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Long non-coding RNA (lncRNA)

• Majority of human transcriptome is ncRNA
• ~40k – 50k human lncRNA

• No functional annotation for majority of lncRNAs
• What function of detectable lncRNAs are biologically functional versus “junk 

RNA”?



Evidence for selection in lncRNAs

• Most lncRNA have low levels of sequence conservation
• Population genetics would interpret this as low functional constraints

• As a group, lncRNA have cumulative substitution and transversion 
rates lower than neutrally evolving DNA
• Suggests some level of negative selection

• Overall sequence conservation is low
• Gene structure and splice sites are usually well conserved
• Many lncRNAs located in same chromosomal positions and have 

similar expression patterns across species



SSS-test: Selection on the Secondary Structure Test

• Goal: Identify and quantify the selective pressures on RNA 
secondary structures



SSS-test

• Goal: Identify and quantify the selective pressures on RNA 
secondary structures
• Focus on smaller blocks of lncRNA
• Principally work on identifying lineage-specific positive selection

• Previous work in this area done on compensatory mutations to 
identify negative selection



Structural Conservation

• Only tolerates small deviation around well-defined consensus 
structure
• Mutated sequences must have enough compensatory mutations to preserve 

structure
• Mainly occurs in small ncRNAs and structured regulatory elements

• LncRNAs almost never structurally conserved



Negative Selection

• Less stringent than structural conservation
• Structural variation is more constrained than it would be given no 

selective pressures
• Observed in ncRNAs: DNA sequence usually evolves rapidly but signs of 

selection on local secondary structures

• At least 10% of non-repetitive sequences in human genome under 
negative selection on RNA secondary structures



Negative Selection in Human lncRNA

• LncRNA evolve on average like unconstrained background
• Evidence of conserved gene structure
• Splice sites

• Selective pressures don’t enforce large conserved consensus 
structures



Positive Selection on Secondary Structure

• Very little known
• Control for ncRNA structures: Human Accelerated Region 1 (HAR1)
• 118-nucleotide region
• Very conserved in non-human mammals
• 18 human-specific single nucleotide substitutions
• Fastest evolving region in human genome
• Forms a stable structure in humans
• Might be part of cortex development
• Unknown if function depends on secondary structure



Detecting Positive Selection

• No available method to systematically detect positive selection on 
RNA secondary structure
• Simple approaches:
• 𝐾!/𝐾" test (and variants)
• Divergence and diversity modeling



𝐾!/𝐾" test for coding sequences
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Divergence and Diversity Modeling

• 𝜌 ← fraction of sites under selection
• 𝜆 ← polymorphism rate
• 𝜂 ← divergence rate
• Normalize parameters by a neutral control group
• Analyze for signs of selection
• Mainly used for groups of loci
• Has shown strong evidence of selective pressures on regulatory elements



Measuring Phenotype

• Effect of indels and structural variation not well understood
• If ncRNA function depends on secondary structure, can be a proxy for 

phenotype
• Accumulation of mutations that change structure as evidence for 

positive selection



Intuition for Selection Identification

• Some previous work considered SNPs impact on secondary structure
• Excess of structure-changing SNPs implies positive selection
• Excess of structure-conserving SNPs implies negative selection

• Develop a statistical test
• Identify candidate lncRNAs for human-specific positive selection



SSS-test Theory

• 𝓐 ← multiple sequence alignment of orthologous RNA sequences 
from a set of species of interest
• Use a primary structure alignment

• 𝒙 ∈ 𝓐 is the focal sequence
• 𝓐 = 𝓐 ∖ {𝒙} is the background distribution
• 𝒛 is the consensus sequence of 𝒜



SSS-test Theory

• 𝒜 ← multiple sequence alignment of orthologous RNA sequences 
from a set of species of interest
• Use a primary sequence alignment

• 𝑥 ∈ 𝒜 is the focal sequence
• 𝒜 = 𝒜 ∖ {𝑥} is the background distribution
• 𝑧 is the consensus sequence of 𝒜
• Do mutations to produce 𝒛 → 𝒙 change secondary structure more 

than expected?



Candidate families

• To identify lineage-specific positive selection on secondary structure, 
only consider well-conserved families
• Suggests structure is biologically relevant

• Quantify family’s structural uniformity
• 𝒅𝒔 ← species distance scores
• 𝒅 ← family divergence score

• 𝑑 = 𝑚𝑒𝑑𝑖𝑎𝑛 ( 𝑑!: 𝑠 ∈ 𝑓𝑎𝑚𝑖𝑙𝑦 )

• Only consider families with 𝑑 ≤ 𝑡
• Empirically determine 𝑡



Family divergence 𝑑

• Quantify structural divergence in family of orthologs
• 𝑨𝒔 ← base pair probability matrix for aligned sequence 𝑠 ∈ 𝒜
• 𝑩 ← base pair probability matrix of alignment �̅�
• 𝑷𝒔 ← set of base pairs in 𝑠
• 𝑸 ← set of base pairs in ̅𝑧
•𝑾𝒔 = 𝑃& ∩ 𝑄, shared base pairs
• 𝑿𝒔 = 𝑃& ∖ 𝑄, unique base pairs
• 𝒀𝒔 = 𝑄 ∖ 𝑃&, absent base pairs



Family divergence 𝑑

• Divergence of sequence 𝑠 from alignment 𝒜 is
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Family divergence 𝑑

• Distance of sequence 𝑠 from alignment 𝒜 is

𝑑& =
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• Family divergence 𝑑 = 𝑚𝑒𝑑𝑖𝑎𝑛( 𝑑&: 𝑠 ∈ 𝒜 )
• Found 𝑑 ∈ [0.0, 65.0] for 12 families of ncRNAs
• Empirical threshold 𝑑 ≤ 10.0



Family divergence 𝑑



Candidate Selection Sites

• Interested in lineage-specific changes so only consider well conserved 
sites
• Majority of 𝑦 ∈ 𝒜 conform to 𝑧



Candidate Selection Sites

• Interested in lineage-specific changes so only consider well conserved 
sites
• Majority of 𝑦 ∈ 𝒜 conform to 𝑧

• 𝑺𝒛→𝒙 is the set of well-conserved sites that differ between 𝑧 and 𝑥
• Includes indels

• 𝒛𝒊 ← sequence where 𝑧, = 𝑧 everywhere except 𝑖, and 𝑧, = 𝑥 at 𝑖
• Score substitutions and indels separately



Compensatory Mutations

• SSS-test considers sites individually so can’t account for 
compensatory mutations
• Removes all compensatory mutations from 𝑆H→I
• Computes consensus structure of 𝒜 and 𝑥 with RNAalifold and RNAfold
• Substitution/pair of substitutions considered compensatory if they form a 

base pair in the MFE structure of 𝑥 and the MFE structure of 𝒜



Compensatory Mutations

• SSS-test considers sites individually so can’t account for 
compensatory mutations
• Removes all compensatory mutations from 𝑆H→I
• Computes consensus structure of 𝒜 and 𝑥 with RNAalifold and RNAfold
• Substitution/pair of substitutions considered compensatory if they form a 

base pair in the MFE structure of 𝑥 and the MFE structure of 𝒜
• Removing these mutations could mask negative selection signals



Scoring substitutions

• Score all single nucleotide substitutions in 𝑆H→I
• Use RNAsnp to produce p-value for hypothesis that structural change caused 

by SNP is larger than expected
• Expectation computed from same base exchange in random sequences with same length 

and GC content
• RNAsnp benefits

• Computational efficiency
• Computes Boltzmann ensemble and not just MFE secondary structures
• Evaluates structural change in region of maximal structural differences

• Expect structural impact of SNP to be localized



Scoring substitutions

• Generated p-values for each SNP individually
• Benjamini-Hochberg procedure for p-value correction
• Works well for large number of p-values that are individually ≥ 0.05

• Define 𝑝 = 𝑝J ≥ 𝑝K ≥ ⋯ ≥ 𝑝#
• [𝑝J = min{1, 𝑝J}
• [𝑝, = min{1, [𝑝,%J,

#
#%,LJ

𝑝,}



Scoring substitutions

• Generated p-values for each SNP individually
• Benjamini-Hochberg procedure for p-value correction
• Works well for large number of p-values that are individually ≥ 0.05

• Define 𝑝 = 𝑝J ≥ 𝑝K ≥ ⋯ ≥ 𝑝#
• [𝑝J = min{1, 𝑝J}
• [𝑝, = min{1, [𝑝,%J,

#
#%,LJ

𝑝,}

• Substitution score: 𝒔 𝒙 = −∑𝒊 𝐥𝐨𝐠 e𝒑𝒊



Scoring indels

• Treat indel as a single event regardless of length 𝑙
• Most likely caused by a single evolutionary event
• Energy penalty varies little with loop length

• ~1-3 kcal/mol for loops from 3-30 nt
• Experimental validation

• RNAsnp not designed to handle indels



Scoring indels

• For indel of length 𝑙:
• construct all sequences 𝒛𝒋 that carry indel after position 𝑗 in 𝑧
• 𝑧% and 𝑧 had different lengths, so must have different structures
• 𝝍𝒋 ← modified reference structure of 𝑧%

• Constrained to contain all base pairs that consensus structure of 𝑧 that aren’t affected by 
the indel after position 𝑗

• Compute with user-defined constraints using ViennaRNA
• 𝝓𝒋 ← unconstrained structure of 𝑧%
• 𝜹(𝝓𝒋, 𝝍𝒋) ← quantifies structural difference with RNAforester



Scoring indels



Scoring indels

• Use rank statistics and relative structural impact to determine p-value 
for indel at location 𝑗
• 𝒓(𝒋) ← rank of structural impact of indel 𝑗 in decreasing order
• 𝒑𝒓𝒂𝒏𝒌 =

*(%)
-

• 𝒑𝒔𝒕𝒓𝒖𝒄 =
1234(5!,7!)

12 , clamped to 812



Scoring indels

• Use rank statistics and relative structural impact to determine p-value 
for indel at location 𝑗
• 𝒓(𝒋) ← rank of structural impact of indel 𝑗 in decreasing order
• 𝒑𝒓𝒂𝒏𝒌 =

*(%)
-

• 𝒑𝒔𝒕𝒓𝒖𝒄 =
1234(5!,7!)

12 , clamped to 812

• 𝒑 = 𝒑𝒓𝒂𝒏𝒌 + 𝒑𝒔𝒕𝒓𝒖𝒄



Scoring indels

• Use Benjamini-Hochberg procedure again
• Produce A𝑝9 for each indel p-value

• Indel score: 𝒔V 𝒙 = −∑𝒊 𝐥𝐨𝐠 e𝒑𝒊



SSS-score

• SSS-score = 𝟐𝒔 𝒙 + 𝒔V 𝒙
• 𝑠(𝑥) and 𝑠′(𝑥) measure how unexpected large the impacts of observed 

sequence variations on secondary structure are



SSS-score

• SSS-score = 𝟐𝒔 𝒙 + 𝒔′(𝒙)
• 𝑠(𝑥) and 𝑠′(𝑥) measure how unexpected large the impacts of observed 

sequence variations on secondary structure are
• Weighting determined empirically for datasets of interest

• Can’t directly be interpreted as a probability
• One area for future work

• Serves as a test statistic
• Relevant thresholds must be determined empirically
• For primate experiment, find SSS-score ≥ 10.0 suggests positive selection
• For primate experiment, find SSS-score ≤ 2.0 suggests negative selection



SSS-score



Alternatives

• Extension of 𝐾!/𝐾& test
• Comparing rates of synonymous and non-synonymous substitutions in coding 

sequences



Extending 𝐾!/𝐾" test to ncRNAs

• Don’t have analogous distinction between synonymous and non-
synonymous substitutions
• Classify sites as “disruptive” and “non-disruptive”
• Small number of sites -> lower power
• High FPR

• ncRNA structure’s biochemical properties make this hard to binarize



Extending 𝐾!/𝐾" test to ncRNAs

• Poisson distribution of “disruptive” and “non-disruptive” sites
• Don’t directly compare substitution counts

• More robust than counts
• Still have problems due to binarization
• Suggest that 𝐾!/𝐾& test does not extend well to ncRNAs



Experiments

• Control experiment
• Synthetic experiments
• Primate experiments



Control Experiment

• Structurally conserved small ncRNAs
• miRNA
• snoRNA
• tRNA
• Expect low SSS-score

• Positive selection on HAR1 secondary structure



Control Experiment

• Structurally conserved small ncRNAs
• miRNA
• snoRNA
• tRNA
• Expect low SSS-score

• Positive selection on HAR1 secondary structure
• SSS-test score of 12.8 for humans
• SSS-test score of 0.0 for other seven primates 



Synthetic Experiments

• Simulate negative selection, neutral selection, and positive selection
• Two goals:

1. Distinguish conserved families from neutrally-evolving families
2. Distinguish lineages undergoing positive selection for otherwise conserved 

family



Synthetic Experiments

• Generate 150 nt origin sequence with RNAdesign
• Generate 100 families from origin sequence
• Randomly mutate starting sequence
• Accept mutation according to optimization function 𝑓
• Continue simulation until 𝑛 mutations accepted

• Lineage-specific positive selection
• Simulate evolution from origin to one extant branch
• Keep other four branches identical to origin sequence (extreme negative 

selection)



Synthetic Optimization Functions

• 𝑓#-W ← negative selection
• Penalize deviation from ancestral structure

• 𝑓X!#Y ← no selective pressure
• Always accept mutation

• 𝑓Z$& ← positive selection
• Prefer mutations that move from ancestral Y-shaped structure to cloverleaf 

structure



Synthetic Optimization Functions

• 𝒂 ← ancestral sequence
• 𝒎 ← current sequence to design



Synthetic Optimization Functions

• 𝑎 ← ancestral sequence
• 𝑚 ← current sequence to design

• 𝜺 𝒂,𝒎 = max 0,mfe 𝑚 −mfe(!)
K

• Stabilizing parameter
• Prevents degenerate structures from forming



Synthetic Optimization Functions

• 𝑎 ← ancestral sequence
• 𝑚 ← current sequence to design
• 𝜟 𝒂,𝒎 = base pair distance(𝑎,𝑚)
• Constrain base pair distance



Synthetic Optimization Functions

• 𝑎 ← ancestral sequence
• 𝑚 ← current sequence to design
• 𝜟𝒔𝒉𝒂𝒑𝒆:𝟓([ [] [] [] ],𝒎) ← penalize distance to cloverleaf structure
• Shapes are coarse-grained representations of secondary structure
• Use level 5 representation (most abstract)



Synthetic Optimization Functions

• 𝑓#-W 𝑎,𝑚 = 1000 Δ_-#+X$,Y 𝑎,𝑚 + 𝜀(𝑎,𝑚)

• 𝑓X!#Y 𝑎,𝑚 = 0

• 𝑓Z$& 𝑎,𝑚 = 𝑔𝑖𝑏𝑏𝑠 𝑚 + 50 Δ&`!Z-:a [ [] [] [] ],𝑚 + 1000 𝜀(𝑎,𝑚)



Synthetic Experiment: Conserved Families

• Goal 1: Distinguish conserved 
families from neutrally-evolving 
families
• Found lower family divergence 𝑑

for families with simulated 
negative selection pressure



Synthetic Experiment: Positive Selection

• Goal 2: Distinguish lineages 
undergoing positive selection 
for otherwise conserved family
• Found higher SSS-score for 

lineage with positive pressure 
compared to negative selection



Primate Experiments

• Operate on local structural blocks, not full lncRNA
• Most base-pairing interactions in longer RNA occur within short 150-200 bp 

range
• Expect that evolution acts on local folds of lncRNA, not entire structure
• Search for positive selection locally



Primate Experiments

• Begin with 15,443 orthologous lncRNA families
• Compute local RNA blocks with RNALfold
• Computes mfe structures with restricted base pair span
• Calculates 87,613 local blocks

• Require an orthologous block in at least 3 species
• Defined a ‘well-conserved site’ as 60% (majority) of sequences agreeing with 

consensus sequence at that site
• Filters to 19,408 conserved blocks

• Require low family divergence (𝑑 ≤ 10.0)
• Filters to 10,396 blocks



Primate Experiments

• Detect 1390 local structures as candidates for positive selection on 
secondary structure
• Roughly proportional to evolutionary distance between species



Primate Experiments: FDR

• 𝐹 ← number of positive test results in “foreground” dataset
• 𝑅 ← number positive test results in “background” dataset of same 

size

• 𝐹𝐷𝑅 = b
c



Primate Experiments: FDR

• Compute background set using SISSIz –s
• Simulates multiple alignments of the same dinucleotide content
• Goal: destroy correlation of alignment columns and secondary structure
• Consider all test results on background set to be false positives



Primate Experiments: FDR

• Randomized local blocks in humans with SISSIz
• Produce 50 candidates for positive selection in humans
• Estimate 𝐹𝐷𝑅 = :;

888
= 45%



Primate Experiments: FDR

• Compute background set using SISSIz –s
• Simulates multiple alignments of the same dinucleotide content
• Goal: destroy correlation of alignment columns and secondary structure
• Consider all test results on background set to be false positives

• Empirically found that this keeps some “foreground” signal
• Ran SISSIz 20 times
• Estimated fraction of tests 𝑓 where foreground signal maintained

• Updated estimate: 𝐹𝐷𝑅 = (1 − 𝑓) b
c



Primate Experiments: FDR

• Randomized local blocks in humans with SISSIz
• Produce 50 candidates for positive selection in humans
• Estimate 𝐹𝐷𝑅 = :;

888
≈ 45%

• Foreground signal maintained
• Repeatedly running SISSIz on candidates from real data shows ~18.5% 

maintain foreground signal
• Found that about 0.185 ∗ 111 = 20 of 50 predictions maintained some 

foreground signal in simulated alignment
• Updated estimate 𝐹𝐷𝑅 = 1 − .4 :;

888 < 30%

• Comparable to most surveys for negative selection



Positively Selected Structures in Humans

• Detected changes in form and stability for various lncRNA
• Likely a large false negative rate due to small divergence between 

primates
• SIX3-AS1
• Local structure 11 has little difference in mfe structure, but much more stable 

in humans
• Increasing stability might fine-tune interactions and impact function



SIX-AS1 Analysis

Human Pan Orangutan Gorilla Macaque

𝑠 = 12.2 𝑠 = 0.0 𝑠 = 0.0 𝑠 = 0.0 𝑠 = 0.0



SIX3-AS1 Analysis

• Initially only had orthologs in human, pan, and orangutan
• Performed genome-wide scans using Infernal v1.1.1 to find 

orthologs in gorilla and rhesus macaque
• Built and calibrated a covariance model using human, pan, orangutan, and 

consensus structure
• Searched for homologous structures in gorilla and macaque

• Score of 155.1 and e-value of 1.5×10"#$ for gorilla
• Score of 150.7 and e-value of 1.7×10"#% for macaque

• Similar structural pattern to pan and orangutan, less stable than humans



Other Positive Selection Candidates

• Little/no functional annotation for most candidate lncRNAs
• 49/110 lncRNA candidates have ENSEMBL Gene ID
• 20/110 lncRNA candidates have HGNC gene symbol

• Tissue expression analysis for insight into function
• 9 reported tissues: brain, cerebellum, liver, heart, kidney, placenta, ovary, 

testis, and stem cells
• 6/110 lncRNAs expressed in all 9 tissues
• 16/110 lncRNAs expressed in 1 tissue
• 8/110 lncRNAs not detected as expressed

• Positively-selected lncRNAs tend to be expressed in more tissues than 
lncRNAs in general



Positively Selected lncRNAs and PDs

• Investigated link between positive-selection candidate lncRNA and 
psychiatric disorders (PDs)
• Used 26 lncRNAs reported to be involved in PDs
• Filtered down to 32 local blocks as candidate lncRNAs under positive selection 

for secondary selection, 3 in humans
• Manually inspected results
• Updated thresholds to allow for candidates with SSS-score ≥ 4.5

• Included another 11 local structures in humans



MIATsub92

• Highest selection score in humans (21.2)
• UACUAAC repeats with a substitution in

one of duplications in human and
chimpanzees
• Additional duplication in humans
• May have increased stability in humans 

relative to other primates



MIATsub92

• Repeats always in unpaired regions
• Selection seems to drive increased stability 

in humans while keeping UACUAAC
unpaired
• Implies importance of internal loops in 

recognition and binding of splicing factors
• May cause some of the differences in splicing 

patterns between humans and other primates



Negative and Neutral Selection

• Have focused on detecting positive selection signals
• Extend to negative selection with SSS-score ≤ 2.0
• Could complement other methods that assess structural conservation

• Identify relaxed selective constraints with high family divergence
score



Pairwise SSS-test

• SSS-test requires 3+ orthologs
• Could extend to a pairwise version
• Different interpretation of results
• Unknown which sequence represents ancestral state
• Divergent evolution vs. positive selection



Orthologs and Paralogs

• Gene duplication often but not always accompanied by positive 
selection
• Want to distinguish between (co)orthologs and paralogs
• Could report false positives if including paralogs by mistake
• General concern for protein-coding genes and many ncRNAs

• Could apply pairwise SSS-test to duplicated ncRNAs to check for
positive selection
• Short local duplications can also cause alignment errors
• Should manually inspect alignments given to SSS-test



Areas for Future Work

• Find parameter with better theoretical foundation
• SSS-score functions as a decision variable
• Indel scoring model is very specific to SSS-score
• Would likely take covariation of paired nucleotides into account



Discussion

• What impact does the choice to align 𝒜 based on primary structure 
have on the secondary structure selection predictions?
• How could the model be changed to enable a cleaner interpretation?
• What experiments would have made the results more convincing?
• Is there a more robust or generalizable approach to the thresholds?
• How could the substitution scoring model include the relative

likelihood of different SNPs?
• Could the SSS-test model be adjusted to handle compensatory

mutations?


