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Figure 1.  An example multiresolution hair design procedure.  Each hair model results from interactive multiresolution editing operations.  1. The user 
roughly designs a hairstyle with about 30 high-level clusters.  2. One hair cluster (inside the ellipse) is subdivided and made curly.  3. The curly cluster is 
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 Abstract 
Human hair modeling is a difficult task.  This paper presents a 
constructive hair modeling system with which users can sculpt a 
wide variety of hairstyles.  Our Multiresolution Hair Modeling 
(MHM) system is based on the observed tendency of adjacent hair 
strands to form clusters at multiple scales due to static attraction.  
In our system, initial hair designs are quickly created with a small 
set of hair clusters.  Refinements at finer levels are achieved by 
subdividing these initial hair clusters.  Users can edit an 
evolving model at any level of detail, down to a single hair strand.  
High level editing tools support curling, scaling, and copy/paste, 
enabling users to rapidly create widely varying hairstyles.  
Editing ease and model realism are enhanced by efficient hair 
rendering, shading, antialiasing, and shadowing algorithms.  

CR Categories and Subject Descriptions: I.3.7 [Computer 
Graphics]: Three-Dimensional Graphics and Realism; I.3.5 
[Computer Graphics]: Computational Geometry and Object 
Modeling – Modeling Package 

Additional Keywords: hair modeling, multiresolution modeling, 
level of detail, hair rendering, generalized cylinders 

1  INTRODUCTION 
Hairstyle is a determining factor of a person’s first impression 
when meeting someone [LaFrance 2001].  Thus, hair is an 
important aspect of personal identity, but hair modeling remains a 
major obstacle in realistic human face synthesis.  The 
volumetric nature of hair is simply not captured by surface models, 
so it is often simplified or hidden by objects like hats. 

Surface modeling methods can use high-density data acquired 
from range scanners.  Such model acquisitions are not yet 
practical for hair since we lack suitable volumetric scanner 
technologies.  The recent work by Grabli et al. [2002] attempts 
to automatically reconstruct hair models from photographs.  
Although promising, the approach is still in its inception stage and 
does not recover complete hair models.  Our goal is an 
interactive hair modeling system that allows a user to easily and 
quickly design a wide range of hairstyles (Figure 1 illustrates an 
example hairstyling process). 

Cluster (or wisp) hair models [Chen et al. 1999; Falk and Sand 
2001; Kim and Neumann 2000; Plante et al. 2001; Watanabe and 
Suenaga 1992; Xu and Yang 2001; Yang et al. 2000] exploit the 
observed tendency of adjacent hair strands to form clusters due to 
static attraction or artificial styling.  These models employ 
two-step manipulation.  1) The rough geometry of a hair cluster 
is modeled.  2) Details are added by rendering each hair strand 
or volume density.  These models, however, lack stylistic 
variations in each hair strand due to a limited set of parameters, 
especially, for complex variations such as curly hair, as noted by 
Xu and Yang [2001].   

Strand hair models [Anjyo et al. 1992; Daldegan et al. 1993; 
Hadap and Thalmann 2001; Lee and Ko 2001; Rosenblum et al. 
1991] allow every hair strand to be explicitly designed.  
However, manual modeling of individual hair strands is extremely 
tedious.  Designing just the key hair strands can consume five to 
ten hours [Thalmann and Hadap 2000].  Thus, strand hair 
models are often coupled with dynamics simulations.  External 
parameters such as gravity, wind forces, and stiffness affect the 
global shape of the final hair model.  However, the dynamics 
methods are often limited to relatively simple hairstyles and 
complex hairstyles are not easily modeled, even after repeated 
trial and error iterations of minutes or hours of simulation.   

Problems arise from the complexity of real human hairstyles, 
often created by hairstylists with extensive efforts such as curling 
and combing (Figure 2).  Structured and discontinuous clusters 
(e.g., braids, combing effects) are difficult to model with strand 
hair models, whereas stylistic strand variations are difficult to 
achieve with cluster/wisp hair models.  Our multiresolution hair 

 
 

copied onto other clusters.  4. The bang hair cluster (inside the ellipse) is subdivided and refined.  5. Final hair model after further refinements.   
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[2001] for interactive hairstyling.  Rosenblum et al. produce hair 
motion by mass-spring simulation of individual hair strands 
[1991].  Exploiting the similarity between fluid and smooth 
hairstyles, Hadap and Thalmann develop an interactive hairstyling 
system [2000] and a dynamics system simulating hair/hair 
interaction [2001]. 

Watanabe and Suenaga [1992] propose a wisp model, later 
extended in an interactive hairstyling system by Chen et al. [1999].  
  

Figure 2. Photographs of human hair. 
 

odel aims at bridging this gap by allowing detailed local control 
 well as global control. 
To model complex objects, researchers successfully employ 

ultiresolution concepts for continuous curves, surface editing, 
d volume sculpting (see [Stollnitz et al. 1996] for examples).  

heir major benefit is the user’s freedom to choose the 
propriate level of detail for a desired model manipulation.  In 
is spirit, we develop a Multiresolution Hair Modeling (MHM) 
stem.  However, hair models are inherently volumetric and 
ntain a large number of disjoint hair strands.  Thus, our 

eatment differs from other multiresolution techniques in 
plying the concept of multiresolution to hair.  In our context, 
ultiresolution manipulations are achieved with a hierarchy of 
neralized cylinders.  MHM allows users to interactively move, 
ale, curl, and copy a portion of an evolving hair model at any 
vel of detail.   
Rendering is considered a separate offline process in existing 
ir modeling systems.  However, such non-interactive 
ocesses can significantly slow down the modeling process, 
pecially for complex hairstyles for which rendering effects such 
 self-shadowing are crucial.  We aim at providing an 
teractive rendering capability, enabling users to get immediate 
sual feedback during modeling.  To our knowledge, no 
ported hair modeling systems interactively render explicit hair 
odels, complete with shading, antialiasing, and self-shadowing. 
The contributions of our work lie in a novel multiresolution 
ir representation, interactive tools for editing hair, and efficient 
ir rendering methods, all aimed at decreasing a user’s time and 
dium for modeling complex hairstyles.  The remainder of this 
per is organized as follows.  Section 2 reviews related work 
d section 3 provides a brief system overview.  The 
ultiresolution hair representation is detailed in section 4, and 
ction 5 presents editing tools suited to the representation.  
teractive rendering algorithms are presented in section 6, and 
sults are presented and discussed in section 7.  Sections 8 and 
discuss implementation issues and future directions.   

  Related Work 
nce the pioneering work by Csuri et al. [1979], researchers have 
veloped a number of hair modeling systems.  These systems 
e categorized based on hairstyles to which they are best suited.  
efer to [Parke and Waters 1996; Thalmann and Hadap 2000] for 
ore comprehensive survey on human hair modeling and 
ndering research. 
mooth Hairstyle: Strand hair models are often limited to 

ooth hairstyles, due to the lack of mechanisms to simulate 
scontinuous clustering effects in their simplified physics 
mulation or interpolation methods.  Anjyo et al. use cantilever 
am dynamics and one-dimensional angular dynamics for hair 
odeling and animation [1992], later extended by Lee and Ko 

In an integrated hair system by Daldegan et al. [1993], 
characteristic hair strands define the boundary of wisps.  The 
common assumption that hair strands are parallel inside a wisp 
makes it hard to model rigorous strand variations such as curliness 
with random parameters to perturb wisps.  Also, discontinuous 
clusters (e.g., due to combing) are not efficiently handled due to 
the underlying interpolation between key hair strands. 
Clusters and Discontinuity: The cluster hair model by Yang et al. 
[2000] defines the boundary of a wisp with generalized cylinders, 
later used in an interactive hairstyling system in [Xu and Yang 
2001].  Strand variations are implicitly modeled with ray tracing 
volume density.  A similar method is used in the production of 
the movie ‘Shrek’ in which wisps are defined by control polygons 
[Falk and Sand 2001].  These methods handle bounded, 
man-made hairstyles such as braids, but stylistic strand variations 
are difficult to model.  A method to model discontinuities in 
smooth hairstyles is reported in [Kim and Neumann 2000].  The 
dynamics system by Plante et al. [2001] simulates the interactions 
between discontinuous wisps in motion.  However, the 
clustering is pre-determined before simulation and the distribution 
of strands inside a wisp is fixed. 
Animal Fur or Short Hair: Explicit geometry is often avoided 
for short animal fur.  Kajiya and Kay [1989] use volumetric 
texture (or texels) to mimic a group of hair strands, later extended 
by Neyret [1997] for multiresolution.  An appearance-based 
model of distant animal fur is developed [Goldman 1997].  For 
real-time rendering of animal fur, concentric textures are used to 
sample the volumetric texture functions, augmented with 
large-scale geometry [Lengyel 2000; Lengyel et al. 2001].  A 
common assumption with animal fur is that the distribution of hair 
has repeated patterns.  However, the assumption does not hold 
with longer human hair, as adjacent hair strands at the scalp split, 
curl, and move away from each other.  Such styling effects 
require a significantly different modeling method from existing 
animal fur techniques [Lengyel et al. 2001]. 

3  Overview 
Figure 3 illustrates the structure of a multiresolution hair model.  
A parametric patch on the scalp surface (section 4.2), defines the 
region where hair can originate.  A hair model is constructed 
hierarchically, starting from a small set of generalized cylinders 
(GCs).  A GC defines the boundary of each hair cluster, 
controlling a group of clusters or hair strands (see section 4.1 for 
our definition of a GC).  The user interactively subdivides each 
hair cluster, adding more detail until the desired appearance is 
achieved.  Subdivision steps (section 4.4) add new nodes to the 
hierarchy we call a hair tree.  Editing operations such as curling, 
moving, copying, and selecting are applied to nodes of the hair 
tree (section 5).  While the user edits a hairstyle, the system 
interactively visualizes the edited model using various rendering 
options (section 6). 
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4  Hair Cluster Representation 
A GC defines the boundary of a hair cluster.  In the following 
sections, we do not differentiate GCs from hair clusters and both 
terms are used interchangeably.  

4.1 Generalized Cylinder 
A GC is defined with a skeleton curve C(t) and a set of contours 
placed along the curve1.   

   ( ) ( ) ( )ttt  ,     θθ RC,GC +=      (1) 
where C(t) is a space curve parameterized by t and R(θ, t) is a 
contour function centered at C(t).  θ is an angle around the 
principal axis of a reference frame.  With an additional 
parameter r, any point around the GC can be defined as  

( ) ( ) ( )trttr  ,     , , θθ RCV +=         (2) 
Constructing a GC requires each contour to be properly aligned 

with reference frames.  We use the frame generation method by 
Bloomenthal [1990].  The frame is represented with the tangent 
vector of the skeleton curve T

�

, the principal normal N
�

 and the 
binormal vector B

�

 (Figure 4).  Both N
�

 and B
�

 lie on the 
plane of the contour perpendicular to the skeleton curve.  The 
pre-computed frames are interpolated to form a smoothly shaped 
GC.  Let )(T t

� , )(N t
� , and )(B t

�  denote the interpolated frame 
vectors at t (0 ≤ t ≤ 1).  The world coordinate of a point 
parameterized by (r,θ,t) is  

                                                                 
1 Similar definitions can be found in [Aguado et al. 1999; Xu and Yang 
2000].  Alternatively, a GC can be viewed as rotational sweep of a profile 
curve [Kim et al. 1994].  

Representation of Contour: R(θ)  is a contour shape function 
dependent on θ.  ( )θR̂  is defined as an offset distance function 
from a circle with a global radius s ( ( )θθ R̂)R( += s ).  N pairs of 
angles and offset radius values control the shape of a contour 
along with the global radius s.  The current implementation uses 

Nii /πθ 2= and ( )θR̂  is computed by linear interpolation of 
the angle / offset pairs.  By definition, the contour is star-shaped, 
which we find flexible enough to represent the boundary of hair 
clusters.  The offset function can efficiently represent 
star-shaped contours with a small set of parameters (currently, N = 
32 is used).  The continous contour function R(θ, t) is linearly 
interpolated from a discrete number of contours.2         
Auxiliary Functions: Adding auxiliary scale and twist terms 
completes our description of GC.  The scale terms SN(t) and 
SB(t) let the user easily control the stretching and shrinking of 
GCs along the two axis vectors N

�

 and B
�

, while direct 
modification of the contour functions allows fine detailed control 
over the shape.  The twist term W(t) controls the curliness of a 
hair cluster.  Adding these terms yields  
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Figure 3.  Graphical view of a multiresolution hair model. 
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Figure 4. Definition of a reference frame along the space curve C(t). 
The parametric coordinate for a point P is given as (r,θ, t), where θ is 
defined as the angle around the tangent vector T

�

, starting from the 
principal normal N

�

.  
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here ( )tWˆ += θθ . 

.2 Scalp Surface 
 scalp surface is a parametric patch defining the region of a head 
here the user can place hair.  We use a tensor-product 
atmull-Rom spline patch that the user wraps over the head 
odel.  The current system allows a user to interactively specify 

ach control point of the spline patch.  The scalp surface is 
onstructed once for each head model and it is useful in many 
ays.  1) The user can easily place and move the GC contour on 

he scalp mesh (Figure 5).  2) Sampling and assigning hair 
trands become simpler (section 4.3).  3) The subdivision of hair 
lusters is reduced to a 2D problem (section 4.4).  4) The scalp 
arameterization provides the user with convenient means to 
elect clusters in 2D space (section 5.3). 

Scalp space (middle figure in Figure 5) is spanned by u and v, 
he parametric coordinates of the surface.  World space is 
pecified by the 3D world coordinate frame.  We denote the 
ontour function in scalp space as Rs(θ) and contours in world 
pace as Rw(θ).  Scalp space contours are used for hair strand 
eneration and for the initialization of multiple world space 
ontours that define the shape of a GC.  Appendix A describes 
ow to generate an initial GC using the scalp space contour.  

                                                                
There exist more rigorous methods to define and interpolate the contours 
f GCs [Aguado et al. 1999].  Our definition of contours aims at 
implicity and computational efficiency. 



4.3 Generation of Hair Strands 
Hair strands are represented as polylines (a set of connected line 
segments).  Creating hair strands independently within each GC 
(Figure 6a) can cause visually distracting hair density variation 
since we allow arbitrarily shaped scalp space contours that can 
overlap each other (Figure 7).  Rather than trying to prevent the 
overlaps, we sample the root positions of hair strands first, and 
assign the strands to their owner GCs (Figure 6b).     

the same as that of the skeleton curve of the strand’s owner GC.  
The polyline segments of each hair strand are evaluated from the 
spline interpolation.    

Varying the length of each hair strand increases the model’s 
natural appearance.  A random sample η is taken from a uniform 
distribution from 1-k to 1 (0 ≤ 1-k ≤ η ≤1), where k denotes the 
degree of tip length variation.  Adding the length variation, we 
evaluate the spline controls points of each hair strand using ηt 
instead of t for equation 4. 

4.4 Subdivision  
When a parent cluster is subdivided, contours and skeleton curves 
of its child clusters are created.  The contours of child clusters 
are inherited from those of the parent cluster unless the user 
specifies alternative shapes.  Inherited contours are scaled 
by N/ρ , where N is the user-specified number of child clusters 
and ρ controls the degree of overlap between child clusters.  For 
world space contours, ρ is set to 1.0.  For scalp space contours ρ 
is set to a value larger than 1.0 (typically 1.3<ρ<1.5), to ensure 
that the subdivided region is fully covered by the contours of 
child clusters. 

To place the child clusters on the scalp, we first sample random 

 

 

 
Figure 5. Placing a contour on the scalp.  The user selects a contour 
(right) and interactively places it in 2D scalp space (yellow circle in 
the middle), which defines its 3D position (red circle on the left).  
The grid is color coded to help the user match corresponding 
positions.     

u 
v 

Fig
around the root position and in highly curved region.  (b) Using spline
interpolation at strand-level, smoothness is guaranteed. 
(a)  (b)  
Figure 6.  (a) Independent hair generation for each cluster causes uneven
Initially, (or whenever the total 
number of hair strands changes), the 
root position (uh,vh) of each hair strand 
is uniformly sampled on the scalp grid.  
For each hair strand, we determine if 
there exists a GC that owns the strand 
(the details of the ownership decision 
are deferred until section 4.4).  If 
there is such a GC, the parametric 
coordinate (rh, θh) of the strand is 
computed (see appendix B for details).  
Given (rh, θh), the hair strand is 
created by connecting points 
computed with equation 4, 
incrementing t from 0 to 1. 

Note that equation 4 assumes that each
plane perpendicular to the skeleton curve.
is curved, planar contours can misalign
strands.  To handle the problem, the root
hair strand is directly evaluated on the sca

( ) ( )hhhh vur ,S,,V =0θ         
where S(u,v) is the parametric scalp 
modification can still cause unnatural ben
if other points of polyline segments are 
equation 4 (Figure 8a).  Similar pro
self-intersections in GCs of high curvat
Catmull-Rom spline curve for each ha
smoothness (Figure 8b).  The number of

positions inside the contour of their parent.  This often produces 
uneven distributions of contour positions (Figure 9a).  We use 
the position relaxation algorithm by Turk [1991] to improve the 
distribution (Figure 9b).  Given these positions, skeleton curves 
are created using the method described in section 4.3.             

hair density in overlapping regions.  (b) By assigning pre-sampled hair
strands to clusters, the overlap problem is solved. 

F
c
o
i
o
i
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F
Random positioning (ρ=1.4).  (b) Position relaxation.  (c) An example 
tiling of the scalp surface after a few subdivision steps.   
igure 7. Scalp space
ontours can overlap each
ther.  Colored dots
llustrate the root positions
f strands.  Each color
ndicates the owner cluster
f hair strands.  
 

 GC contour lies in the 
  Since the scalp shape 
 the root positions of 
 position (t = 0) of each 
lp, using  

   (5) 
patch.  However, this 
ding along hair strands 
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ure.  We interpolate a 
ir strand to guarantee 
 spline control points is 

D
p
cl
ca
o
cl
ce
o
co
co

p
su
st

623
  
(a) (b) (c) 

igure 9.  Subdivision of contours and tiling of the scalp space. (a) 
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(a) (b) 

ure 8.  (a) Straight line connections can cause unnatural bending 
ciding the Owners of Hair Strands After child clusters are 
sitioned on the scalp, hair strands are re-assigned to the new 
sters.  As shown in Figure 9c, contours of the child clusters 
 overlap with each other or contours of existing clusters.  In 

erlapping regions, we assign hair strands to a cluster with the 
sest center position in scalp space, similar to computing the 
troidal voronoi diagram [Hausner 2001] of the center positions 
all the clusters on the scalp (Figure 10a).  However, simply 

mputing the voronoi diagram may be problematic when precise 
ntrols for hair grouping are desired (e.g., for parting).   
Our hair ownership decision algorithm shown below as a 
udo code allows the user to design and tune the tiling and 
division patterns if necessary (Figure 10b).  For each hair 

and, the algorithm traverses the hair tree starting from root 



clusters.  The closest cluster containing the strand is chosen at 
each depth.  The iteration is repeated until it reaches a leaf 
cluster.  If there is only one such leaf cluster, the strand is 
assigned to the cluster regardless of the distance to other clusters.3  
When two or more leaf clusters contain the same strand due to 
overlaps, the cluster with a center position closest to the strand is 
selected.  When a hair strand is contained in a non-leaf cluster, 
but not contained in any of its descendents4, the strand is assigned 
to the closest descendent leaf cluster.  Note that we allow only 
leaf clusters to own hair strands, and for each hair strand, there is 
at most one owner.  Thus, we can maintain consistent hair 
density and limit the total number of hair strands; both features 
prove useful while level-of-detail manipulations control the 
appearance of the overall hair model (section 6).     

5
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5.1 Editing Properties of Hair Clusters 
The user interactively manipulates GC parameters such as scale, 
twist, and skeleton shape (equation 4).  When editing leaf 
clusters, the system simply reassigns the parameters and update 
hair strands.  When editing a non-leaf cluster, all of its 
descendent clusters must follow the shape changes to preserve 
their relative position and orientation (Figure 11).    

 
(a) (b) (c) (d) 

Figure 11.  a) The user picks the control point (inside the blue circle) of 
a high-level cluster.  The user can b) move c) scale d) twist the region 
around the control point.   

When a non-leaf cluster is edited, all the descendant clusters 
are bound to the cluster.  Let V be the cluster before editing.  
Assume that the user changes V to V’.  Then each descendant 
cluster is updated as follows.  1) For each control point P of the 
skeleton curve, we find the parametric coordinate (r,θ,t) of P with 
regard to the cluster V such that P = V(r,θ,t) (bind).  2) The new 
position P’ is recalculated using P’ = V’(r,θ,t) (update). 

The bind procedure is the inverse transform of equation 4, i.e. 
(r,θ,t) = V-1(P).  Details are given in appendix C.  The bind 
process is performed whenever the user initiates an action (for 
example, selects a hair cluster and starts editing it), whereas the 
update process occurs at every step of the user interaction.  Hair 
strands are considered statically bound to a cluster when their 
owner is decided.  The bind/update method is similar to Wires 
[Singh and Fiume 1998], but our method compensates for the 
axial scaling and twist terms, and no falloff term is used.   
Temporary/Local Binding To manipulate a group of clusters 
with no common ancestor (e.g., attaching a root cluster to another 
root cluster), the user selects a group of clusters and binds the 
clusters to an arbitrary binder cluster.  Then, these selected 
clusters are temporarily bound to the binder cluster instead of 
their parent clusters until the user nullifies the setting.  This 

Figur
Figure 9c.  The root positions of hair strands are drawn as colored dots.
(b) User controlled tiling and subdivision.  Note the clear borders 
between contours. 
function FINDOWNEROFAHAIRSTRAND (HairStrand H) 
O � NULL ,  C � first root cluster,  done � FALSE 
while (!done and C != NULL) do  
    done � TRUE 
    forall {S | S is a sibling of C or C itself } do 
        CHECKFORINCLUSION(H,S) 
         if S contains H and its center is closer to H than O   
              O � S 
             done � FALSE 
    if (!done) 
        C � O.FIRSTCHILD 
if (O is not a leaf cluster)  
    forall { L | L is a descendent of O and a leaf node } do 
        if L’s center is closer to H than O   
              O � L 
return O            
  
he c
air 
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e 10. (a) Hair strand assignments based on contours shown in
 

INTERACTIVE MANIPULATION  
ore of MHM lies in the user’s ability to edit any node in the 

tree.  The user controls the position, contours, scale, and 
 of any GC, affecting the hair model at multiple levels of 
l (section 5.1).  A sub-tree in the hair tree can be used as a 
defined style template.  The copy/paste tool (section 5.2) 
fers a user-designed style from one cluster to other clusters.  
on 5.3 describes a set of selection methods that exploit the 
 surface and the hair tree.  During interactive manipulation, 
ead penetration is detected and avoided (section 5.4). 

                                                         
ontrast, a voronoi diagram based approach may assign the strand to 
er cluster even if the hair strand does not originate from the region 
ed by the cluster. 
 case occurs when the contours of child clusters do not perfectly 

 the contour of the parent cluster even after the position relaxation 
 Note that we set ρ to a value larger than 1.0 to minimize this 
t. 

option is especially useful to control root clusters (e.g., to make a 
pony tail style), or to locally control a set of clusters that stem 
from two disjoint root positions (Figure 12). 

(a) 
Figure 12.  In
Temporary bind
(b) Two root cl
selected control 

 

AB
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(b) 

 this figure, only skeleton curves are shown.  (a) 
ing.  The cluster A is temporarily attached to cluster B. 
usters are locally bound to another (binder) cluster and 
points (red) are twisted around the binder cluster.   



5.2 Copy and Paste 

We can treat a hair cluster and its descendent clust
user-defined style template.  The copy process illus
Figure 13 transfers a style from one cluster to another, by
the sub-tree parameters.  Copying is 
similar to the editing process in 
section 5.1.  When the style of 
cluster A is copied to cluster B, the 
descendent clusters of cluster A are 
first bound to A, but these clusters are 
updated with cluster B as their parent.  
These updated clusters replace 
existing descendents of cluster B.  
Contours are scaled by the ratio 
between the size of contours of cluster 
A and B.  Other style parameters 
such as scale and twist are simply 
duplicated.  Note that any node in 
the hair tree can be copied to another 
node regardless of depth; making 
every edit the user makes a potential 
style template (Figure 14).  

5.3 Selection Methods 
When a hair model is subdivided 
into many small clusters, it 
becomes difficult to select some 
portions of the model due to its 
volumetric nature (Figure 15).  
The following selection methods 
are available.  1) The user picks a 
control point of a cluster or 
specifies a region with a sphere.  
2) The user selects clusters in scalp 
space with standard 2D selection 
methods (for example, dragging a 
rectangle).  3) The user picks a 
cluster and traverses the hair tree.  
Operations such as ‘pick first child 
node’ or ‘pick next sibling’ are mapped to the keyboar
proves useful in manipulating the multiresolution mo
Selection based on depth is provided (e.g., ‘display 
clusters of depth < 2’).   

5.4 Avoiding Hair-Head Penetration 
It is visually distracting if hair strands penetrate t
During editing, hair strands and skeleton curves are t
intersection.  We use the closest-point-transform
algorithm [Mausch 2000].  The CPT provides a fast
table solution with the preprocessing of the distan

gradients to the closest points on the head mesh.  Let D(p) be 
the distance from a point p to the closest point on the mesh and 
∇(p) be the gradient of the distance.  Penetration is avoided by 
altering each point p inside the head mesh (D(p) < 0) with 
equation 6.   

 (6) 

6   INTERACTIVE RENDERING 
Hair models in our framework are explicitly rendered; every hair 
strand is drawn as polylines in OpenGL.  This section describes 

Figure 13.  Copying a braid from one
cluster to another.  a) The user designs
a braid style.  b) The style is copied
from cluster A to cluster B.  c) Result. 
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methods tailored to render such explicit models for interactive 
modeling purpose.   
Shading Model: The lighting calculation provided in OpenGL is 
disabled and shading is calculated in software, using the 
anisotropic shading model by Kajiya and Kay [1989].  The 
shaded color is computed at each point of the line segments and 
colors are interpolated with OpenGL.  Other shading models 
such as that in [Goldman 1997] could be equally applicable.   
Self-shadowing: Self-shadowing is an essential cue to depict 
volumetric hair (Figure 17a and Figure 17b).  We use our 
opacity shadow maps algorithm [Kim and Neumann 2001], a fast 
approximation of deep shadow maps [Lokovic and Veach 2000].  
Since shadows are view-independent, they can be computed once 
and cached for reuse while the user interactively changes views.     
Antialiasing: Since hair strands are very thin, it is important to 
draw them smoothly with correct filtering.  The antialiased line 
drawing option in OpenGL alone is not sufficient since the correct 
result depends on the drawing order [McReynolds 1997].  Our 
visibility ordering algorithm, inspired by [Levoy and Whitted 
1985], determines the drawing orders for polyline segments of 
hair strands based on the distance from the camera (Figure 16).   

First, the bounding box of all the segments is sliced with planes 
perpendicular to the camera.  Each bin, a volume bounded by a 
pair of adjacent planes, drawn as a color bar in Figure 16, stores 
indices of segments whose farthest end point is contained by the 
bin.  After other objects (e.g., a head mesh) are drawn, the depth 
buffer update is disabled.  Then, the segments are drawn as 
antialiased lines such that the ones indexed by the farthest bin are 
drawn first.  Although simple, the method is fast and converges 
to exact ordering as hair strands are drawn with more segments.  
Since we keep relatively dense line segments for each hair strand, 
the algorithm produces visually satisfactory results.  
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Figure 16. For smooth drawing, polyline segments are sorted by the 
distance from the camera and drawn as antialiased OpenGL lines with the 
user controlled alpha values.  The small images on the right show 
close-ups for an aliased image (top) and an antialiased image (bottom).   
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In the interactive modeling framework, the viewpoint does not 
change much from frame to frame.  This coherence enables us 
to perform the visibility ordering periodically.  In contrast, depth 
buffer based super-sampling methods (e.g., accumulation buffer 
[McReynolds 1997]) must compute visibility at every frame.  In 
addition, the alpha values of segments can control the perceived 
thickness of hair strands.  As strands become thinner, 
super-sampling methods would require more samples while alpha 
value changes suffice in the visibility-ordered hair model.  
Level of Detail and Interactive Rendering: With explicit hair 
models, the results of rendering (e.g., shadows, colors, etc.) can 
be cached, allowing users to interactively view the model during 
editing.  Users can control three parameters - alpha values, the 
number of hair strands, and the number of segments per strand -, 
to adjust the speed of rendering (Figure 17c).  These parameters 
give users choices in the tradeoff between speed of rendering and 
image quality.  Increasing the number of hair strands and the 
number of segments per strand contributes to improved rendering 
quality, whereas decreasing these parameters allows the user to 
interactively examine the hair model at higher frame rates.   

7  RESULTS  
Our system assists users in creating a variety of complex models 
(Figure 18 ~ 22).  Depending on the complexity, it takes from 
10~20 minutes to a few hours to model each hairstyle.  The 
most time-consuming step in modeling is the positioning of initial 
root clusters.  Typically users design 10 to 30 root clusters, 
which consumes about 70 ~ 80 percent of the total modeling time.  
  Hairstylists often use curling and combing as their means to 
promote clustering effects, adding visual richness due to shadows.  
Likewise, we observe that adding more hair strands does not 
necessarily enhance the visual complexity of a hair model.  As 
the hair volume is filled with more strands, room for shadows 
diminishes.  Thus, we find that, to model a natural hairstyle, the 
structural aspects are as important as individual strand details.  
Note that the spaces between clusters after subdivision amplify 
shadows between clusters, enhancing the perceived complexity of 
the model.  Shadowing is less salient for smooth hairstyles.  
However, subdividing smooth hair models can also add visually 
interesting combing effects (Figure 19).     

 

 

 

 

 

 

(a) (b)       (c) 
Figure 17. Effects of shadows and level of detail.  Images were captured during interactive user sessions.  (a) A: front lighting, B: back lighting.  (b) A: 
without shadows, B: with shadows. (c) A: 1,200,000 segments (20000 strands, 60 segments per strand, and α = 0.3), B: 100,000 segments (5000 strands, 
20 segments per strand, and α = 1.0).  The model A is 12 times more complex than model B, hence the rendering time is 12 times slower for A than B. 
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igure 18.  Designing a complex hairstyle.  The hair model (left) consisting of 940 clusters at three levels of Figure 19.  The hairstyle (top) is 
 

etail was created after the photograph shown in the middle (image courtesy of http://www.hairboutique.com). 
he small images show the skeleton curves at each level of detail. 

modeled after the image (bottom, 
http://www.hairboutique.com) 
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8  IMPLEMENTATION AND DISCUSSION  
Our implementation runs on a system with an Intel PIII 700 Mhz 
CPU, 512 MB memory, and nVidia Quadro 2 Pro graphics card.  
Table 1 shows time measurements for a hair model of 10,000 hair 
strands and 40 segments per each strand.  For shadow 
calculation, 40 opacity maps of 200 x 200 pixels were used. 
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clusters are subdivided three times, the offset approach will incur 
three times more GC computations than the current approach. 

To speed up the model updates, we use caching schemes such 
as tabulation of sine functions and curve approximation to find the 
closest point on a curve.  Thus, memory requirement is currently 
high (200 MB at maximum).  Considering that the data structure 
of the hair tree itself is compact (4KB per each GC), the memory 
usage could be reduced by further optimizations and faster CPUs.  
The current bottleneck in the model update is the curve evaluation 
for each strand (table 1).  For efficiency, we tag hair clusters that 
the user is currently editing and update hair strands only for these 
Shading 1.2 second Visibility Ordering 0.43 second 
Hair 

update 
5000 strands 
per second 

Shadow 
Calculation 

5.88 seconds* 

Table 1. Time measurements for components of MHM system. 
During the interactive rendering sessions, a typical setting is to 
se about 150,000 segments (e.g., 5000 hair strands with 30 
egments per strand) with alpha value of 0.5 in a window size of 
12 by 512.  The system interactively (> 5 frames per second) 
enders the edited model with antialiasing.  The frame rate will 
nly get better with progress in CPU and graphics hardware 
erformance.  Shadow computation remains a bottleneck in 
endering and we hope to further accelerate the shadow 
alculation with 3D texture hardware [Kim and Neumann 2001]. 

As reported in [Singh and Fiume 1998], the closest point on a 
urve becomes ambiguous as a point moves away from the curve 
r if the curve is of a high curvature.  This can cause the control 
oints of skeleton curves to drift during the bind/update procedure.  
owever, the bind/update procedure is only used for rough editing 
f the hair model, while the user eventually corrects the drift by 
efining child clusters.  This problem could be obviated by 
itting the entire skeleton curves of the bound clusters, not just the 
ontrol points, to the skeleton curve of the binder cluster. 

In the bind/update procedure, every descendent cluster is bound 
o the edited cluster, not just immediate child clusters.  It is 
empting to store the positions of child clusters as offsets to their 
arent cluster to speed up the bind operation.  However, there 
re more time-consuming operations such as hair strands updates, 
emporary binding, and penetration avoidance.  The offset 
pproach could be inefficient for these operations that require the 
orld coordinates of each cluster.  For example, if all the root 

clusters.  The spline curve drawing in OpenGL may speed up 
the process if combined with programmable vertex shaders for 
local shading calculation.  However, that would require an 
alternative antialiasing algorithm since our visibility algorithm 
requires every strand to be represented as polyline segments. 

When the root positions of hair strands are sampled, the hair 
density can vary over the curved scalp surface.  Although this is 
not a serious problem, we could provide an additional density 
map on the scalp that the user can paint.  The scalp surface may 
also be used as an atlas for texture maps of other parameters such 
as colors, thickness, etc. 

As with any multiresolution approach, the benefit of MHM is 
maximized with complex models, such as natural curly hairs.  
The major benefit of MHM lies in a user’s capability to rapidly 
add structural details and variations, given initial templates.  
Providing a gallery of rough style templates would greatly speed 
up the production of various hairstyles. 

We use GCs as our cluster representation mainly due to its 
modeling efficiency (e.g., axial scaling/twist) and also because a 
hair strand can be treated as a very thin GC.  However, GCs 
may not be best suited to modeling global shapes for smooth hair 
or short hair.  Existing methods may suffice for smoothly 
varying hairstyles (e.g., [Anjyo et al. 1992; Hadap and Thalmann 
2000]) and short hair/animal fur (e.g, [Goldman 1997; Lengyel 
2000; Lengyel et al. 2001]).  Thus, it may be worth investigating 
methods to fit root clusters into other control primitives (e.g., 
polygonal models) or using MHM as a backend system to refine 
the results from other modeling methods. 

*Measurement per light source 
 
Figure 20. Curly ponytail. Figure 21. Short spikes. 
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9  CONCLUSION 
Human hair modeling is often an arduous task.  The interactive 
multiresolution hair modeling (MHM) system presented in this 
paper strives to ease the process.  The system evolved from a 
quest to find a fundamental hair representation flexible enough to 
encompass the wide range of human hairstyles.  MHM extends 
the scope of hair models ranging from smooth shapes and short 
hair, to complex cases such as curly hair, braids and spiky clusters.  
However, avenues remain for future extensions. 

Currently, the hair model is defined for a specific head model.  
It would be useful to transfer hairstyles from one head model to 
another.  The scalp surface abstraction and the copy/paste tool 
may provide good starting points.  Scattered data interpolation 
techniques such as Radial Basis Functions may also provide 
reasonable adaptation of the hair model to different head meshes.  
Completely automating the process may require sophisticated 
dynamics to handle both hair/hair and hair/head interactions. 

In our framework, the user implicitly designs the hair/hair 
interactions in the form of multiresolution clusters.  Extending 
MHM to support animation seems feasible in many ways.  At 
the highest level, we could provide the user with kinematics or 
dynamics controls over root clusters.  Alternatively, strand level 
animation techniques could be employed to animate the lowest 
level strands.  However, in reality when hair moves, hair/hair 
interactions cause hair clusters to change dynamically, from large 
coherently moving clusters to independently moving strands, and 
vice versa.  Simulation of such dynamic clustering effects is a 
challenging problem.  The preservation of user-defined style 
raises another issue.  Currently, we do not know of any 
animation technique that can handle this complexity.   

The fluid flow model by Hadap and Thalmann [2001] and the 
layered wisp model by Plante et al. [2001] approach the hair/hair 
interaction problem at discrete levels, the former at strand level 
and the latter at cluster level.  Simulating dynamic clustering 
effects may involve combining those methods in a continuous 
manner.  Ultimately, hair clusters should split and merge 
dynamically, automatically, and often partially.  We anticipate 
that the dynamic clustering problem could be formulated as that 
of dynamically updating the hair tree, consistently changing the 
hair strand ownership.  The rich volumetric models generated by 
MHM hint that realistic hair motion may be efficiently simulated 
in a multiresolution framework, in the sprit of the ‘simulation 
level of detail systems’ [O’Brien et al. 2001].    
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Appendix 
A. Generation of Generalized Cylinder from Scalp Surface     
When the user places a 2D contour on the scalp, the corresponding GC is 
created.  First, the root position P0 of the skeleton curve is calculated as 
P0  = C(0) = S(uc, vc), where uc and vc denote the center of the scalp 
space contour.  Let N0 be the surface normal at P0.  Initially, the 
skeleton curve is formed as a straight line  (Each control point Pi of the 
skeleton curve is given as Pi = P0 + iL / (N – 1) N0, where N is the number 
of control points) and L is the length of the skeleton curve.  As a next 
step, we convert Rs(θ), the scalp space contour to Rw(θ) in world space.  
Let Ri be the 3D position of each sample point of the contour (recall from 
section 4.1 that each contour is represented with the sample values R(θi)).   

))()(R),()(R(SR ss
i iiciic vu θθθθ sincos ++=  

To make the contour planar, we project Ri to the plane formed by P0 and 
N0.  Let iR̂ be such a projected point.  Then, Rw(θi) is the distance 
from the center point P0 to iR̂ in 3D space. 

0i
w PR̂)(R −=iθ  

The contour function is then decomposed into the global scale s and offset 
function as defined in section 4.1.  The number of contours is the same as 
the number of control points of the skeleton curves.  These contours are 
simply copied at each control point of the skeleton curves.     
B. Inclusion Test for a Hair Strand 
A hair strand is given its location on the scalp by (uh,vh).  Let the center 
of the contour Rs(θ) of each cluster be represented by (uc,vc).  Let ∆u = uh 
- uc and ∆v = vh - vc.  Then, the angle θh is given as  
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hh θπθ −= 2  if ∆u < 0          (B.1) 

A hair strand is contained by a cluster if 22 vuh
S ∆∆θ +≤)(R  

A bounding box of each contour is used to speed up the test.  Also, the 
inverse cosine function is tabulated.  If a hair strand is assigned to a 
cluster, the parametric coordinate for the root position of the hair strand is 
given as (rh ,θh) ,where 

)(R s
h

h
vur

θ
∆∆ 22 += . 

C. Binding a Point P to a Cluster V 
Given a point P and a cluster V, the parametric coordinate (r, θ, t) of the 
point with respect to the cluster is found as follows.  First, t is chosen as 
the value that minimizes the Euclidean distance between point P and the 
skeleton curve C(t).  Let PC be such a point that PC = C(t).  Then θ is 
given as the angle between a vector connecting P and PC and the principle 
normal N(t).  The angle should be corrected for the scaling terms SN(t), 
SB(t).  Let the projection of the vector PPC

 on N(t), B(t) be PN, PB.  

Then, the angle θ is given using equation B.1, by letting ∆u = PN / SN(t), 
and ∆v = PB / SB(t).  After correcting for the twist term W(t), θ = θ −  
W(t).  The parameter r is the ratio between the Euclidean distance 
between P, PC and R(θ, t). 

( )tPPr C ,/R θ−= . 
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