (Occlusion, Joint) 037 | e Imporine Soores
Scrambler (Occlusion, Siamese) 0.61 ==
Perturbation 0.12 foc é
Gradient 0.25 == ;.3
Integrated Gradients 0.32 =]
DeepSHAP 0.26 =
Zero (Inclusion, Siamese) 0.07 [ ]
SIS (Mean) 0.16 %00 0.2 0.4 0.6 0.8 1.0
Recall

Test set of n=480 dimers, recovered HBNets from dimer pairs
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Benchmark 2: Mean Alanine scanning DDG

> Conducted in silico Ala scanning with PyRosetta for all residues in

a dimer pair

> Calculated mean DDG for each & did permutation tests with

10,000 relabelings - all methods p <0.05

Scrambler (Inclusion, Siamese)
Scrambler (Occlusion, Joint)
Scrambler (Occlusion, Siamese)
Perturbation

Gradient

Integrated Gradients
DeepSHAP

Zero (Inclusion, Siamese)

SIS (Mean)
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1.70

2.20

0.90
1.74
0.86
1.13
1.06
0.73

0.44

ddG Score HBNet AP

0.42

Precision

HBNet Discovery
Based on
Importance Scores

0.0 +

0.0 0.2 0.4 0.6 0.8
Recall

1.0



Example dimer attribution

1. Perturbation 2. Scrambler (Occ, Joi) 3. Scrambler (Occ, Sia)

Scores Binder 1 Iteration: O
AEELCEVKKSORVTKE L RVSE61 LCNEVLTRCEVSOEVLKRVLRKLEEL TOXLRRVTEECRRIVEKL
) L gl iy
2. L \ Ll 0 i
3. O I S rsq

Hydrogen Bond Network Positions

Binder 2
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3. ; EQ E i, )

UNIVERSITY of WASHINGTON




Protein structure prediction attribution

trRosetta

> trRosetta predicts distance
and backbone angles for a i E
tertiary structure (Yang et :
al., 2020) it e

> Used same Scrambler for ‘¥
protein sequence and MSA [NNNNN.A LN . C 5

importance scores

trRosetta
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Protein structure prediction attribution

> Hydrophobic leucines and a
symmetry-breaking glycine
in the hairpin region

> Aligns well with previous
results (Chen et al., 2019)
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trRosetta de novo protein Scrambler:

trRosetta N

> MSA free interpretation of de
novo proteins without much
natural sequence homology
(Anishchenko et al., 2020)

> Unclear standard for

validation
— per-residue Rosetta energy
breakdown

ooooo

Minimize / Maximize KL-Divergence

trRosetta
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Per-residue -REU and scores:

Measured agreement between top 10% of importance score positions & top 10% of -REU
positions

Inclusion
PSSM o

ROKACRIL X A D
Rosetta Score

9 .
Function (-REU) Top 10% Agreement = 0.4

Top 10% Agreement = 0.4

Top 10% Agreement = 0.5
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Scramblers identify loop glycines

> @Glycines are known to occur on loops, thought to
be important for maintaining loop flexibility

Inclusion
PSSM L

Top 10% Agreement = 0.4

Function (-REU)

1517
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Ongoing work

> Scrambler target bit ‘over-explanation’ corrections and
attributions of sequences which have target values near the
background

Thank you & any questions?

Github: johli/scrambler
Bioarxiv: Coming soon (hopefully end of week)
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Example dimer comparison

Binder 1 Binder 2

Original Sequence ||

Scrambler (Inc, Sia, 0.25 Bits)

Scrambler (Inc, Sia, 0.5 Bits)

Scrambler (Occ, Joi, 2.4 Bits)

Scrambler (Occ, Sia, 2.4 Bits)

Perturbation

x V3 L = L x Q Lo LV, B av ™ Q LA, i i
Gradient
L__;._.m_Lu._L__._gn_JA.uLE ok el vt LonE
Integrated Gradients S Q 0 s s
DeepSHAP l

SIS (Mean)

l

SIS (1 Sample) s 0 v ER
0
|

SIS (4 Sample) s T v I.

T LI

SIS (32 Sample) A KE v |.

Hydrogen Bond Network Positions
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