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100
APPLICATIONS

Studying catalytic
mechanism

NMR, x-ray

Background: Proteins

Designing and improving
ligands

Docking of macromolecules,
prediction of protein partners

o
o

e Predicting structural and functional
properties from protein sequences is a

Virtual screening and
docking of small ligands

:Ej .é = Defining antibody epitopes
long-standing goal in computational 1 < ek
biology S i e st

e Better prediction enables applications . B =
like antibiotic resistance prediction -
and drug engineering/discovery : o
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Baker, David, and Andrej Sali. "Protein structure prediction and
structural genomics." Science 294.5540 (2001): 93-96.



Background: Proteins

WHAT DO YOU DO?

I MAKE SOFTWARE
THAT PREDICTS HOW
PROTENS WILL FOLD.

%

IS THAT A HARD PROBLEM?

SOMEONE. MAY SOMEDAY
FIND A HARDER ONE.

%

WHY 15 IT S0 HARD?

HAVE YOU EVER MADE A
RJLDEDWERC%NE?

YEBH

i1

IMAGINE. FIGURING OUT THE FoLDS
TO MAKE AN ACTUAL LWVIMG (RANE.

... JUGT FOLDS?
C‘\NII"V\KECWS?

IF YOU CAN FOLD A
PROTEASE ENZYIVE.
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This slide was gratuitously stolen from the TAPE paper presentation




Background: Protein Databases

e Collecting labeled data is very @ S Data Availability
expensive! Crystallography experiments ~ —
can cost >$200,000 oM

e Collecting unlabeled data (sequencing) " oo
is relatively cheap, meaning there is way s‘;i ' protein 52
more unlabeled data than labeled AL

Madani, Ali, et al. "ProGen: Language Modeling for Protein
Generation." arXiv preprint arXiv:2004.03497 (2020).



Self-Supervised Learning

How can we use unlabeled data to
train better models?

In the natural language processing
domain, unlabeled data is

leveraged through self supervision:

pre-training on the unlabeled data
via a proxy task that requires no
labels

Self-supervised models
consistently outperform models
trained from scratch

you has the highest probability l you,they, your.. l

Output [CLS] | | how are doing | |today | [SEP]

I I

BERT masked language model

R A R A A

Input [CLS] | | how | | are | |MASK]| |doing | |today | |[SEP]

Jain, Abhilash. "Finnish Language Modeling with Deep Transformer
Models." arXiv preprint arXiv:2003.11562 (2020).



Self-Supervised Learning

e \Why does this help? Self-supervised learning helps models learn a powerful
internal representation of the input
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Self-Supervised Protein Models

Protein modeling and NLP have some similarities: discrete sequence input +

large corpus of unlabeled data

This has inspired many papers applying NLP models to protein sequences

Biological structure and function emerge from scaling unsupervised learning to
250 million protein sequences

Alexander Rives*'2 Joshua Me(l;er':.‘w'l':':es;::‘d“ lSl}l::;rth‘??y;l‘;l: pf:::::g Lin? Demi Guo®! Myle Ott'
ProtTrans: Towards Cracking the Language of Life's
Code Through Self-Supervised Deep Learning and
High Performance Computing
Ahmed Elnaggar, Michael Heinzinger, Christian Dallago,

Ghalia Rehawi, Yu Wang, Llion Jones, Tom Gibbs, Tamas Feher, Christoph Angerer,
Martin Steinegger, Debsindhu Bhowmik and Burkhard Rost

ProGen: Language Modeling for Protein Generation

Ali Madani' Bryan McCann' Nikhil Naik' Nitish Shirish Keskar ' Namrata Anand? Raphael R. Eguchi?
Po-Ssu Huang? Richard Socher '

Unified rational protein engineering with
sequence-based deep representation learning

Ethan C. Alley'2¢, Grigory Khimulya®’, Surojit Biswas'*¢, Mohammed AlQuraishi ®* and
George M. Church®'*
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Alley, Ethan C., et al. "Unified rational protein engineering with sequence-based
deep representation learning." Nature methods 16.12 (2019): 1315-1322.



How do we compare different models?

e Although there is growing interest in applying deep ML models to protein
sequences, there is an issue: everyone gets data from a slightly different
source, or pre-processes data in slightly different ways!

e Although there is some effort to standardize datasets (like CASP) we want to
be able to separate gains from pre-processing from gains from modeling



The TAPE Benchmark

The TAPE benchmark is a solution to

this problem: it introduces a pre-training

dataset and five downstream task
datasets

All of the datasets are pre-processed in
the same way, making model
comparisons easy

Similar benchmarks in NLP (GLUE) and

vision (ImageNet) have rapidly driven
progress in the last 5 years

28% AlexNet, 8 layers
26%

ZF, 8 layers
VGG, 19 layers
/ GooglLeNet, 22 layers

ResNet, 152 layers

j ) (Ensemble)
SENet

.............................................

shallow

100% accuracy and reliability not realistic

BN Traditional computer vision
I Deep learning computer vision
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Notable Protein Benchmarks

e Critical Assessment of protein Structure Prediction (CASP)
e ProteinNet
e Others?



Protein terminology

e Represent a protein x of length L as a sequence of discrete amino acid characters (x1, ) xL) in
an alphabet of 25 letters (20 standard amino acids, 2 non-standard amino acids, 2 ambiguous
amino acids, 1 unknown)

e Each protein has a 3D structure
o Primary (amino acid sequence) — secondary (local features) — tertiary (global features)
o Proteins often have a few large protein domains - evolutionary conserved well-defined
sub-structures

e Homologs: two proteins that share a common evolutionary ancestor, but may have very different
sequences if they diverged in the distant past

e Quantifying evolutionary relationships is important for avoiding contamination of test sets. In this
paper, they mainly rely on sequence identity (exact amino acid matches)



Modeling Evolutionary Relationships with Sequence Alignments

e Querying a protein:
o An alignment based method uses a scoring system or HMM to align a query protein against
proteins in a database
o Can provide information about local perturbations, which may then be useful for understanding
changes to structure/function
e Multiple alignment:
o For a group of proteins, can construct a profile to summarize frequencies of amino acids —
useful representation for downstream tasks
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Datasets

e (Goal: curate standardized benchmarking datasets with specific training,
validation and test splits

e Pre-training corpus: large unlabeled sequence dataset
o Pfam - database of 31M protein domains
o Sequences are clustered into evolutionarily-related groups called families.
o 1% of families are fully held out as a test set, and the remaining families are separated into a
95/5% training/validation split
o  Uniform random split test performance — in-distribution generalization
o Heldout families test set performance — out-of-distribution generalization

e Supervised datasets - Different for each task, varying between 8 thousand
and 50 thousand training examples.



Structure Prediction Task
Task 1: Secondary Structure (SS) Prediction

e Definition: sequence-to-sequence task; Each input amino acid x. is mapped
to a label y. € {Helix(H), Strand(E), Other(C)}.
e Impact:

o Important feature for understanding the function of a protein
o S8 prediction tools are commonly used to create richer input features for higher-level models

e Generalization: tests the degree to which models learn local structure.
e Metrics + Dataset:

o Trained with Klausen et al., 2019 (~11K sequences)
o Measured (per-amino acid) test set accuracy on Input
CB513 dataset (~500 sequences) MV Y [K|F|N
o Data splits are filtered at 25% sequence identity to Tg?” ’;,.;M
test for broad generalization. :zﬁ#y 0]0]0f1(1
- Output



Structure Prediction Task

Task 2: Contact Prediction

e Definition: pairwise amino acid task; Each pair X, X, of amino acids is labeled
y; € {0, 1} indicating whether the amino acids are “in contact” (< 8A apart)

e Impact:. Powerful global information; robust modeling of full 3D protein
structure

e Generalization: tests the model’s understanding of global protein context.

e Metrics + Dataset:
o ProteinNet dataset (test set from the CASP12 competition) (~26K samples)
o Data splits are filtered at 30% sequence identity.
o Precision of the L/5 most likely contacts for
medium- and long-range contacts on the
ProteinNet CASP12 test set




Evolutionary Understanding Task

Task 3: Remote Homology Detection

e Definition: sequence classification task; Each sequence x is mapped to a
label y € {1,..., 1195} representing different possible protein folds

e Impact: Of interest in microbiology and medicine; e.g.; detecting emerging
antibiotic resistant genes

e Generalization: tests model’s ability to detect structural similarity across

distantly related inputs

e Metrics + Dataset:
o Hou et al., 2017 dataset derived from the SCOP 1.75
database of hierarchically classified protein domains
o Held out entire evolutionary groups from the training
set, forcing models to generalize across large
evolutionary gaps.
o Report test classification accuracy.




Protein Engineering Task

Task 4: Fluorescence Landscape Prediction

e Definition: regression task; Each input protein x — y € R, corresponding to
the log-fluorescence intensity of x
e Impact: Would allow more efficient exploration of the landscape

e Generalization: tests model’s ability to: Full Local Landscape
o distinguish between very similar inputs sy
o generalize to unseen combinations of mutations

e Metrics + Dataset:

o Data generated from Deep Mutational Scanning
(Sarkisyan et al., 2016) - characterized small
neighborhoods of parent proteins through
mutagenesis of avGFP protein

o Train+Val: Hamming distance 3 neighborhood; Test: Hamming distance 4-5 neighborhood

o Report Spearman’s p on the test set.

Bright

Train on nearby mutations Test on further mutations



Protein Engineering Task

Task 5: Stability Landscape Prediction

e Definition: regression task; each input protein x —» y € R measuring the
folding stability (most extreme circumstances in which protein x maintains its
fold above a protease concentration threshold)

e Impact: Would allow finding better refinements of top candidates of
expensive protein engineering experiments

e Generalization: tests model’s ability to generalize from a broad sampling of
sequences and localize info in a neighborhood of a few sequences

e Metrics + Dataset: s Most Stable
o Data from Rocklin et al., 2017 - Train/val sets come Ly *
from 4 rounds of experimental design; test set contains TR
Hamming distance-1 neighbors of top candidates ﬁ ; ‘ ' ———
o Report Spearman’s p on the test set. Train on broad Test on small neighborhoods

sample of proteins of best proteins



Experimental Overview

e The TAPE paper compares a host of models on the five downstream tasks:

o ATransformer

o AnLSTM

o A Residual Network

o The CNN/LSTM from Bepler, Tristan, and Bonnie Berger. "Learning protein sequence
embeddings using information from structure."

o The LSTM from Alley, Ethan C., et al. "Unified rational protein engineering with
sequence-based deep representation learning."

o Aone-hot and an alignment-based baseline



The TAPE models

e Three models, all inspired by NLP models: a transformer, a residual network,
and an LSTM

e They evaluate both pre-trained models and models trained from scratch on all
five downstream tasks



LSTM

An LSTM is a variant of a
recurrent neural network, and has
been used for sequence learning
for years

Their LSTM is bidirectional, and
has three layers of 1024 units




ResNet

e Aresidual network is a type of convolutional neural network, and was
invented for vision tasks

e It has since been applied in a 1D sense for sequences

e Their ResNet has 35 residual blocks, each with two large convolutional layers

(kernel size of 9, 256 filters, dilation 2)
X |

weight layer
]—"(x) ! relu «
weight layer identity



Transformer

Their final model is a
transformer, which is the
current SOTA for NLP tasks
It consists of alternating feed
forward layers and
self-attention layers, which
compute and weight pairwise
similarity between all pairs of
inputs

12 layers deep, 12 attention
heads

Output Multi-head attention
Probabilities

Positional ) @ Positional
Encoding Encoding

Input Output
Embedding Embedding

T T Zoom-In!

Inputs Outputs
(shifted right)




Pre-Training

e All models are pre-trained for a week using the pfam dataset
e They are trained with masked language (amino) modeling: predicting masked
amino acids from surrounding context

you has the highest probability I you,they, your.. I

Output [CLS] how are doing | |today |[SEP]
N |

BERT masked language model

IR IR R

Input [CLS] | | how are MASK]| | doing | |today | | [SEP]




Baselines

e They compare against four baselines
o The CNN/LSTM from Bepler, Tristan, and Bonnie Berger. "Learning protein sequence
embeddings using information from structure."
o The LSTM from Alley, Ethan C., et al. "Unified rational protein engineering with
sequence-based deep representation learning."
o Aone-hot baseline
o An alignment-based baseline



Learning protein sequence embeddings using information from structure

This paper introduces a new
pre-training task that predicts the
SCOP similarity level of two
proteins, based on their
embeddings

Uses a joint biLSTM+CNN
architecture

SCOP
o 8 /8 a+8 Class
e O
Rossman fold Flavodoxin-like o/ 3-Barrel Fold
TIM Trp biosynthesis Glycosyltransferase ~ RuBisCo (C) Superfamily
[3-Galactosidase 3-Glucanas a-Amylase (N) F-Amylase Family
e AR

Acid a-amylase Cyclodextrin

glycosyltransferase

Oligo-1,6
glucosidase

Protein



Unified rational protein engineering with sequence-based deep representation learning

e This paper introduces an
LSTM that is trained to it L T g — K
generate a protein Vi v i,
left-to-right, one amino acid
at a time, as opposed to M
masked language modeling

Train

Prediction LuEfEHxllIuP.srm

Diverse tasks

Apply

Secondary structure

R e ——— Stability Diverse functions /
AW\ =




The alignment-based baselines are Netsurfp2.0, RaptorX and DeepSF for

architectures) models that use either one-hot featurization, or the standard
secondary structure, contact prediction and remote homology respectively

In addition, they compare against domain specific (CNN + LSTM
HMM profile featurization derived from multiple sequence alignments

One-Hot and Alignment Baselines
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Results: Language modeling metrics

e Drop in out-of-distribution generalization ability; Held-out family accuracy is consistently

lower than random-split

e Lower perplexity will not necessarily correspond with downstream prediction tasks

Transformer
LSTM

ResNet
Bepleretal. [11]
Alley et al. [12]
Random

Random Families Heldout Families Heldout Clans
Acc Perp ECE Acc Pertp ECE Acc Perp ECE
045 8.89 6.01 035 11.77 8.87 0.28 13.54 10.76
040 8.89 694 024 13.03 1273 0.13 1536 16.94
041 10.16 6.86 031 13.19 977 0.28 13.72 10.62
028 11.62 10.17 0.19 1444 1432 0.12 1562 17.05
032 11.29 908 0.16 1553 1549 0.11 16.69 17.68
0.04 25 25 0.04 25 25 0.04 25 25

Acc=Accuracy, Perp=Perplexity, ECE=Exponentiated Cross-Entropy



Results: supervised tasks

e Self-supervised pretraining almost always improves performance
e BUT, for structure tasks, NN methods do worse than alignment-based baselines

Method Structure Evolutionary Engineering

SS Contact Homology  Fluorescence Stability

Transformer 0.70 0.32 0.09 22 -0.06
No Pretrain LSTM 0.71 0.19 0.12 0.21 0.28
ResNet 0.70 0.20 0.10 -0.28 0.61
Transformer 0.73 0.36 0.21 0.68 0.73
LSTM 0.75 0.39 0.26 0.67 0.69
Pretrain ResNet 0.75 0.29 0.17 0.21 0.73
Bepleretal. [11] 0.73 0.40 0.17 0.33 0.64
Alley et al. [12] 0.73 0.34 0.23 0.67 0.73
T Oqe-hot 0.69 0.29 0.09 0.14 0.19
Alignment 0.80 0.64 0.09 N/A N/A

accuracy precision accuracy Spearman’s p



Protein engineering: Beneficial vs deleterious mutations

Train
- Test

Fluorescence task —— Transformer pretrain
e bimodal distribution with dark and
bright modes /\
e Important goal: distinguish between = | T T T E o R L e "
beneficial and deleterious mutations 5
e {-SNE of Pretrained transformer embeddings: Some e

successful clustering, but many proteins misclassified

Stability task:
e Use parent protein as decision boundary and label mutation as beneficial or
deleterious based on change in protein stability prediction
e Best pretrained: 70% accuracy; Best non-pretrained: 68% accuracy



Long range contact prediction Blue: true positive

Red: false positive
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Figure 4: Predicted contacts for chain 1A of a Bacterioferritin comigratory protein (pdbid: 3GKN).

e LSTM: pretraining helps the model capture more long-range info & improves

overall resolution
e Hand-engineered alignment features lead to much better performance



Discussion

Need for multiple benchmark tasks

Self-supervised pretraining almost always improves performance
Performance gap for structure tasks — opportunity for innovation
(especially incorporating alignment-based representations)

Datasets + benchmarks in TAPE: systematic model-evaluation
framework for ML researchers to contribute to the field



Discussion questions

e Self-supervision: Do you think the standard language modeling as a task is enough?
Should researchers create protein-specific tasks?

e Opportunity for multi-task learning?

e Do you think pre-training would be less useful if there are a lot of training samples
available?

e Are there any missing tasks in this benchmark? What other protein prediction tasks do
you think are important to include?

e Would you use this?



Extra slides



Table S1: Dataset sizes

Task Train Valid Test

Language Modeling 32207059 N/A 2147130 (Random-split) / 44314 (Heldout families)
Secondary Structure 8678 2170 513 (CB513)/115 (IS5115)/21 (CASP12)
Contact Prediction 25299 224 40 (CASP12)

Remote Homology 12312 736 718 (Fold) / 1254 (Superfamily) / 1272 (Family)
Fluorescence 21446 3362 27217

Stability 53679 2447 12839




