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Goal for paper

 Learn sequence motifs that are predictive of TF binding

 Learn the “syntax” (rules of arrangement) of motifs for TF
binding
» Approach:
 Train a neural network that takes as input sequence data and outputs
TF binding profiles at base resolution

« Using a combination of feature attribution and in silico mutagenesis,
figure out what that neural network learned



Goal for my presentation

 Talk in detail about:
 How their model is trained and evaluated
« How feature attributions were generated
 How interactions between motifs were found



Figure 1

Predictive model
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ChlIP-nexus is higher resolution than ChlP-seq
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147,974 genomic regions w/
statistically significant &
reproducible enrichment of
ChlP-nexus signal for at least 1
of the 4 TFs

Is this the most reasonable
population of genomic regions
to use as training data? i.e.
would it be better or worse to
include regions where none of
these TFs are bound?



BPNet: Base resolution conv net
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interesting to see quantitatively
how addition of each TF
impacts model predictions for
other TFs



BPNet: Base resolution conv net

BPNet architecture

Output: predicted ChIP-nexus | |I]
profile and counts for each TF

NNz
MM\_.
De-convolu- N\
tional layer |
as head 0000000000000 0OOO000
elelelolololololelel0}0!0l0l0l0l0l0l0l0)
Body of
convolutional /' 6OGOOOOOHOO OOOOO0O
layers cé
0000000000V 000000
Input: A
~150,000 =) C
sequences of 1 kb T H

CAGATGCATAACAAAGGTGC

Function

Generation of
ChlIP-nexus
footprints

Detection of
motifs in context

Motif
detection

Sequence
scanning

Output is actually factored into 2

heads per TF

» Total reads mapped to 1 kb region
(mse loss)

* Profile shape (multinomial loss)
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* Profile shape (multinomial loss)

Assume you have kindependent
Poisson-distributed random variables
(X3, ..., Xi) each with different means
Ar. Given the total number of counts,
n=X;+ ... + X, the conditional
distribution of (X3, ..., Xk) is given as
Mult(n, 1), where Ttis just the vector
of Poisson parameters normalized to
sum to 1.



BPNet: Base resolution conv net
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Assume you have kindependent
Poisson-distributed random variables
(X3, ..., Xi) each with different means
Ar. Given the total number of counts,
n=X;+ ... + X, the conditional
distribution of (X3, ..., Xk) is given as
Mult(n, 1), where Ttis just the vector
of Poisson parameters normalized to
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They up-weight the profile loss
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Bias control

To account for experimental artifacts,
analysis of ChlP-seq data relies on
control experiments

Isolate cellular DNA, crosslink, but
either use IgG or whole cell extract

PAtCh-Cap: protein attached
chromatin capture

Actual model fit is:
Y = fmodel(S€Q) + ferr(Ctrl track)

For the total counts heads, the
control model is just a scalar weight
times the log of the total number of
counts in the control track

For the profile head, the control
model is a weighted sum of the raw
counts from the control track and
smoothed version of the control track
(50bp sliding window)

Jointly optimized



Evaluation

 For total counts, they just look at spearman R (Sup. Fig. 2)
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Evaluation

» For profile shape, they think of each bin as a
binary classification problem: does shape of
rofile correctly identify high- and low-count
ins

« Each base pair was labeled as positive if it had
> 1.5% of the total reads in the 1kb region, and
negative if it had < 0.5% of the total reads in the
1kD region

* Thresholds manually determined by visual
examination

* Why not just CV?

« Then binned at different resolutions (2bp —
10bp)

« Abin was called positive if any bp in the bin had
a positive label, negative if all'bps were
negative, and ambiguous otherwise

» For predicted probabilities, they used the max
over the bin



Evaluation

* BPNet achieves replicate level
performance at this metric

« Random profile is generated
using shuffled regions

* They don’t really mention the
what the average baseline is,
other than saying that “The
positional concordance was on
par with replicate experiments
and sub.stantlall?( better than
randomized profiles or average
Proflles at resolutions ranging

rom 1-10 bp”
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Evaluation

* From looking at the code, | think
average profile is the average profile
for each TF over all regions tested, but
I’m not 100% sure

« What performance would you get if
you did avera?_e positive PI’OfHe and
average negative profile for each TF
and appliedthose either w/ the ground
truth for whether the region is bound or
w/ the model’s prediction of whether
the region is bound?

 Uncertainty measures for these
oints? You can see that sometimes
PNet is VISIb|%/ above replicates the
same amount that replicates is above
average profile (see Klf4)
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Predictions qualitatively look good
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Predictions qualitatively look good
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Receptive field size is important for Nanog

Architecture analysis
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(For each position in the predicted profile, how
many input bases are considered in the input)



Stacking more layers improves performance

Architecture analysis
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Does improvement stop at input
sequence length?

If input sequence length were longer,
would receptive field continue to add
performance? Like, what is the
reasonable length of receptive field?
Basically, I’'m not necessarily convinced
that stacking more layers improves
performance because there are
complex, compositional giant motifs
and not just because the deeper res-
net optimizes more easily or
something?



Figure 2

Model interpretation



DeepLIFT
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DeepLIFT
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DeepLIFT divides a scalar output between , }k
each of the contributing input features backtracking
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profile (L x S matrix, where L is 1kb, S is 2 network ©COO000000OO000000000
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Feature Attribution

Profile attributions for a base:

c(profile)i — z Cjis Dis
j,s

where ¢/ is the DeepLIFT attribution for input
sequence position jto output position j on strand
s and pj, is the j,s index of p = softmax(f(x))
So p is just the function output in probability
space instead of logit space
They say “the rationale for performing a
weighted sum is that positions with high
predicted profile output values should be given
more weight than positions with low predicted
profile output values.”
| think it’s weird though, this really removes any
weight for places where the model is confident
that there’s no binding (large negative magnitude
in logit space, 0 in prob. space)
Places where the model is confident are already
scaled by the magnitude of their logit output
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Cluster attributions
into motifs

“Seqlets” are short sequences w/ statistically

significantly higher attribution than shuffled

sequences

» Cluster these using a community detection
algorithm

* Do some heuristic processing to merge clusters
and throw out bad looking clusters

» Average attributions into CWM moitifs over all
aligned sequences

» Also generate PFMs by looking at frequencies of

bases at each position in alighed sequences

TF-Modisco

Scan for seqlets . CM AACAAA i
_) .o A p

Cluster seqlets
Aggregate
into motifs

Motif1  Motif2 Motif 3 ...

CWM PFM
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Scan and match L
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match



Computational validation of motifs
(supplemental fig 6)

 Are the motifs learned by models robust?

 Train 5 additional models on different subsets of the data and
generate motifs for these
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Figure 4

Higher order syntax



Two approaches to motif syntax

* To extract rules of cooperativity, measure how the binding of a
TF to its motif is enhanced by a second motif (and how this
depends on the distance between these motifs)

» Synthetic approach
 Naturally occurring motifs in sequences



Synthetlc approach

Create 128 sequences where each base is independent
uniform random

» Replace the central bases by Motif A

» Insert Motif B d bases downstream of Motif A (where the
distance is measured from the centers of the motifs)

» Predict the strand-specific ChlP-nexus profile for the \ . . .
primary TF of Motif A (e.g. Oct4 for the Oct4-Sox2 Motif) Synthetic in silico interaction analysis
» Average the predictions across the 128 random
background sequences Motif B > Motif A Motif A > Motif B
« Strand-specific summit is then h,g h TE A h TEB
- Just add Motif Ato the center of the 128 sequences, A—Mr B 4—¢
predict, and average Randomized ' . Vo
+ Strand-specific summit in this case is hp sequence | : i_t —
- Just add Motif B to position d off center, predict, and h o h |
average AB ‘ : BA I_:
« Strand-specific summit in this case is hg I ol | I -
» Average the prediction across the 128 sequences when Motif A Motit B Motir 5 Motif A

neither motif has been added
 Strand-specific summit in this case is hy
+ Binding fold change is (hag— (hg - hg))/ ha

> 1 means positive interaction, <1 means neg. interaction, 1 means no
interaction



Genomic approach

 Find instances of co-occurring
motifs in the genome

* Now replace either Motif A, Motif B,
or both with random sequence

« Add pseudo-counts to both
numerator and denominator of fold

change

« “20th percentile of the considered
quantity”

(has - (hs - ha) + PCas) / (ha + PCp)

Genomic in silico mutagenesis interaction analysis

Wild-type
genomic
sequence

Perturbed
sequence

Motif B > Motif A Motif A > Motif B
h TF A TF B
h
’*B—A-i - - ¢_1 o
h .’ 5 . h
A 3 P >4 ¢-¢ B
Motif A Motif B Motif A Motif B



Synthetic approach Genomic approach
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Binding fold-change synthetic analysis

Binding fold-change synthetic analysis
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Sox2 ChIP-nexus
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