Sequence to Function Enformer: Transformers in regulatory genomics

Xinming, Ian

Enformer

ARTICLES

https://doi.org/10.1038/s41592-021-01252-x

nature methods

OPEN Effective gene expression prediction from sequence by integrating long-range interactions

Žiga Avsec[©]¹[⊠], Vikram Agarwal^{2,4}, Daniel Visentin^{1,4}, Joseph R. Ledsam^{1,3}, Agnieszka Grabska-Barwinska¹, Kyle R. Taylor¹, Yannis Assael¹, John Jumper¹, Pushmeet Kohli©¹[⊠] and David R. Kelley[©]²[⊠]

David Kelly PI at Calico Labs

Preview

BIOINFORMATICS

A gene sequence-to-expression machine learning model achieves improved accuracy by incorporating information about potential long-range interactions.

Yang Young Lu and William Stafford Noble

source: attention is all you need

Outline

- Background
 - regulatory genomics
 - previous work
- $\bullet \quad \text{Model: convolutions} \rightarrow \text{self-attention}$
- Results
- Discussion

Regulatory genomics

Epigenetics landscape, Waddinton 1957

Background: non-coding regions

Wong, A. K., Sealfon, R. S. G., Theesfeld, C. L. & Troyanskaya, O. G. Decoding disease: from genomes to networks to phenotypes. *Nat Rev Genet* 1–17 (2021) doi:10.1038/s41576-021-00389-x.

Background: regulatory elements

- Promoter
- Enhancer
- Boundary element
 - Insulator (CTCF) Ο

Promoter

H3K4me3

H3K27ac

Mediator

complex

Poll

Oudelaar, A. M. & Higgs, D. R. The relationship between genome structure and function. Nat Rev Genet 22, 154-168 (2021).

Background - Genomics tracks

- DNase/ATAC
 - Chormotin accessibility
- CAGE
 - gene expression
- Chip Histone
 - Histone marker
- Chip TF
 - TF binding

Chip-seq: https://www.encodeproject.org/chip-seq/transcription_factor/

Computational regulatory genomics

genotype/sequence

genomics/epigenetics Phenotype Genomics track (Dnase, Histone marker) Phenotype (Disease, function)

Previous work in computational regulatory genomics

• The state of the art: CNN

• DeepBind, DeepSEA, Basenji, etc

.

Table 1 Methods for transcriptional/blochemical impact			
Model overview			Input data
Model	Method	Prediction task	
DeepSEA ^{25,26}	Deep learning, CNN	Chromatin, TF binding	TF, HM, DHS
gkm-SVM/ delta-SVM ²⁸	SVM	Chromatin, TF binding	TF, HM, DHS
DanQ ⁸²	Deep learning, CNN, BLSTM	Chromatin, TF binding	TF, DHS, HM
Basset ²⁷	Deep learning, CNN	Chromatin accessibility	DHS
DeepCpG ⁸⁹	Deep learning, CNN, GRU	CpG state	Bisulfite sequencing
ExPecto ⁹⁵	Deep learning, CNN, linear regression	Expression prediction	TF, HM, DHS, RNA-sec
Basenji ⁸⁵	Deep learning, CNN	Expression prediction	TF, DHS, HM, CAGE peaks
BPNet, DeepLIFT, TFModisco ⁸⁴	Deep learning, CNN	TF binding	TF
ChromDragoNN ⁸³	Deep learning, CNN, ResNet	Chromatin accessibility	DHS, RNA-seq
Xpresso ^{83,94}	Deep learning, CNN	Expression prediction	CAGE peaks, gene annotations
AMBER ⁴⁰	Auto machine learning, RNN, deep learning, CNN	Chromatin, TF binding	TF, HM, DHS

Wong, A. K., Sealfon, R. S. G., Theesfeld, C. L. & Troyanskaya, O. G. Decoding disease: from genomes to networks to phenotypes. *Nat Rev Genet* 1–17 (2021) doi:10.1038/s41576-021-00389-x.

Kelley, D. R. et al. Sequential regulatory activity prediction across chromosomes with convolutional neural networks. Genome Res 28, 739–750 (2018).

Model

- A self-attention based sequence-to-sequence model (transformer)
- Enformer = enhancer + transformer

Architecture

Architecture

Transformer layers

- Standard self-attention operations: keys, queries, values
- Attention based on keys/queries, and positional embeddings
- Modified positional embeddings
 - Standard NLP approach did not scale to large distances
 - Additive with key/query dot product (as in TransformerXL)
 - Combined several distance functions (exponential, central mask, Gamma)

Key differences

- Relative to DNA sequence models: large receptive field via self-attention, more channels, longer input (vs. Basenji)
- Relative to NLP: positional embeddings designed for long-range interactions

Results

Results (qualitative)

Ablations

How to attribute performance improvement?

- Enformer outperforms Basenji (dilated convolutions)
- Consistent across various model sizes, # layers, # data points
- Reducing receptive field size hurts performance
- Standard positional embeddings hurt performance

interpretation pf the model

- Gradient based
- Attention based

y = ReLU(x) = max(0, x)

Enhancer prioritization

CRISPRi assay perturbing the enhancer of interest while measuring the expression change of the gene

Gasperini, M. et al. A Genome-wide Framework for Mapping Gene Regulation via Cellular Genetic Screens. Cell 176, 377-390.e19 (2019).

Enformer attends to cell-type-specific enhancers

Insulator

Schoenfelder, S. & Fraser, P. Long-range enhancer-promoter contacts in gene expression control. Nat Rev Genet 20, 437-455 (2019).

Variant effect prediction on eQTL data.

Wong, A. K., Sealfon, R. S. G., Theesfeld, C. L. & Troyanskaya, O. G. Decoding disease: from genomes to networks to phenotypes. *Nat Rev Genet* 1–17 (2021) doi:10.1038/s41576-021-00389-x.

Variant effect prediction on eQTL data.

Variant effect prediction on eQTL data.

Enformer improves MPRA mutation effect prediction

Take-home message

- Self-attention can extend the receptive field
- Self-attention can capture long-distance interection
- Enformer can help us build a more comprehensive regulatory map than before

Discussion

- Cis-regulatory, how about trans-regulatory?
- Covariates matrix like gene expression(Expecto)?
- Opportunities for large pre-trained models in genomics?