Understanding drop-outs in single-cell UMI: two papers with different approaches

Bayesian model selection reveals biological origins of zero inflation in single-cell transcriptomics K Choi, Y Chen, DA Skelly, GA Churchill

Demystifying "drop-outs" in single-cell UMI data TH Kim, X Zhou, M Chen

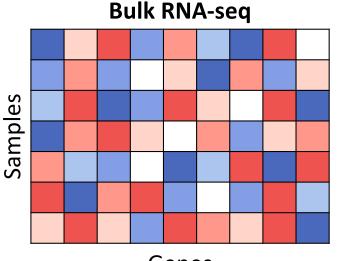
1

CSE 590C Fall 2020 October 19th, 2020 Ayse Dincer & Walter L. Ruzzo

Genotype Phenotype

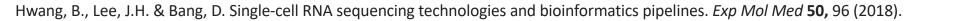
A challenge in biology and medicine

Transcriptomes can be informative

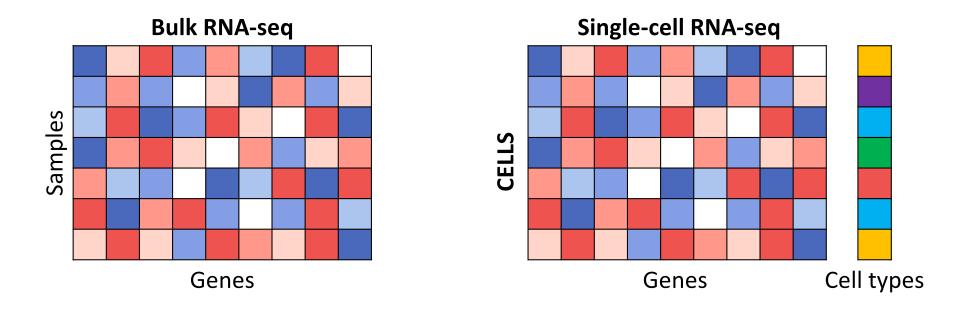


Genes

- Bulk population sequencing can provide only the average expression signal for an ensemble of cells
- However, diverse cell types in our body each express a unique transcriptome



We need a more precise understanding of the transcriptome in individual cells



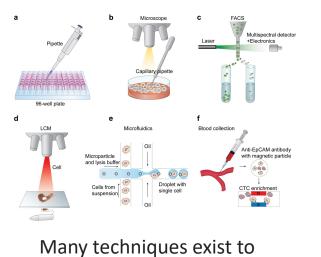
Hwang, B., Lee, J.H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. *Exp Mol Med* 50, 96 (2018).

- Pioneered by James Eberwine et al. and Iscove et al.
- First analysis in 2009 by Tang et al.
 - characterization of cells from early developmental stages
- Many studies followed:
 - Identify rare cell populations
 - Characterize outlier cells to understand drug resistance and relapse in cancer treatment
 - Detect diverse immune cell populations
 - Understand cell lineage relationships in early development

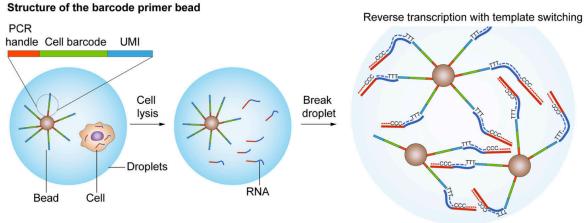
scRNA-seq Technology

First step: single-cell isolation

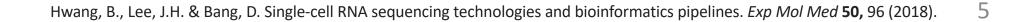
Second step: generation of scRNAseq libraries



isolate cells

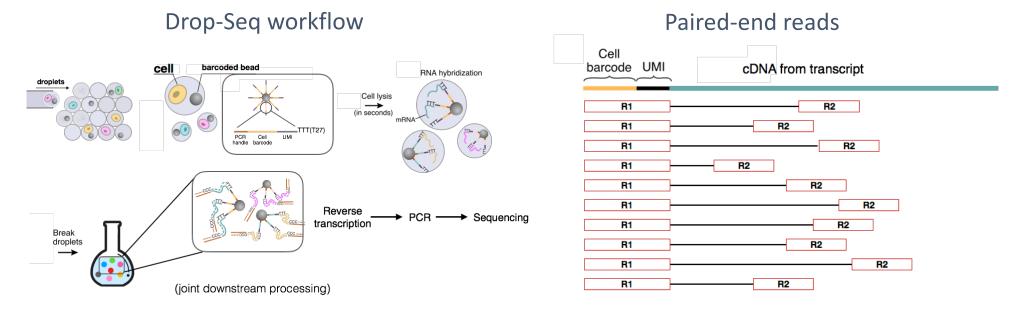


example of droplet-based library generation



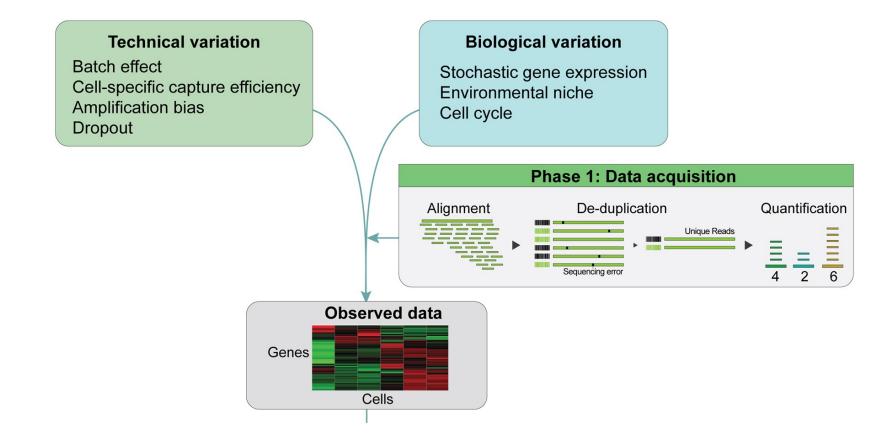
scRNA-seq Technology: What is UMI?

"Unique molecular identifiers (UMI) are molecular tags that are used to detect and quantify unique mRNA transcripts"



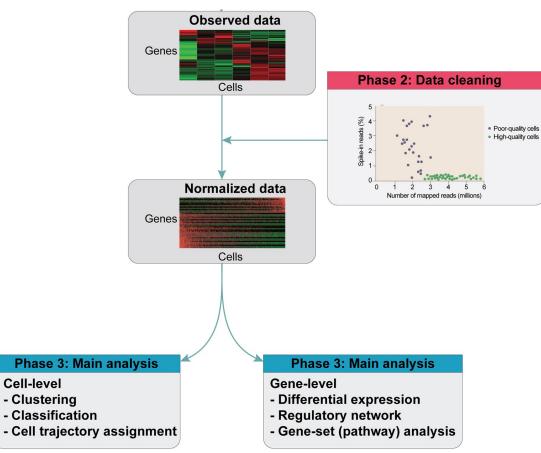
Illumina, Data Science Sequencing Lecture 16

scRNA-seq: Computational pipeline



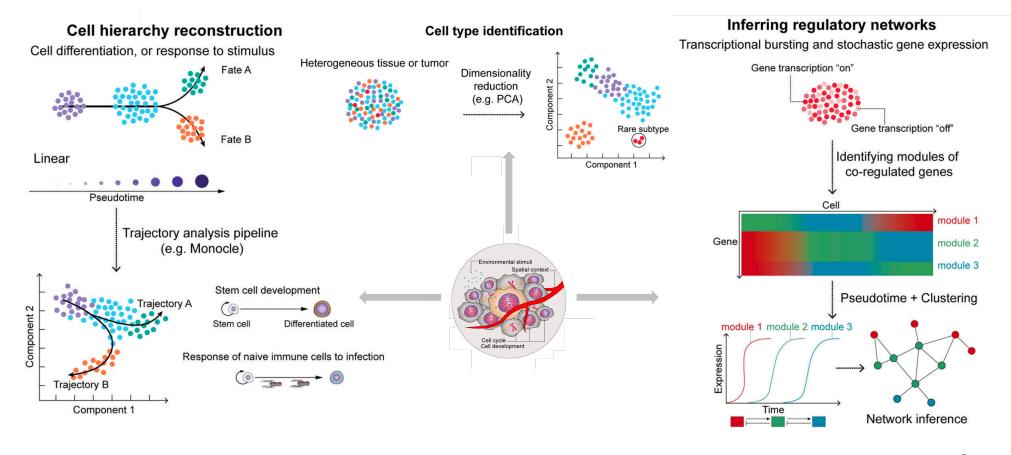
Hwang, B., Lee, J.H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. *Exp Mol Med* **50**, 96 (2018).

scRNA-seq: Computational pipeline



Hwang, B., Lee, J.H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. *Exp Mol Med* **50**, 96 (2018).

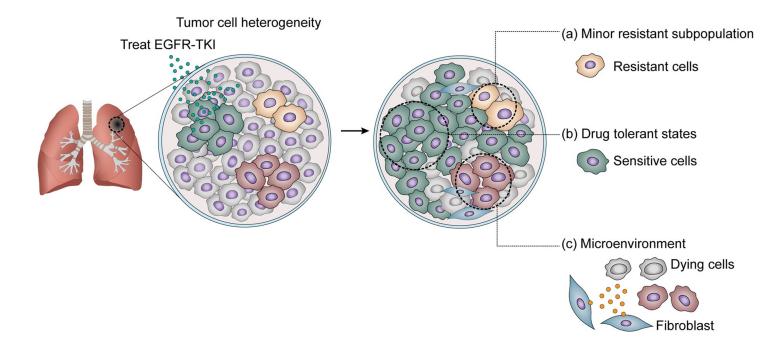
scRNA-seq Applications



Hwang, B., Lee, J.H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. *Exp Mol Med* 50, 96 (2018).

scRNA-seq Applications

a. Drug resistance clone identification

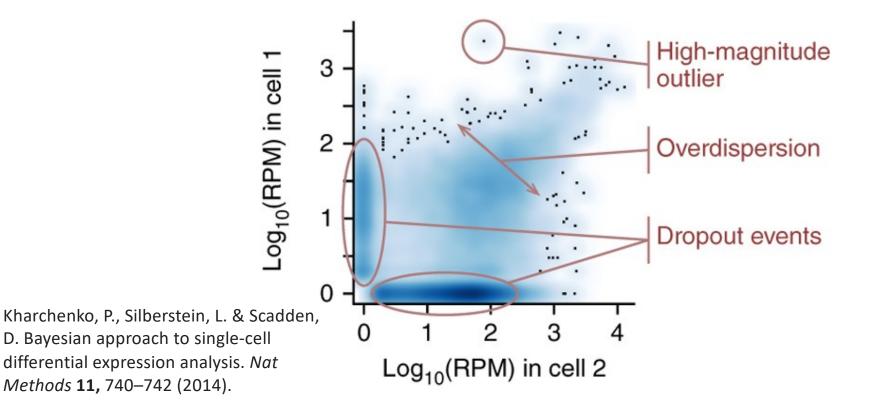


Hwang, B., Lee, J.H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. *Exp Mol Med* **50**, 96 (2018).

- Single-cell RNA sequencing is a very promising technology
- It can allow new biological insights
- Yet it also presents many technical and computation challenges
- One problem we will focus on today is drop-out or zero-inflation

What is dropout in single cell?

a gene is observed at a moderate or high expression level in one cell but is not detected in another cell



There are many many different approaches

scDoc: correcting drop-o RNA-seq data

Di Ran, Shanshan Zhang, Nicholas Lytal, Li

Bioinformatics, Volume 36, Issue 15, 1 Augu

ARTICLE TOL: 10.1038/s41467-018-034057 OPEN An accurate and robust imputation method scImpute for single-cell RNA-seq data Wei Vivian Lio¹ & Jingyi Jessica Lio^{1,2}

Droplet scRNA-seq is not zero-inflated

Gong et al. BMC Bioinformatics (2018) 19:220 https://doi.org/10.1186/s12859-018-2226-y

METHODOLOGY ARTICLE

DrImpute: imputing dropout events in single cell RNA sequencing data

Wuming Gong[†], Il-Youp Kwak[†], Pruthvi Pota, Naoko Koyano-Nakagawa and Daniel J. Garry^{*}

BMC Bioinformatics

mputation method to reduce -cell RNA sequencing

chenko¹⁻³, Lev Silberstein³⁻³ &

Open Access

2020, Pages 4021–4029,

taa278

)ry ▼

Why do dropouts occur in single cell?

There are different views

Why do we observe dropouts?

- technical artifacts
- statistical sampling
- cell type differences
 - biological factors

What should we do about them?

- impute before learning
- preprocess/cluster/reduce dimensions
 - incorporate technical variates
 - incorporate biological variates
 - model zero inflation
 - ignore zero inflation

Today we are going to examine 2 papers

There are two main views

Drop-outs are technical artefacts

Drop-outs are related to biological signals

Choi et al. Genome Biology (2020) 21:183 https://doi.org/10.1186/s13059-020-02103-2	Genome Biology	Kim <i>et al. Genome Biology</i> (2020) 21:196 https://doi.org/10.1186/s13059-020-02096-y	Genome Biology	
RESEARCH	Open Access	RESEARCH	Open Access	
Bayesian model selection reveals biological origins of zero inflation in single-cell transcriptomics Kwangbom Choi ¹ , Yang Chen ² , Daniel A. Skelly ¹ and Gary A. Churchill ^{1*} ^(a)		Demystifying "drop-outs" in single-cell UMI data Tae Hyun Kim ¹ , Xiang Zhou ^{2*} and Mengjie Chen ^{3*} (9)		
To solve drop-outs -> Take cell type heterogeneity biological covariates into acco		To detect cell type heteroge Use drop-out rates	-	

Bayesian model selection reveals biological origins of zero inflation in single-cell transcriptomics

Paper 1

Short summary of paper 1

- They apply a Bayesian model selection approach to demonstrate zero inflation in multiple biologically realistic scRNA-seq datasets
- They show that the primary causes of zero inflation are not technical but rather biological in nature
- They recommend the negative binomial count distribution, not zeroinflated, as a suitable reference model for scRNA-seq analysis

Outline for paper 1

Problem: Potential reasons for zero inflation/dropout

Method: Bayesian model selection approach to identify genes with zero inflation

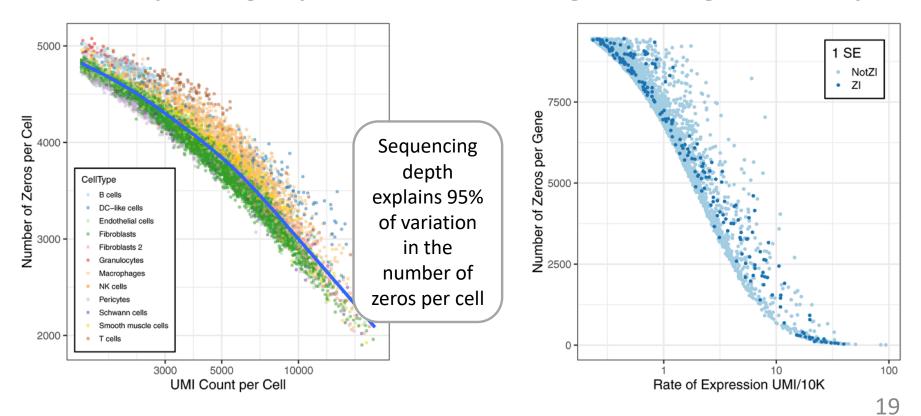
Results #1: scRATE can identify genes with zero inflation

Results #2: Zero-inflation of genes is highly associated with cell types

Problem: Why are there so many zeros?

1. Sequencing Depth

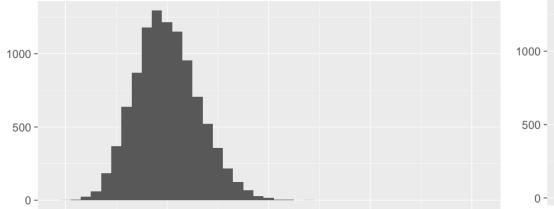
2. Per-gene average rate of expression

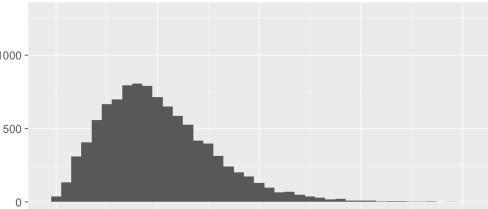


Background: Statistical Models

1. Poisson (P)

2. Negative Binomial (NB)





3. Zero-inflated Poisson (ZIP) 4. Zero-inflated Negative Binomial (ZINB)

Method: Bayesian model selection to identify genes exhibiting zero inflation

What is Bayesian model selection?

- The goal is to select the model that maximizes the likelihood of the observed data
- The probability of the data given the model is computed by integrating over the unknown parameter values in that model:

$$p(D|M) = \int_{\boldsymbol{\theta}} p(D|\boldsymbol{\theta}) p(\boldsymbol{\theta}|M) d\boldsymbol{\theta}$$

Method: Bayesian model selection to identify genes exhibiting zero inflation

- Is based on generalized linear models (GLMs)
- Implemented a Bayesian model selection criterion the expected log predictive density (ELPD)

$$\text{ELPD} = \sum_{c=1}^{n} \log p(y_c | y_{-c}). \quad \text{denotes LOOCV} \\ \text{value for each cell vs. all the other cells}$$

- ELPD score is calculated for four statistical models (P, ZIP, NB, or ZINB)
- scRATE examines all the data, including non-zero counts
- Uses leave-one-out cross-validation, which provides a standard error (SE) to quantify uncertainty in the estimated ELPD scores
- Penalizes both underfitting and overfitting models, a more complex model is selected only when the ELPD is substantially better

Results #1: Model selection can identify genes exhibiting zero inflation

Table 1 Error rates and power of scrate classification

	Sequencing depth	Threshold			
(a)		0 SE	1 SE	2 SE	
False	(a)				
Positive	10k	0.2349 _{±0.0695}	$0.0325_{\pm 0.0174}$	$0.0014_{\pm 0.0016}$	
rates	50k	0.1837 _{±0.0557}	$0.0206_{\pm 0.0159}$	$0.0009_{\pm 0.0016}$	
(b)	(b)				
True	10k	$0.8116_{\pm 0.0365}$	$0.6152_{\pm 0.0312}$	$0.4641_{\pm 0.0160}$	
Positive	50k	$0.8955_{\pm 0.0158}$	$0.7934_{\pm 0.0176}$	0.7062 _{±0.0165}	
ratas					

rates

Results #2: Most zero-inflated genes are due to variable expression rates across cell types

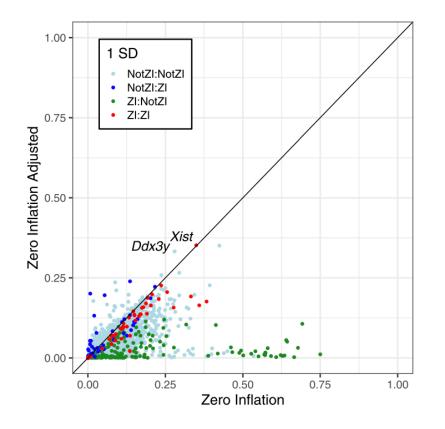
Threshold	Selected model					
	Р	NB	ZIP	ZINB		
(a)					Analiad	
0 SE	1111	2930	525	949	Applied scRATE	
1 SE	2112	3183	81	139		
2 SE	2930	2509	5	71	directly	
3 SE	3445	2035	1	.34		

Table 2 scRATE classification of genes in the heart data

After accounting for cell type, the number of zero-inflated genes drops

Genes that are no longer ZI vary across cell types Examples: Col1a2 -> fibroblasts, Ptpn18 -> immune cells

Results #2: Most zero-inflated genes are due to variable expression rates across cell types



Majority of genes were originally classified as ZI are no longer ZI after accounting for cell type

A few of genes remain or become ZI: female-specific *Xist* Y-chromosome gene *Ddx3y*

After accounting for sex as an explanatory variable, these genes are no longer ZI

Paper 1

Their conclusions:

- High frequency of zeros does not necessarily imply technical dropout
- Instead, zero inflation is largely explained by biological factors, such as cell type and sex
- Recommend against the practice of replacing zeros in data with imputed non-zero values, could mask biological signals
- Recommend the generalized linear model with negative binomial error, and taking cell types and biological factors as explanatory variables

Paper 1

- Do you think simulation tests make sense?
 - What other simulation experiments can be carried?
 - Do you think simulated data can reflect true patterns?
- Do you prefer to see more real-data experiments and biological covariate examples?
- What are the advantages/disadvantages of this model?
 - Does it make sense that cell type is a determinant of zero-inflation?

Demystifying "drop-outs" in single-cell UMI data

Paper 2

Short summary of paper 2

- Proposed a novel framework HIPPO (Heterogeneity-Inspired Pre-Processing tOol) that leverages zero proportions to explain cellular heterogeneity and integrates feature selection with iterative clustering
- Showed that clustering should be the foremost step of the workflow
- Showed that cell-type heterogeneity can resolve drop-outs, while imputing or normalizing heterogeneous data can introduce unwanted noise

Outline for paper 2

Problem: Potential reasons for zero inflation/dropout

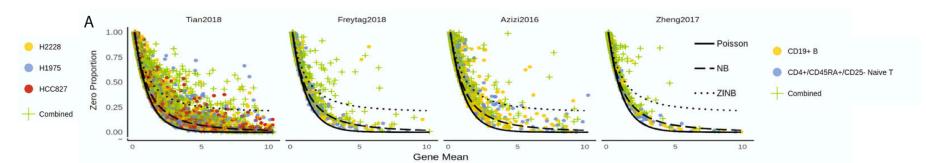
Method: Zero inflation test to detect cellular heterogeneity and HIPPO

Results #1: Zero inflation test is successful at detecting cellular heterogeneity

Results #2: Appropriate pre-processing introduces unwanted noise in the downstream analysis

Results #3: HIPPO can identify cell types

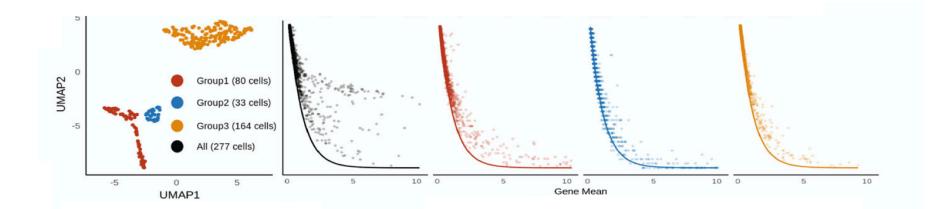
Problem: Demystifying drop-outs



1. For a homogeneous cell population, zero proportions in most genes can be modeled by the Poisson distribution (more than 95% of absolute z values are below 2) 2. For mixed cell types, zero proportions considerably deviate from expected values under the Poisson model (less than 30% of the genes have z values below 2)

Conclusion: Zero-inflation test is an effective way to find genes that contribute to cellular heterogeneity

Problem: Demystifying drop-outs



Conclusion: Zero proportions can be a metric to evaluate cellular heterogeneity and can discern cell types

Method: Zero inflation test for cellular heterogeneity

They developed a new feature selection strategy that uses detected zero proportion of a given gene as the statistic to test for cellular heterogeneity

Framework:

- Null hypothesis = assumes complete cellular homogeneity = the proportion of zeros is equal to the expected zero proportion under Poisson distribution
- Alternative hypothesis = zero proportion is inflated, as if the count data follows mixture of Poisson distributions

Advantages of the framework:

- 1. Only the proportion of zeros is used
- 2. Allows each gene to have different grouping structure across cells
- 3. No complicated modeling

Results #1: Zero inflation test is successful at detecting cellular heterogeneity

Cell population	Gene mean	z score
CD34+	25.89	1838203
Subtype 1	0.5625	6.19
Subtype 2	22.36	0
Subtype 3	38.96	0

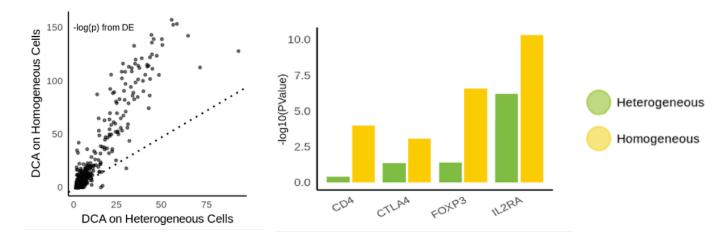
Zero inflation test statistics for PPBP gene in CD34+ cells

- PPBP was identified with a high zero proportion of 26% within CD34+ cells, indicating very high zero inflation
- After they separated CD34+ cells into three subtypes, the test within each subtype is no longer statistically significant

Conclusion: cellular heterogeneity can drive excessive zeros and zero proportions can be used to discern cell types

Results #2: Inappropriate pre-processing introduces unwanted noise in the downstream analysis

A popular pre-processing step is to apply deep learning based de-noising tools (e.g. Deep Count Autoencoder (DCA)) which de-convolute the technical effects from biological effects and impute zero accounts due to drop- outs



Conclusion: imputing the UMI data without resolving cell heterogeneity can lead to loss of important biological information

Method: HIPPO: Heterogeneity-Inspired Pre-Processing tOol

HIPPO integrates the proposed zero inflation test into a hierarchical clustering framework

Step 1 Feature Selection:

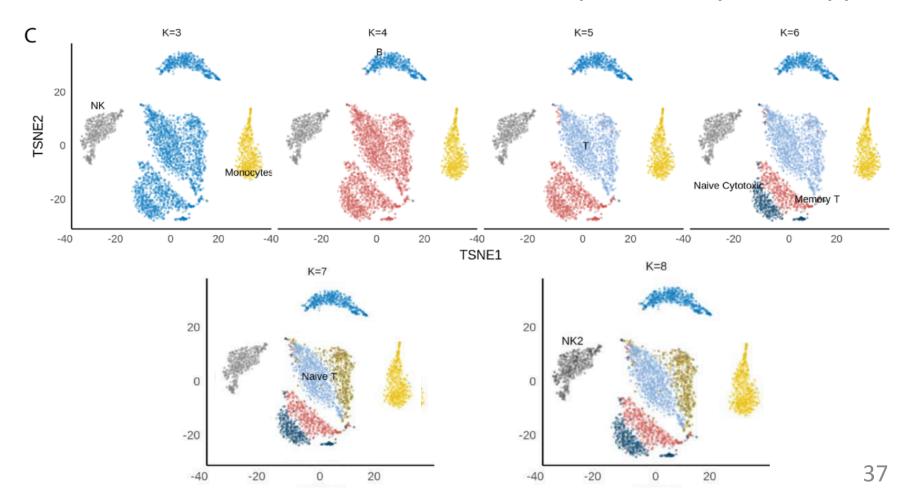
• Select genes with strong indication for cellular heterogeneity (cutoff of 2 on z score)

Step 2 Cluster:

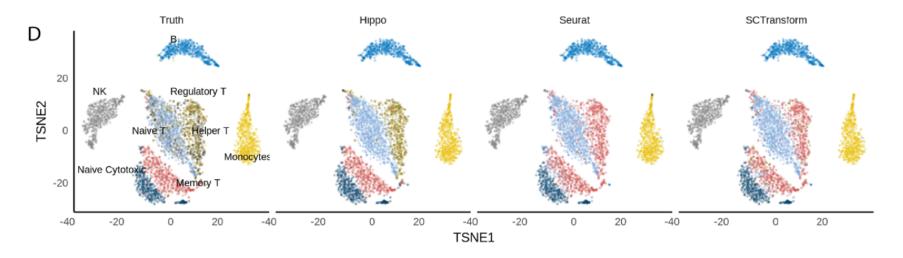
- With the selected features, cluster the cells into 2 groups using PCA + K-means
- Each cluster is evaluated with their intra-variability using the mean Euclidean distance from the centers of K-mean algorithm. The group with the highest intra-variability is selected and assigned for next round of clustering.

Computationally cheap because fewer and fewer features will be left for the next round of clustering

Results #3: HIPPO can successfully identify cell types



Results #3: HIPPO can identify cell types



Seurat and Sctransform fails to separate the memory T cells, regulatory T cells, and helper T cells, grouping them as one cluster

Paper 2

Their conclusions:

- Cell-type heterogeneity must be tackled as the first step of analysis for more reliable downstream analysis
- They introduced computationally and mathematically simple analysis tool for feature selection with great interpretability
- This pre-processing tool can resolve cellular heterogeneity and help avoid unnecessary normalizing steps that can introduce unwanted bias and noise

Paper 2

- What are the advantages of this model?
 - Do you think having a simple model can be helpful?
 - What are the advantages/disadvantages of not taking non-zero counts into account?
- What can be potential limitations of predicting cell type heterogeneity from drop-out rates?
 - Do you think more datasets are required to support conclusions?
- What are the advantages/disadvantages of inferring cell types from zero-inflation?
 - How can we solve the circular dependence of cell type heterogeneity and dropout?

Summary and comparison of 2 papers

PAPER 1: Bayesian model selection reveals biological origins of zero inflation in single-cell transcriptomics

PAPER 2: Demystifying "drop-outs" in single-cell UMI data

Common Points

- Drop-out rates in scRNA-Seq is determined by cell types
- Drop-out rates are not technical problems that should be eliminated but provide important biological information
- Zero-inflated distributions are not good fits for scRNA-Seq especially after taking cell type into account

Summary and comparison of 2 papers

PAPER 1: Bayesian model selection reveals biological origins of zero inflation in single-cell transcriptomics

PAPER 2: Demystifying "drop-outs" in single-cell UMI data

Differences

- To solve drop-outs -> uses cell type heterogeneity and biological covariates
- The goal is to select the best distribution for each gene
- Negative binomial distribution should be used to model scRNA-Seq

- To detect cell type heterogeneity -> uses drop-out rates
- The goal is to cluster the cells using dropout rates
 - Poisson distribution should be used to model scRNA-Seq