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Goal for paper
• Learn sequence motifs that are predictive of TF binding
• Learn the “syntax” (rules of arrangement) of motifs for TF 

binding
• Approach:
• Train a neural network that takes as input sequence data and outputs 

TF binding profiles at base resolution
• Using a combination of feature attribution and in silico mutagenesis, 

figure out what that neural network learned



Goal for my presentation
• Talk in detail about: 
• How their model is trained and evaluated
• How feature attributions were generated
• How interactions between motifs were found



Figure 1
Predictive model



ChIP-nexus data for pluripotency TFs



ChIP-nexus data for pluripotency TFs

https://en.wikipedia.org/wiki/File:ChIP-
exo_process_diagram.pdf



ChIP-nexus is higher resolution than ChIP-seq



BPNet: Base resolution conv net



BPNet: Base resolution conv net
147,974 genomic regions w/ 
statistically significant & 
reproducible enrichment of 
ChIP-nexus signal for at least 1 
of the 4 TFs

Is this the most reasonable 
population of genomic regions 
to use as training data? i.e. 
would it be better or worse to 
include regions where none of 
these TFs are bound?



BPNet: Base resolution conv net

Multi-task prediction for 4 TFs

Maybe would have been 
interesting to see quantitatively 
how addition of each TF 
impacts model predictions for 
other TFs



BPNet: Base resolution conv net

Output is actually factored into 2 
heads per TF
• Total reads mapped to 1 kb region 

(mse loss)
• Profile shape (multinomial loss)
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Output is actually factored into 2 
heads per TF
• Total reads mapped to 1 kb region 

(mse loss)
• Profile shape (multinomial loss)

Assume you have k independent 
Poisson-distributed random variables 
(X1, …, Xk) each with different means 
λk. Given the total number of counts, 
n = X1 + … + Xk , the conditional 
distribution of (X1, …, Xk) is given as 
Mult(n, π), where π is just the vector 
of Poisson parameters normalized to 
sum to 1.



BPNet: Base resolution conv net

Output is actually factored into 2 
heads per TF
• Total reads mapped to 1 kb region 

(mse loss)
• Profile shape (multinomial loss)

Assume you have k independent 
Poisson-distributed random variables 
(X1, …, Xk) each with different means 
λk. Given the total number of counts, 
n = X1 + … + Xk , the conditional 
distribution of (X1, …, Xk) is given as 
Mult(n, π), where π is just the vector 
of Poisson parameters normalized to 
sum to 1.

They up-weight the profile loss



Bias control

To account for experimental artifacts, 
analysis of ChIP-seq data relies on 
control experiments

Isolate cellular DNA, crosslink, but 
either use IgG or whole cell extract

PAtCh-Cap: protein attached 
chromatin capture



Bias control

Actual model fit is:
y = fmodel(seq) + fctr(ctrl track)

For the total counts heads, the 
control model is just a scalar weight 
times the log of the total number of 
counts in the control track

For the profile head, the control 
model is a weighted sum of the raw 
counts from the control track and 
smoothed version of the control track 
(50bp sliding window)

Jointly optimized

To account for experimental artifacts, 
analysis of ChIP-seq data relies on 
control experiments

Isolate cellular DNA, crosslink, but 
either use IgG or whole cell extract

PAtCh-Cap: protein attached 
chromatin capture



Evaluation

• For total counts, they just look at spearman R (Sup. Fig. 2)



Evaluation

• For profile shape, they think of each bin as a 
binary classification problem: does shape of 
profile correctly identify high- and low-count 
bins

• Each base pair was labeled as positive if it had 
> 1.5% of the total reads in the 1kb region, and 
negative if it had < 0.5% of the total reads in the 
1kb region
• Thresholds manually determined by visual 

examination
• Why not just CV?

• Then binned at different resolutions (2bp –
10bp)

• A bin was called positive if any bp in the bin had 
a positive label, negative if all bps were 
negative, and ambiguous otherwise

• For predicted probabilities, they used the max 
over the bin



Evaluation

• BPNet achieves replicate level 
performance at this metric
• Random profile is generated 

using shuffled regions
• They don’t really mention the 

what the average baseline is, 
other than saying that “The 
positional concordance was on 
par with replicate experiments 
and substantially better than 
randomized profiles or average 
profiles at resolutions ranging 
from 1-10 bp”



Evaluation

• From looking at the code, I think 
average profile is the average profile 
for each TF over all regions tested, but 
I’m not 100% sure 

• What performance would you get if 
you did average positive profile and 
average negative profile for each TF 
and applied those either w/ the ground 
truth for whether the region is bound or 
w/ the model’s prediction of whether 
the region is bound?

• Uncertainty measures for these 
points? You can see that sometimes 
BPNet is visibly above replicates the 
same amount that replicates is above 
average profile (see Klf4)



Predictions qualitatively look good



Predictions qualitatively look good



Receptive field size is important for Nanog

(For each position in the predicted profile, how 
many input bases are considered in the input)



Stacking more layers improves performance

• Does improvement stop at input 
sequence length?

• If input sequence length were longer, 
would receptive field continue to add 
performance? Like, what is the 
reasonable length of receptive field?

• Basically, I’m not necessarily convinced 
that stacking more layers improves 
performance because there are 
complex, compositional giant motifs 
and not just because the deeper res-
net optimizes more easily or 
something?



Figure 2
Model interpretation



Feature Attribution

• Find importance of input features in terms 
of output prediction

• Model output will be the sum of the 
feature attributions

• For a linear network, the contribution of 
each feature would just be: 

𝑥𝑖 – 𝑏𝑖 ∗&𝑤

• For non-linear networks, you calculate the 
(approximate) Shapley value for each 
non-linearity encountered and back-
propagate it back through linear 
components



Feature Attribution

• DeepLIFT divides a scalar output between 
each of the contributing input features

• How to get the importance for an entire 
profile (L x S matrix, where L is 1kb, S is 2 
strands)

• Scalar attributions for a base:

𝑓 𝑥 − 𝑓 𝑏 = +
!

"

𝑐!

• Profile attributions for a base:

𝑐 #$%&!'( ,! = +
*,+

𝑐*+! 𝑝*+

where 𝑐*+! is the DeepLIFT attribution for 
input sequence position i to output 
position j on strand s and 𝑝*+ is the j,s
index of p = softmax(f(x))



Feature Attribution
• Profile attributions for a base:

𝑐 "#$%&'( ,& = #
*,+

𝑐*+& 𝑝*+

where 𝑐*+& is the DeepLIFT attribution for input 
sequence position i to output position j on strand 
s and 𝑝*+ is the j,s index of p = softmax(f(x))

• So p is just the function output in probability 
space instead of logit space

• They say “the rationale for performing a 
weighted sum is that positions with high 
predicted profile output values should be given 
more weight than positions with low predicted 
profile output values.”

• I think it’s weird though, this really removes any 
weight for places where the model is confident 
that there’s no binding (large negative magnitude 
in logit space, 0 in prob. space)

• Places where the model is confident are already 
scaled by the magnitude of their logit output



Cluster attributions 
into motifs
• “Seqlets” are short sequences w/ statistically 

significantly higher attribution than shuffled 
sequences

• Cluster these using a community detection 
algorithm

• Do some heuristic processing to merge clusters 
and throw out bad looking clusters

• Average attributions into CWM motifs over all 
aligned sequences

• Also generate PFMs by looking at frequencies of 
bases at each position in aligned sequences



Computational validation of motifs 
(supplemental fig 6)
• Are the motifs learned by models robust? 
• Train 5 additional models on different subsets of the data and 

generate motifs for these



Validation of motifs
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Validation of motifs

• Is this really that robust (40% of the 
time different for some motifs)

• Why not just average over re-trainings?



Figure 4
Higher order syntax



Two approaches to motif syntax
• To extract rules of cooperativity, measure how the binding of a 

TF to its motif is enhanced by a second motif (and how this 
depends on the distance between these motifs)
• Synthetic approach
• Naturally occurring motifs in sequences



Synthetic approach
• Create 128 sequences where each base is independent 

uniform random
• Replace the central bases by Motif A
• Insert Motif B d bases downstream of Motif A (where the 

distance is measured from the centers of the motifs)
• Predict the strand-specific ChIP-nexus profile for the 

primary TF of Motif A (e.g. Oct4 for the Oct4-Sox2 Motif)
• Average the predictions across the 128 random 

background sequences
• Strand-specific summit is then hAB

• Just add Motif A to the center of the 128 sequences, 
predict, and average

• Strand-specific summit in this case is hA

• Just add Motif B to position d off center, predict, and 
average

• Strand-specific summit in this case is hB

• Average the prediction across the 128 sequences when 
neither motif has been added

• Strand-specific summit in this case is h∅
• Binding fold change is (hAB – (hB - h∅))/ hA

• > 1 means positive interaction, <1 means neg. interaction, 1 means no 
interaction



Genomic approach

• Find instances of co-occurring 
motifs in the genome
• Now replace either Motif A, Motif B, 

or both with random sequence
• Add pseudo-counts to both 

numerator and denominator of fold 
change
• “20th percentile of the considered 

quantity”



Genomic approachSynthetic approach
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Validation of motifs










