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Background: Proteins
● Predicting structural and functional 

properties from protein sequences is a 
long-standing goal in computational 
biology

● Better prediction enables applications 
like antibiotic resistance prediction 
and drug engineering/discovery

Baker, David, and Andrej Sali. "Protein structure prediction and 
structural genomics." Science 294.5540 (2001): 93-96.



Background: Proteins

This slide was gratuitously stolen from the TAPE paper presentation



Background: Protein Databases
● Collecting labeled data is very 

expensive! Crystallography experiments 
can cost >$200,000

● Collecting unlabeled data (sequencing) 
is relatively cheap, meaning there is way 
more unlabeled data than labeled 

Madani, Ali, et al. "ProGen: Language Modeling for Protein 
Generation." arXiv preprint arXiv:2004.03497 (2020). 



Self-Supervised Learning
● How can we use unlabeled data to 

train better models?
● In the natural language processing 

domain, unlabeled data is 
leveraged through self supervision: 
pre-training on the unlabeled data 
via a proxy task that requires no 
labels

● Self-supervised models 
consistently outperform models 
trained from scratch

Jain, Abhilash. "Finnish Language Modeling with Deep Transformer 
Models." arXiv preprint arXiv:2003.11562 (2020).



Self-Supervised Learning
● Why does this help? Self-supervised learning helps models learn a powerful 

internal representation of the input



Self-Supervised Protein Models
● Protein modeling and NLP have some similarities: discrete sequence input + 

large corpus of unlabeled data
● This has inspired many papers applying NLP models to protein sequences

Alley, Ethan C., et al. "Unified rational protein engineering with sequence-based 
deep representation learning." Nature methods 16.12 (2019): 1315-1322.



How do we compare different models?
● Although there is growing interest in applying deep ML models to protein 

sequences, there is an issue: everyone gets data from a slightly different 
source, or pre-processes data in slightly different ways!

● Although there is some effort to standardize datasets (like CASP) we want to 
be able to separate gains from pre-processing from gains from modeling



The TAPE Benchmark
● The TAPE benchmark is a solution to 

this problem: it introduces a pre-training 
dataset and five downstream task 
datasets

● All of the datasets are pre-processed in 
the same way, making model 
comparisons easy

● Similar benchmarks in NLP (GLUE) and 
vision (ImageNet) have rapidly driven 
progress in the last 5 years



Notable Protein Benchmarks
● Critical Assessment of protein Structure Prediction (CASP)
● ProteinNet
● Others?



Protein terminology
● Represent a protein x of length L as a sequence of discrete amino acid characters (x1, x2,..., xL) in 

an alphabet of 25 letters (20 standard amino acids, 2 non-standard amino acids, 2 ambiguous 
amino acids, 1 unknown)

● Each protein has a 3D structure
○ Primary (amino acid sequence) → secondary (local features) → tertiary (global features)
○ Proteins often have a few large protein domains - evolutionary conserved well-defined 

sub-structures

● Homologs: two proteins that share a common evolutionary ancestor, but may have very different 
sequences if they diverged in the distant past

● Quantifying evolutionary relationships is important for avoiding contamination of test sets. In this 
paper, they mainly rely on sequence identity (exact amino acid matches)



Modeling Evolutionary Relationships with Sequence Alignments

● Querying a protein:
○ An alignment based method uses a scoring system or HMM to align a query protein against 

proteins in a database
○ Can provide information about local perturbations, which may then be useful for understanding 

changes to structure/function

● Multiple alignment: 
○ For a group of proteins, can construct a profile to summarize frequencies of amino acids → 

useful representation for downstream tasks



Datasets
● Goal: curate standardized benchmarking datasets with specific training, 

validation and test splits

● Pre-training corpus: large unlabeled sequence dataset 
○ Pfam - database of 31M protein domains 
○ Sequences are clustered into evolutionarily-related groups called families. 
○ 1% of families are fully held out as a test set, and the remaining families are separated into a 

95/5% training/validation split
○ Uniform random split test performance → in-distribution generalization
○ Heldout families test set performance → out-of-distribution generalization

● Supervised datasets - Different for each task, varying between 8 thousand 
and 50 thousand training examples.



Task 1: Secondary Structure (SS) Prediction
● Definition: sequence-to-sequence task; Each input amino acid xi is mapped 

to a label yi ∈ {Helix(H), Strand(E), Other(C)}. 
● Impact:  

○ Important feature for understanding the function of a protein
○ SS prediction tools are commonly used to create richer input features for higher-level models 

● Generalization: tests the degree to which models learn local structure. 
● Metrics + Dataset: 

○ Trained with Klausen et al., 2019 (~11K sequences)
○ Measured (per-amino acid) test set accuracy on  

CB513 dataset (~500 sequences)
○ Data splits are filtered at 25% sequence identity to 

test for broad generalization. 

Structure Prediction Task



Task 2: Contact Prediction

Structure Prediction Task

● Definition: pairwise amino acid task; Each pair xi, xj of amino acids is labeled 
yij ∈ {0, 1} indicating whether the amino acids are “in contact” (< 8Å apart) 

● Impact:  Powerful global information; robust modeling of full 3D protein 
structure

● Generalization: tests the model’s understanding of global protein context. 
● Metrics + Dataset: 

○ ProteinNet dataset (test set from the CASP12 competition) (~26K samples)
○ Data splits are filtered at 30% sequence  identity. 
○ Precision of the L/5 most likely contacts for 

medium- and long-range contacts on the 
ProteinNet CASP12 test set 



● Definition: sequence classification task; Each sequence x is mapped to a 
label y ∈ {1,..., 1195} representing different possible protein folds 

● Impact:  Of interest in microbiology and medicine; e.g.; detecting emerging 
antibiotic resistant genes

● Generalization: tests model’s ability to detect structural similarity across 
distantly related inputs

● Metrics + Dataset: 
○ Hou et al., 2017 dataset derived from the SCOP 1.75 

database of hierarchically classified protein domains
○ Held out entire evolutionary groups from the training 

set, forcing models to generalize across large 
evolutionary gaps. 

○ Report test classification accuracy. 

Task 3: Remote Homology Detection

Evolutionary Understanding Task



Task 4: Fluorescence Landscape Prediction

Protein Engineering Task

● Definition: regression task; Each input protein x → y ∈ R, corresponding to 
the log-fluorescence intensity of x

● Impact:  Would allow more efficient exploration of the landscape
● Generalization: tests model’s ability to:

○ distinguish between very similar inputs
○ generalize to unseen combinations of mutations

● Metrics + Dataset: 
○ Data generated from Deep Mutational Scanning 

(Sarkisyan et al., 2016) - characterized small 
neighborhoods of parent proteins through 
mutagenesis of avGFP protein

○ Train+Val: Hamming distance 3 neighborhood; Test: Hamming distance 4-5 neighborhood
○ Report Spearman’s ρ on the test set. 



Task 5: Stability Landscape Prediction
● Definition: regression task; each input protein x → y ∈ R measuring the 

folding stability (most extreme circumstances in which protein x maintains its 
fold above a protease concentration threshold)

● Impact:  Would allow finding better refinements of top candidates of 
expensive protein engineering experiments 

● Generalization: tests model’s ability to generalize from a broad sampling of 
sequences and localize info in a neighborhood of a few sequences

● Metrics + Dataset: 
○ Data from Rocklin et al., 2017 - Train/val sets come 

from 4 rounds of experimental design; test set contains 
Hamming distance-1 neighbors of top candidates 

○ Report Spearman’s ρ on the test set. 

Protein Engineering Task



Experimental Overview
● The TAPE paper compares a host of models on the five downstream tasks:

○ A Transformer
○ An LSTM
○ A Residual Network
○ The CNN/LSTM from Bepler, Tristan, and Bonnie Berger. "Learning protein sequence 

embeddings using information from structure." 
○ The LSTM from Alley, Ethan C., et al. "Unified rational protein engineering with 

sequence-based deep representation learning."
○ A one-hot and an alignment-based baseline



The TAPE models
● Three models, all inspired by NLP models: a transformer, a residual network, 

and an LSTM
● They evaluate both pre-trained models and models trained from scratch on all 

five downstream tasks



LSTM
● An LSTM is a variant of a 

recurrent neural network, and has 
been used for sequence learning 
for years

● Their LSTM is bidirectional, and 
has three layers of 1024 units



ResNet
● A residual network is a type of convolutional neural network, and was 

invented for vision tasks
● It has since been applied in a 1D sense for sequences
● Their ResNet has 35 residual blocks, each with two large convolutional layers 

(kernel size of 9, 256 filters, dilation 2)



Transformer
● Their final model is a 

transformer, which is the 
current SOTA for NLP tasks

● It consists of alternating feed 
forward layers and 
self-attention layers, which 
compute and weight pairwise 
similarity between all pairs of 
inputs

● 12 layers deep, 12 attention 
heads



Pre-Training
● All models are pre-trained for a week using the pfam dataset
● They are trained with masked language (amino) modeling: predicting masked 

amino acids from surrounding context



Baselines
● They compare against four baselines

○ The CNN/LSTM from Bepler, Tristan, and Bonnie Berger. "Learning protein sequence 
embeddings using information from structure." 

○ The LSTM from Alley, Ethan C., et al. "Unified rational protein engineering with 
sequence-based deep representation learning."

○ A one-hot baseline 
○ An alignment-based baseline



Learning protein sequence embeddings using information from structure

● This paper introduces a new 
pre-training task that predicts the 
SCOP similarity level of two 
proteins, based on their 
embeddings

● Uses a joint biLSTM+CNN 
architecture



Unified rational protein engineering with sequence-based deep representation learning

● This paper introduces an 
LSTM that is trained to 
generate a protein 
left-to-right, one amino acid 
at a time, as opposed to 
masked language modeling



One-Hot and Alignment Baselines
● In addition, they compare against domain specific (CNN + LSTM 

architectures) models that use either one-hot featurization, or the standard 
HMM profile featurization derived from multiple sequence alignments

● The alignment-based baselines are Netsurfp2.0, RaptorX and DeepSF for 
secondary structure, contact prediction and remote homology respectively



Results: Language modeling metrics
● Drop in out-of-distribution generalization ability; Held-out family accuracy is consistently 

lower than random-split
● Lower perplexity will not necessarily correspond with downstream prediction tasks

Acc=Accuracy, Perp=Perplexity, ECE=Exponentiated Cross-Entropy



Results: supervised tasks
● Self-supervised pretraining almost always improves performance 
● BUT, for structure tasks, NN methods do worse than alignment-based baselines

accuracy precision        accuracy                    Spearman’s ρ   



Fluorescence task
● bimodal distribution with dark and 

bright modes 
● Important goal: distinguish between

beneficial and deleterious mutations
● t-SNE of Pretrained transformer embeddings: Some 

successful clustering, but many proteins misclassified

Stability task:
● Use parent protein as decision boundary and label mutation as beneficial or 

deleterious based on change in protein stability prediction
● Best pretrained: 70% accuracy;  Best non-pretrained: 68% accuracy

Protein engineering: Beneficial vs deleterious mutations 



Long range contact prediction Blue: true positive
Red: false positive

● LSTM: pretraining helps the model capture more long-range info & improves 
overall resolution

● Hand-engineered alignment features lead to much better performance 



Discussion

● Need for multiple benchmark tasks

● Self-supervised pretraining almost always improves performance 
● Performance gap for structure tasks → opportunity for innovation 

(especially incorporating alignment-based representations)

● Datasets + benchmarks in TAPE:  systematic model-evaluation 
framework for ML researchers to contribute to the field



Discussion questions

● Self-supervision: Do you think the standard language modeling as a task is enough? 
Should researchers create protein-specific tasks?

● Opportunity for multi-task learning?

● Do you think pre-training would be less useful if there are a lot of training samples 
available?

● Are there any missing tasks in this benchmark? What other protein prediction tasks do 
you think are important to include?

● Would you use this?



Extra slides




