
Interactive Multiresolution Hair Modeling and Editing
Tae-Yong Kim and Ulrich Neumann

{taeyong | uneumann}@graphics.usc.edu

Computer Graphics and Immersive Technologies Laboratory
Integrated Media Systems Center
University of Southern California
Figure 1. An example multiresolution hair design procedure. Each hair model results from interactive multiresolution editing operations. 1. The user
roughly designs a hairstyle with about 30 high-level clusters. 2. One hair cluster (inside the ellipse) is subdivided and made curly. 3. The curly cluster is

1 2 3 4 5

 Abstract
Human hair modeling is a difficult task. This paper presents a
constructive hair modeling system with which users can sculpt a
wide variety of hairstyles. Our Multiresolution Hair Modeling
(MHM) system is based on the observed tendency of adjacent hair
strands to form clusters at multiple scales due to static attraction.
In our system, initial hair designs are quickly created with a small
set of hair clusters. Refinements at finer levels are achieved by
subdividing these initial hair clusters. Users can edit an
evolving model at any level of detail, down to a single hair strand.
High level editing tools support curling, scaling, and copy/paste,
enabling users to rapidly create widely varying hairstyles.
Editing ease and model realism are enhanced by efficient hair
rendering, shading, antialiasing, and shadowing algorithms.

CR Categories and Subject Descriptions: I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism; I.3.5
[Computer Graphics]: Computational Geometry and Object
Modeling – Modeling Package

Additional Keywords: hair modeling, multiresolution modeling,
level of detail, hair rendering, generalized cylinders

1 INTRODUCTION
Hairstyle is a determining factor of a person’s first impression
when meeting someone [LaFrance 2001]. Thus, hair is an
important aspect of personal identity, but hair modeling remains a
major obstacle in realistic human face synthesis. The
volumetric nature of hair is simply not captured by surface models,
so it is often simplified or hidden by objects like hats.

Surface modeling methods can use high-density data acquired
from range scanners. Such model acquisitions are not yet
practical for hair since we lack suitable volumetric scanner
technologies. The recent work by Grabli et al. [2002] attempts
to automatically reconstruct hair models from photographs.
Although promising, the approach is still in its inception stage and
does not recover complete hair models. Our goal is an
interactive hair modeling system that allows a user to easily and
quickly design a wide range of hairstyles (Figure 1 illustrates an
example hairstyling process).

Cluster (or wisp) hair models [Chen et al. 1999; Falk and Sand
2001; Kim and Neumann 2000; Plante et al. 2001; Watanabe and
Suenaga 1992; Xu and Yang 2001; Yang et al. 2000] exploit the
observed tendency of adjacent hair strands to form clusters due to
static attraction or artificial styling. These models employ
two-step manipulation. 1) The rough geometry of a hair cluster
is modeled. 2) Details are added by rendering each hair strand
or volume density. These models, however, lack stylistic
variations in each hair strand due to a limited set of parameters,
especially, for complex variations such as curly hair, as noted by
Xu and Yang [2001].

Strand hair models [Anjyo et al. 1992; Daldegan et al. 1993;
Hadap and Thalmann 2001; Lee and Ko 2001; Rosenblum et al.
1991] allow every hair strand to be explicitly designed.
However, manual modeling of individual hair strands is extremely
tedious. Designing just the key hair strands can consume five to
ten hours [Thalmann and Hadap 2000]. Thus, strand hair
models are often coupled with dynamics simulations. External
parameters such as gravity, wind forces, and stiffness affect the
global shape of the final hair model. However, the dynamics
methods are often limited to relatively simple hairstyles and
complex hairstyles are not easily modeled, even after repeated
trial and error iterations of minutes or hours of simulation.

Problems arise from the complexity of real human hairstyles,
often created by hairstylists with extensive efforts such as curling
and combing (Figure 2). Structured and discontinuous clusters
(e.g., braids, combing effects) are difficult to model with strand
hair models, whereas stylistic strand variations are difficult to
achieve with cluster/wisp hair models. Our multiresolution hair

copied onto other clusters. 4. The bang hair cluster (inside the ellipse) is subdivided and refined. 5. Final hair model after further refinements.

Copyright © 2002 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1-212-869-0481 or e-mail permissions@acm.org.
© 2002 ACM 1-58113-521-1/02/0007 $5.00

620

m
as

m
an
T
ap
th
sy
co
tr
ap
m
ge
sc
le

ha
pr
es
as
in
vi
re
m

ha
ha
te
pa
an
m
se
In
re
9

2
Si
de
ar
R
m
re
S
sm
di
si
be
m

[2001] for interactive hairstyling. Rosenblum et al. produce hair
motion by mass-spring simulation of individual hair strands
[1991]. Exploiting the similarity between fluid and smooth
hairstyles, Hadap and Thalmann develop an interactive hairstyling
system [2000] and a dynamics system simulating hair/hair
interaction [2001].

Watanabe and Suenaga [1992] propose a wisp model, later
extended in an interactive hairstyling system by Chen et al. [1999].

Figure 2. Photographs of human hair.

odel aims at bridging this gap by allowing detailed local control
 well as global control.
To model complex objects, researchers successfully employ

ultiresolution concepts for continuous curves, surface editing,
d volume sculpting (see [Stollnitz et al. 1996] for examples).

heir major benefit is the user’s freedom to choose the
propriate level of detail for a desired model manipulation. In
is spirit, we develop a Multiresolution Hair Modeling (MHM)
stem. However, hair models are inherently volumetric and
ntain a large number of disjoint hair strands. Thus, our

eatment differs from other multiresolution techniques in
plying the concept of multiresolution to hair. In our context,
ultiresolution manipulations are achieved with a hierarchy of
neralized cylinders. MHM allows users to interactively move,
ale, curl, and copy a portion of an evolving hair model at any
vel of detail.
Rendering is considered a separate offline process in existing
ir modeling systems. However, such non-interactive
ocesses can significantly slow down the modeling process,
pecially for complex hairstyles for which rendering effects such
 self-shadowing are crucial. We aim at providing an
teractive rendering capability, enabling users to get immediate
sual feedback during modeling. To our knowledge, no
ported hair modeling systems interactively render explicit hair
odels, complete with shading, antialiasing, and self-shadowing.
The contributions of our work lie in a novel multiresolution
ir representation, interactive tools for editing hair, and efficient
ir rendering methods, all aimed at decreasing a user’s time and
dium for modeling complex hairstyles. The remainder of this
per is organized as follows. Section 2 reviews related work
d section 3 provides a brief system overview. The
ultiresolution hair representation is detailed in section 4, and
ction 5 presents editing tools suited to the representation.
teractive rendering algorithms are presented in section 6, and
sults are presented and discussed in section 7. Sections 8 and
discuss implementation issues and future directions.

 Related Work
nce the pioneering work by Csuri et al. [1979], researchers have
veloped a number of hair modeling systems. These systems
e categorized based on hairstyles to which they are best suited.
efer to [Parke and Waters 1996; Thalmann and Hadap 2000] for
ore comprehensive survey on human hair modeling and
ndering research.
mooth Hairstyle: Strand hair models are often limited to

ooth hairstyles, due to the lack of mechanisms to simulate
scontinuous clustering effects in their simplified physics
mulation or interpolation methods. Anjyo et al. use cantilever
am dynamics and one-dimensional angular dynamics for hair
odeling and animation [1992], later extended by Lee and Ko

In an integrated hair system by Daldegan et al. [1993],
characteristic hair strands define the boundary of wisps. The
common assumption that hair strands are parallel inside a wisp
makes it hard to model rigorous strand variations such as curliness
with random parameters to perturb wisps. Also, discontinuous
clusters (e.g., due to combing) are not efficiently handled due to
the underlying interpolation between key hair strands.
Clusters and Discontinuity: The cluster hair model by Yang et al.
[2000] defines the boundary of a wisp with generalized cylinders,
later used in an interactive hairstyling system in [Xu and Yang
2001]. Strand variations are implicitly modeled with ray tracing
volume density. A similar method is used in the production of
the movie ‘Shrek’ in which wisps are defined by control polygons
[Falk and Sand 2001]. These methods handle bounded,
man-made hairstyles such as braids, but stylistic strand variations
are difficult to model. A method to model discontinuities in
smooth hairstyles is reported in [Kim and Neumann 2000]. The
dynamics system by Plante et al. [2001] simulates the interactions
between discontinuous wisps in motion. However, the
clustering is pre-determined before simulation and the distribution
of strands inside a wisp is fixed.
Animal Fur or Short Hair: Explicit geometry is often avoided
for short animal fur. Kajiya and Kay [1989] use volumetric
texture (or texels) to mimic a group of hair strands, later extended
by Neyret [1997] for multiresolution. An appearance-based
model of distant animal fur is developed [Goldman 1997]. For
real-time rendering of animal fur, concentric textures are used to
sample the volumetric texture functions, augmented with
large-scale geometry [Lengyel 2000; Lengyel et al. 2001]. A
common assumption with animal fur is that the distribution of hair
has repeated patterns. However, the assumption does not hold
with longer human hair, as adjacent hair strands at the scalp split,
curl, and move away from each other. Such styling effects
require a significantly different modeling method from existing
animal fur techniques [Lengyel et al. 2001].

3 Overview
Figure 3 illustrates the structure of a multiresolution hair model.
A parametric patch on the scalp surface (section 4.2), defines the
region where hair can originate. A hair model is constructed
hierarchically, starting from a small set of generalized cylinders
(GCs). A GC defines the boundary of each hair cluster,
controlling a group of clusters or hair strands (see section 4.1 for
our definition of a GC). The user interactively subdivides each
hair cluster, adding more detail until the desired appearance is
achieved. Subdivision steps (section 4.4) add new nodes to the
hierarchy we call a hair tree. Editing operations such as curling,
moving, copying, and selecting are applied to nodes of the hair
tree (section 5). While the user edits a hairstyle, the system
interactively visualizes the edited model using various rendering
options (section 6).

621

4 Hair Cluster Representation
A GC defines the boundary of a hair cluster. In the following
sections, we do not differentiate GCs from hair clusters and both
terms are used interchangeably.

4.1 Generalized Cylinder
A GC is defined with a skeleton curve C(t) and a set of contours
placed along the curve1.

 () () ()ttt , θθ RC,GC += (1)
where C(t) is a space curve parameterized by t and R(θ, t) is a
contour function centered at C(t). θ is an angle around the
principal axis of a reference frame. With an additional
parameter r, any point around the GC can be defined as

() () ()trttr , , , θθ RCV += (2)
Constructing a GC requires each contour to be properly aligned

with reference frames. We use the frame generation method by
Bloomenthal [1990]. The frame is represented with the tangent
vector of the skeleton curve T

�

, the principal normal N
�

 and the
binormal vector B

�

 (Figure 4). Both N
�

 and B
�

 lie on the
plane of the contour perpendicular to the skeleton curve. The
pre-computed frames are interpolated to form a smoothly shaped
GC. Let)(T t

� ,)(N t
� , and)(B t

� denote the interpolated frame
vectors at t (0 ≤ t ≤ 1). The world coordinate of a point
parameterized by (r,θ,t) is

1 Similar definitions can be found in [Aguado et al. 1999; Xu and Yang
2000]. Alternatively, a GC can be viewed as rotational sweep of a profile
curve [Kim et al. 1994].

Representation of Contour: R(θ) is a contour shape function
dependent on θ. ()θR̂ is defined as an offset distance function
from a circle with a global radius s (()θθ R̂)R(+= s). N pairs of
angles and offset radius values control the shape of a contour
along with the global radius s. The current implementation uses

Nii /πθ 2= and ()θR̂ is computed by linear interpolation of
the angle / offset pairs. By definition, the contour is star-shaped,
which we find flexible enough to represent the boundary of hair
clusters. The offset function can efficiently represent
star-shaped contours with a small set of parameters (currently, N =
32 is used). The continous contour function R(θ, t) is linearly
interpolated from a discrete number of contours.2
Auxiliary Functions: Adding auxiliary scale and twist terms
completes our description of GC. The scale terms SN(t) and
SB(t) let the user easily control the stretching and shrinking of
GCs along the two axis vectors N

�

 and B
�

, while direct
modification of the contour functions allows fine detailed control
over the shape. The twist term W(t) controls the curliness of a
hair cluster. Adding these terms yields

w

4
A
w
C
m
e
c
w
t
s
c
p
s

t
s
c
s
g
c
h

2

o
s

Hair model

A head mesh with a

scalp surface

A hair tree

= + + +

Skeleton
curve
C(t)

Contour
functions

R(θ,t)

Scale

SN(t), SB(t)

Twist
(curliness)

W(t)

Generalized
Cylinder

V(r, θ, t)

Hair strand

=
Polyline

Figure 3. Graphical view of a multiresolution hair model.

θ
N
�

B
�

C(t) N
�

B
�

T
�

Figure 4. Definition of a reference frame along the space curve C(t).
The parametric coordinate for a point P is given as (r,θ, t), where θ is
defined as the angle around the tangent vector T

�

, starting from the
principal normal N

�

.

P
r

P

622
here ()tWˆ += θθ .

.2 Scalp Surface
 scalp surface is a parametric patch defining the region of a head
here the user can place hair. We use a tensor-product
atmull-Rom spline patch that the user wraps over the head
odel. The current system allows a user to interactively specify

ach control point of the spline patch. The scalp surface is
onstructed once for each head model and it is useful in many
ays. 1) The user can easily place and move the GC contour on

he scalp mesh (Figure 5). 2) Sampling and assigning hair
trands become simpler (section 4.3). 3) The subdivision of hair
lusters is reduced to a 2D problem (section 4.4). 4) The scalp
arameterization provides the user with convenient means to
elect clusters in 2D space (section 5.3).

Scalp space (middle figure in Figure 5) is spanned by u and v,
he parametric coordinates of the surface. World space is
pecified by the 3D world coordinate frame. We denote the
ontour function in scalp space as Rs(θ) and contours in world
pace as Rw(θ). Scalp space contours are used for hair strand
eneration and for the initialization of multiple world space
ontours that define the shape of a GC. Appendix A describes
ow to generate an initial GC using the scalp space contour.

There exist more rigorous methods to define and interpolate the contours
f GCs [Aguado et al. 1999]. Our definition of contours aims at
implicity and computational efficiency.

4.3 Generation of Hair Strands
Hair strands are represented as polylines (a set of connected line
segments). Creating hair strands independently within each GC
(Figure 6a) can cause visually distracting hair density variation
since we allow arbitrarily shaped scalp space contours that can
overlap each other (Figure 7). Rather than trying to prevent the
overlaps, we sample the root positions of hair strands first, and
assign the strands to their owner GCs (Figure 6b).

the same as that of the skeleton curve of the strand’s owner GC.
The polyline segments of each hair strand are evaluated from the
spline interpolation.

Varying the length of each hair strand increases the model’s
natural appearance. A random sample η is taken from a uniform
distribution from 1-k to 1 (0 ≤ 1-k ≤ η ≤1), where k denotes the
degree of tip length variation. Adding the length variation, we
evaluate the spline controls points of each hair strand using ηt
instead of t for equation 4.

4.4 Subdivision
When a parent cluster is subdivided, contours and skeleton curves
of its child clusters are created. The contours of child clusters
are inherited from those of the parent cluster unless the user
specifies alternative shapes. Inherited contours are scaled
by N/ρ , where N is the user-specified number of child clusters
and ρ controls the degree of overlap between child clusters. For
world space contours, ρ is set to 1.0. For scalp space contours ρ
is set to a value larger than 1.0 (typically 1.3<ρ<1.5), to ensure
that the subdivided region is fully covered by the contours of
child clusters.

To place the child clusters on the scalp, we first sample random

Figure 5. Placing a contour on the scalp. The user selects a contour
(right) and interactively places it in 2D scalp space (yellow circle in
the middle), which defines its 3D position (red circle on the left).
The grid is color coded to help the user match corresponding
positions.

u
v

Fig
around the root position and in highly curved region. (b) Using spline
interpolation at strand-level, smoothness is guaranteed.
(a) (b)
Figure 6. (a) Independent hair generation for each cluster causes uneven
Initially, (or whenever the total
number of hair strands changes), the
root position (uh,vh) of each hair strand
is uniformly sampled on the scalp grid.
For each hair strand, we determine if
there exists a GC that owns the strand
(the details of the ownership decision
are deferred until section 4.4). If
there is such a GC, the parametric
coordinate (rh, θh) of the strand is
computed (see appendix B for details).
Given (rh, θh), the hair strand is
created by connecting points
computed with equation 4,
incrementing t from 0 to 1.

Note that equation 4 assumes that each
plane perpendicular to the skeleton curve.
is curved, planar contours can misalign
strands. To handle the problem, the root
hair strand is directly evaluated on the sca

() ()hhhh vur ,S,,V =0θ
where S(u,v) is the parametric scalp
modification can still cause unnatural ben
if other points of polyline segments are
equation 4 (Figure 8a). Similar pro
self-intersections in GCs of high curvat
Catmull-Rom spline curve for each ha
smoothness (Figure 8b). The number of

positions inside the contour of their parent. This often produces
uneven distributions of contour positions (Figure 9a). We use
the position relaxation algorithm by Turk [1991] to improve the
distribution (Figure 9b). Given these positions, skeleton curves
are created using the method described in section 4.3.

hair density in overlapping regions. (b) By assigning pre-sampled hair
strands to clusters, the overlap problem is solved.

F
c
o
i
o
i
o

F
Random positioning (ρ=1.4). (b) Position relaxation. (c) An example
tiling of the scalp surface after a few subdivision steps.
igure 7. Scalp space
ontours can overlap each
ther. Colored dots
llustrate the root positions
f strands. Each color
ndicates the owner cluster
f hair strands.

 GC contour lies in the
 Since the scalp shape
 the root positions of
 position (t = 0) of each
lp, using

 (5)
patch. However, this
ding along hair strands
directly evaluated from
blems can arise from
ure. We interpolate a
ir strand to guarantee
 spline control points is

D
p
cl
ca
o
cl
ce
o
co
co

p
su
st

623

(a) (b) (c)

igure 9. Subdivision of contours and tiling of the scalp space. (a)
e
o
u
n

v
o
n

f

se
b
r

(a) (b)

ure 8. (a) Straight line connections can cause unnatural bending
ciding the Owners of Hair Strands After child clusters are
sitioned on the scalp, hair strands are re-assigned to the new
sters. As shown in Figure 9c, contours of the child clusters
 overlap with each other or contours of existing clusters. In

erlapping regions, we assign hair strands to a cluster with the
sest center position in scalp space, similar to computing the
troidal voronoi diagram [Hausner 2001] of the center positions
all the clusters on the scalp (Figure 10a). However, simply

mputing the voronoi diagram may be problematic when precise
ntrols for hair grouping are desired (e.g., for parting).
Our hair ownership decision algorithm shown below as a
udo code allows the user to design and tune the tiling and
division patterns if necessary (Figure 10b). For each hair

and, the algorithm traverses the hair tree starting from root

clusters. The closest cluster containing the strand is chosen at
each depth. The iteration is repeated until it reaches a leaf
cluster. If there is only one such leaf cluster, the strand is
assigned to the cluster regardless of the distance to other clusters.3
When two or more leaf clusters contain the same strand due to
overlaps, the cluster with a center position closest to the strand is
selected. When a hair strand is contained in a non-leaf cluster,
but not contained in any of its descendents4, the strand is assigned
to the closest descendent leaf cluster. Note that we allow only
leaf clusters to own hair strands, and for each hair strand, there is
at most one owner. Thus, we can maintain consistent hair
density and limit the total number of hair strands; both features
prove useful while level-of-detail manipulations control the
appearance of the overall hair model (section 6).

5
T
h
t
d
u
t
S
s
h

3

a
b
4

c
s
a

5.1 Editing Properties of Hair Clusters
The user interactively manipulates GC parameters such as scale,
twist, and skeleton shape (equation 4). When editing leaf
clusters, the system simply reassigns the parameters and update
hair strands. When editing a non-leaf cluster, all of its
descendent clusters must follow the shape changes to preserve
their relative position and orientation (Figure 11).

(a) (b) (c) (d)

Figure 11. a) The user picks the control point (inside the blue circle) of
a high-level cluster. The user can b) move c) scale d) twist the region
around the control point.

When a non-leaf cluster is edited, all the descendant clusters
are bound to the cluster. Let V be the cluster before editing.
Assume that the user changes V to V’. Then each descendant
cluster is updated as follows. 1) For each control point P of the
skeleton curve, we find the parametric coordinate (r,θ,t) of P with
regard to the cluster V such that P = V(r,θ,t) (bind). 2) The new
position P’ is recalculated using P’ = V’(r,θ,t) (update).

The bind procedure is the inverse transform of equation 4, i.e.
(r,θ,t) = V-1(P). Details are given in appendix C. The bind
process is performed whenever the user initiates an action (for
example, selects a hair cluster and starts editing it), whereas the
update process occurs at every step of the user interaction. Hair
strands are considered statically bound to a cluster when their
owner is decided. The bind/update method is similar to Wires
[Singh and Fiume 1998], but our method compensates for the
axial scaling and twist terms, and no falloff term is used.
Temporary/Local Binding To manipulate a group of clusters
with no common ancestor (e.g., attaching a root cluster to another
root cluster), the user selects a group of clusters and binds the
clusters to an arbitrary binder cluster. Then, these selected
clusters are temporarily bound to the binder cluster instead of
their parent clusters until the user nullifies the setting. This

Figur
Figure 9c. The root positions of hair strands are drawn as colored dots.
(b) User controlled tiling and subdivision. Note the clear borders
between contours.
function FINDOWNEROFAHAIRSTRAND (HairStrand H)
O � NULL , C � first root cluster, done � FALSE
while (!done and C != NULL) do
 done � TRUE
 forall {S | S is a sibling of C or C itself } do
 CHECKFORINCLUSION(H,S)
 if S contains H and its center is closer to H than O
 O � S
 done � FALSE
 if (!done)
 C � O.FIRSTCHILD
if (O is not a leaf cluster)
 forall { L | L is a descendent of O and a leaf node } do
 if L’s center is closer to H than O
 O � L
return O

he c
air
wist
etai
ser-
rans
ecti
calp
air/h

 In c
noth
ound
 This
over
tep.
rtifac

e 10. (a) Hair strand assignments based on contours shown in

INTERACTIVE MANIPULATION
ore of MHM lies in the user’s ability to edit any node in the

tree. The user controls the position, contours, scale, and
 of any GC, affecting the hair model at multiple levels of
l (section 5.1). A sub-tree in the hair tree can be used as a
defined style template. The copy/paste tool (section 5.2)
fers a user-designed style from one cluster to other clusters.
on 5.3 describes a set of selection methods that exploit the
 surface and the hair tree. During interactive manipulation,
ead penetration is detected and avoided (section 5.4).

ontrast, a voronoi diagram based approach may assign the strand to
er cluster even if the hair strand does not originate from the region
ed by the cluster.
 case occurs when the contours of child clusters do not perfectly

 the contour of the parent cluster even after the position relaxation
 Note that we set ρ to a value larger than 1.0 to minimize this
t.

option is especially useful to control root clusters (e.g., to make a
pony tail style), or to locally control a set of clusters that stem
from two disjoint root positions (Figure 12).

(a)
Figure 12. In
Temporary bind
(b) Two root cl
selected control

AB

624

(b)

 this figure, only skeleton curves are shown. (a)
ing. The cluster A is temporarily attached to cluster B.
usters are locally bound to another (binder) cluster and
points (red) are twisted around the binder cluster.

5.2 Copy and Paste

We can treat a hair cluster and its descendent clust
user-defined style template. The copy process illus
Figure 13 transfers a style from one cluster to another, by
the sub-tree parameters. Copying is
similar to the editing process in
section 5.1. When the style of
cluster A is copied to cluster B, the
descendent clusters of cluster A are
first bound to A, but these clusters are
updated with cluster B as their parent.
These updated clusters replace
existing descendents of cluster B.
Contours are scaled by the ratio
between the size of contours of cluster
A and B. Other style parameters
such as scale and twist are simply
duplicated. Note that any node in
the hair tree can be copied to another
node regardless of depth; making
every edit the user makes a potential
style template (Figure 14).

5.3 Selection Methods
When a hair model is subdivided
into many small clusters, it
becomes difficult to select some
portions of the model due to its
volumetric nature (Figure 15).
The following selection methods
are available. 1) The user picks a
control point of a cluster or
specifies a region with a sphere.
2) The user selects clusters in scalp
space with standard 2D selection
methods (for example, dragging a
rectangle). 3) The user picks a
cluster and traverses the hair tree.
Operations such as ‘pick first child
node’ or ‘pick next sibling’ are mapped to the keyboar
proves useful in manipulating the multiresolution mo
Selection based on depth is provided (e.g., ‘display
clusters of depth < 2’).

5.4 Avoiding Hair-Head Penetration
It is visually distracting if hair strands penetrate t
During editing, hair strands and skeleton curves are t
intersection. We use the closest-point-transform
algorithm [Mausch 2000]. The CPT provides a fast
table solution with the preprocessing of the distan

gradients to the closest points on the head mesh. Let D(p) be
the distance from a point p to the closest point on the mesh and
∇(p) be the gradient of the distance. Penetration is avoided by
altering each point p inside the head mesh (D(p) < 0) with
equation 6.

 (6)

6 INTERACTIVE RENDERING
Hair models in our framework are explicitly rendered; every hair
strand is drawn as polylines in OpenGL. This section describes

Figure 13. Copying a braid from one
cluster to another. a) The user designs
a braid style. b) The style is copied
from cluster A to cluster B. c) Result.

a) c)

 BB

copy

Figure 15. The c
of a multiresolut
model. Contours (g
skeleton curves (y
1340 leaf clusters ar

Figure 14. A b
resulting from
copy/paste oper
multiple scales.
b)
AA

ers as a
trated in
 copying

d, which
del. 4)
only the

he head.
ested for
 (CPT)
 look-up
ces and

methods tailored to render such explicit models for interactive
modeling purpose.
Shading Model: The lighting calculation provided in OpenGL is
disabled and shading is calculated in software, using the
anisotropic shading model by Kajiya and Kay [1989]. The
shaded color is computed at each point of the line segments and
colors are interpolated with OpenGL. Other shading models
such as that in [Goldman 1997] could be equally applicable.
Self-shadowing: Self-shadowing is an essential cue to depict
volumetric hair (Figure 17a and Figure 17b). We use our
opacity shadow maps algorithm [Kim and Neumann 2001], a fast
approximation of deep shadow maps [Lokovic and Veach 2000].
Since shadows are view-independent, they can be computed once
and cached for reuse while the user interactively changes views.
Antialiasing: Since hair strands are very thin, it is important to
draw them smoothly with correct filtering. The antialiased line
drawing option in OpenGL alone is not sufficient since the correct
result depends on the drawing order [McReynolds 1997]. Our
visibility ordering algorithm, inspired by [Levoy and Whitted
1985], determines the drawing orders for polyline segments of
hair strands based on the distance from the camera (Figure 16).

First, the bounding box of all the segments is sliced with planes
perpendicular to the camera. Each bin, a volume bounded by a
pair of adjacent planes, drawn as a color bar in Figure 16, stores
indices of segments whose farthest end point is contained by the
bin. After other objects (e.g., a head mesh) are drawn, the depth
buffer update is disabled. Then, the segments are drawn as
antialiased lines such that the ones indexed by the farthest bin are
drawn first. Although simple, the method is fast and converges
to exact ordering as hair strands are drawn with more segments.
Since we keep relatively dense line segments for each hair strand,
the algorithm produces visually satisfactory results.

omplexity
ion hair
reen) and

ellow) of
e shown.

raid style

multiple
ations at

Figure 16. For smooth drawing, polyline segments are sorted by the
distance from the camera and drawn as antialiased OpenGL lines with the
user controlled alpha values. The small images on the right show
close-ups for an aliased image (top) and an antialiased image (bottom).

Camera

r o
k

a

d
b

c

e g

f

v
s

u

p

t
q

m
h i

j

l n

k,l,m

d,e
c

f,g,h
i,j

n,o,p,q
r,s,t
u,v

b
a Far

Near

625

In the interactive modeling framework, the viewpoint does not
change much from frame to frame. This coherence enables us
to perform the visibility ordering periodically. In contrast, depth
buffer based super-sampling methods (e.g., accumulation buffer
[McReynolds 1997]) must compute visibility at every frame. In
addition, the alpha values of segments can control the perceived
thickness of hair strands. As strands become thinner,
super-sampling methods would require more samples while alpha
value changes suffice in the visibility-ordered hair model.
Level of Detail and Interactive Rendering: With explicit hair
models, the results of rendering (e.g., shadows, colors, etc.) can
be cached, allowing users to interactively view the model during
editing. Users can control three parameters - alpha values, the
number of hair strands, and the number of segments per strand -,
to adjust the speed of rendering (Figure 17c). These parameters
give users choices in the tradeoff between speed of rendering and
image quality. Increasing the number of hair strands and the
number of segments per strand contributes to improved rendering
quality, whereas decreasing these parameters allows the user to
interactively examine the hair model at higher frame rates.

7 RESULTS
Our system assists users in creating a variety of complex models
(Figure 18 ~ 22). Depending on the complexity, it takes from
10~20 minutes to a few hours to model each hairstyle. The
most time-consuming step in modeling is the positioning of initial
root clusters. Typically users design 10 to 30 root clusters,
which consumes about 70 ~ 80 percent of the total modeling time.
 Hairstylists often use curling and combing as their means to
promote clustering effects, adding visual richness due to shadows.
Likewise, we observe that adding more hair strands does not
necessarily enhance the visual complexity of a hair model. As
the hair volume is filled with more strands, room for shadows
diminishes. Thus, we find that, to model a natural hairstyle, the
structural aspects are as important as individual strand details.
Note that the spaces between clusters after subdivision amplify
shadows between clusters, enhancing the perceived complexity of
the model. Shadowing is less salient for smooth hairstyles.
However, subdividing smooth hair models can also add visually
interesting combing effects (Figure 19).

(a) (b) (c)
Figure 17. Effects of shadows and level of detail. Images were captured during interactive user sessions. (a) A: front lighting, B: back lighting. (b) A:
without shadows, B: with shadows. (c) A: 1,200,000 segments (20000 strands, 60 segments per strand, and α = 0.3), B: 100,000 segments (5000 strands,
20 segments per strand, and α = 1.0). The model A is 12 times more complex than model B, hence the rendering time is 12 times slower for A than B.

A

B

A

BA B
A B

F
d
T

igure 18. Designing a complex hairstyle. The hair model (left) consisting of 940 clusters at three levels of Figure 19. The hairstyle (top) is

etail was created after the photograph shown in the middle (image courtesy of http://www.hairboutique.com).
he small images show the skeleton curves at each level of detail.

modeled after the image (bottom,
http://www.hairboutique.com)

626

http://www.hairboutique.com/

8 IMPLEMENTATION AND DISCUSSION
Our implementation runs on a system with an Intel PIII 700 Mhz
CPU, 512 MB memory, and nVidia Quadro 2 Pro graphics card.
Table 1 shows time measurements for a hair model of 10,000 hair
strands and 40 segments per each strand. For shadow
calculation, 40 opacity maps of 200 x 200 pixels were used.

u
s
5
r
o
p
r
c

c
o
p
H
o
r
f
c

t
t
p
a
t
a
w

clusters are subdivided three times, the offset approach will incur
three times more GC computations than the current approach.

To speed up the model updates, we use caching schemes such
as tabulation of sine functions and curve approximation to find the
closest point on a curve. Thus, memory requirement is currently
high (200 MB at maximum). Considering that the data structure
of the hair tree itself is compact (4KB per each GC), the memory
usage could be reduced by further optimizations and faster CPUs.
The current bottleneck in the model update is the curve evaluation
for each strand (table 1). For efficiency, we tag hair clusters that
the user is currently editing and update hair strands only for these
Shading 1.2 second Visibility Ordering 0.43 second
Hair

update
5000 strands
per second

Shadow
Calculation

5.88 seconds*

Table 1. Time measurements for components of MHM system.
During the interactive rendering sessions, a typical setting is to
se about 150,000 segments (e.g., 5000 hair strands with 30
egments per strand) with alpha value of 0.5 in a window size of
12 by 512. The system interactively (> 5 frames per second)
enders the edited model with antialiasing. The frame rate will
nly get better with progress in CPU and graphics hardware
erformance. Shadow computation remains a bottleneck in
endering and we hope to further accelerate the shadow
alculation with 3D texture hardware [Kim and Neumann 2001].

As reported in [Singh and Fiume 1998], the closest point on a
urve becomes ambiguous as a point moves away from the curve
r if the curve is of a high curvature. This can cause the control
oints of skeleton curves to drift during the bind/update procedure.
owever, the bind/update procedure is only used for rough editing
f the hair model, while the user eventually corrects the drift by
efining child clusters. This problem could be obviated by
itting the entire skeleton curves of the bound clusters, not just the
ontrol points, to the skeleton curve of the binder cluster.

In the bind/update procedure, every descendent cluster is bound
o the edited cluster, not just immediate child clusters. It is
empting to store the positions of child clusters as offsets to their
arent cluster to speed up the bind operation. However, there
re more time-consuming operations such as hair strands updates,
emporary binding, and penetration avoidance. The offset
pproach could be inefficient for these operations that require the
orld coordinates of each cluster. For example, if all the root

clusters. The spline curve drawing in OpenGL may speed up
the process if combined with programmable vertex shaders for
local shading calculation. However, that would require an
alternative antialiasing algorithm since our visibility algorithm
requires every strand to be represented as polyline segments.

When the root positions of hair strands are sampled, the hair
density can vary over the curved scalp surface. Although this is
not a serious problem, we could provide an additional density
map on the scalp that the user can paint. The scalp surface may
also be used as an atlas for texture maps of other parameters such
as colors, thickness, etc.

As with any multiresolution approach, the benefit of MHM is
maximized with complex models, such as natural curly hairs.
The major benefit of MHM lies in a user’s capability to rapidly
add structural details and variations, given initial templates.
Providing a gallery of rough style templates would greatly speed
up the production of various hairstyles.

We use GCs as our cluster representation mainly due to its
modeling efficiency (e.g., axial scaling/twist) and also because a
hair strand can be treated as a very thin GC. However, GCs
may not be best suited to modeling global shapes for smooth hair
or short hair. Existing methods may suffice for smoothly
varying hairstyles (e.g., [Anjyo et al. 1992; Hadap and Thalmann
2000]) and short hair/animal fur (e.g, [Goldman 1997; Lengyel
2000; Lengyel et al. 2001]). Thus, it may be worth investigating
methods to fit root clusters into other control primitives (e.g.,
polygonal models) or using MHM as a backend system to refine
the results from other modeling methods.

*Measurement per light source

Figure 20. Curly ponytail. Figure 21. Short spikes.

627

9 CONCLUSION
Human hair modeling is often an arduous task. The interactive
multiresolution hair modeling (MHM) system presented in this
paper strives to ease the process. The system evolved from a
quest to find a fundamental hair representation flexible enough to
encompass the wide range of human hairstyles. MHM extends
the scope of hair models ranging from smooth shapes and short
hair, to complex cases such as curly hair, braids and spiky clusters.
However, avenues remain for future extensions.

Currently, the hair model is defined for a specific head model.
It would be useful to transfer hairstyles from one head model to
another. The scalp surface abstraction and the copy/paste tool
may provide good starting points. Scattered data interpolation
techniques such as Radial Basis Functions may also provide
reasonable adaptation of the hair model to different head meshes.
Completely automating the process may require sophisticated
dynamics to handle both hair/hair and hair/head interactions.

In our framework, the user implicitly designs the hair/hair
interactions in the form of multiresolution clusters. Extending
MHM to support animation seems feasible in many ways. At
the highest level, we could provide the user with kinematics or
dynamics controls over root clusters. Alternatively, strand level
animation techniques could be employed to animate the lowest
level strands. However, in reality when hair moves, hair/hair
interactions cause hair clusters to change dynamically, from large
coherently moving clusters to independently moving strands, and
vice versa. Simulation of such dynamic clustering effects is a
challenging problem. The preservation of user-defined style
raises another issue. Currently, we do not know of any
animation technique that can handle this complexity.

The fluid flow model by Hadap and Thalmann [2001] and the
layered wisp model by Plante et al. [2001] approach the hair/hair
interaction problem at discrete levels, the former at strand level
and the latter at cluster level. Simulating dynamic clustering
effects may involve combining those methods in a continuous
manner. Ultimately, hair clusters should split and merge
dynamically, automatically, and often partially. We anticipate
that the dynamic clustering problem could be formulated as that
of dynamically updating the hair tree, consistently changing the
hair strand ownership. The rich volumetric models generated by
MHM hint that realistic hair motion may be efficiently simulated
in a multiresolution framework, in the sprit of the ‘simulation
level of detail systems’ [O’Brien et al. 2001].

ACKNOWLEDGEMENTS
This work received funding from the Annenberg Center and the National
Science Foundation through its ERC funding of the Integrated Media
Systems Center at USC. We recognize the holistic support from our
colleagues in the USC CGIT laboratory. Special thanks go to Jun-Yong
Noh, Douglas Fidaleo, and Clint Chua for proofreading the initial
manuscript and video editing. We deeply thank Hiroki Itokazu for the
head model and Bret StClair for his wonderful textures. We also thank J.
P. Lewis for his numerous contributions and Dr. LaFrance for kindly
showing us her unpublished manuscript. Many thanks go to Sean
Mausch for his CPT software and Laehyun Kim for directing us to this
algorithm. We also appreciate the anonymous reviewers and referee for
their many valuable comments and suggestions.

References
AGUADO, A. S., MONTIEL, E., ZALUSKA, E. 1999. Modeling Generalized

Cylinders via Fourier Morphing. ACM Transactions on Graphics. 18(4),
293-315.

ANJYO, K., USAMI, Y., AND KURIHARA, T. 1992. A Simple Method for
Extracting the Natural Beauty of Hair. In Computer Graphics
(Proceedings of ACM SIGGRAPH 92), 26(4), ACM, 111-120.

BLOOMENTHAL, J. 1990. Calculation of Reference Frames Along A Space
Curve. In A. Glassner, editor, Graphics Gems, Academic Press,
567-571.

CHEN, L., SAEYOR, S., DOHI, H., AND ISHIZUKA, M. 1999. A System of
3D Hairstyle Synthesis Based on the Wisp Model. The Visual Computer,
15(4), 159-170.

CSURI, C., HAKATHORN, R., PARENT, R., CARLSON, W., AND HOWARD, M.
1979. Towards an Interactive High Visual Complexity Animation
System. In Computer Graphics (Proceedings of ACM SIGGRAPH 79),
13(4), ACM, 288-299.

DALDEGAN, A., THALMANN, N. M., KURIHARA, T., AND THALMANN, D.
1993. An Integrated System for Modeling, Animating and Rendering
Hair. In Computer Graphics Forum (Proceedings of Eurographics 93),
211-221.

FALK, R. AND SAND, L. R. (ORGANIZERS) 2001. “Shrek”: The Story
Behind The Screen. ACM SIGGRAPH Course Note 19.

GOLDMAN, D. 1997. Fake Fur Rendering. In Proceedings of ACM
SIGGRAPH 97, ACM Press / ACM SIGGRAPH, New York, 127 – 134.

GRABLI, S., SILLION, F. X., MARSCHNER, S. R., AND LENGYEL, J. E. 2002.
Image-Based Hair Capture by Inverse Lighting. In Proceedings of

Figure 22. More hairstyles.

628

Graphics Interface 2002, to appear.
HADAP, S. AND THALMANN, N. M. 2000. Interactive Hair Styler Based on

Fluid Flow. Eurographics Workshop on Computer Animation and
Simulation, 87-100.

HADAP, S. AND THALMANN, N. M. 2001. Modeling Dynamic Hair as a
Continuum. In Computer Graphics Forum (Proceedings of
Eurographics 2001), 329 – 338.

HAUSNER, A. 2001. Simulating Decorative Mosaics. In Proceedings of
ACM SIGGRAPH 2001, ACM Press / ACM SIGGRAPH, New York,
573-580.

KAJIYA, J. AND KAY, T. 1989. Rendering Fur with Three Dimensional
Textures. In Computer Graphics (Proceedings of ACM SIGGRAPH 89),
23(4), ACM, 271-280.

KIM, M., PARK, E., AND LEE, H. 1994. Modeling and Animation of
Generalized Cylinders with Variable Radius Offset Space Curves. The
Journal of Visualization and Computer Animation, 5(4), 189-207.

KIM, T. AND NEUMANN, U. 2000. A Thin Shell Volume for Modeling
Human Hair. In Computer Animation 2000, Philadelphia, IEEE
Computer Society, 121-128.

KIM, T. AND NEUMANN, U. 2001. Opacity Shadow Maps. Rendering
Techniques 2001, Springer, 177-182.

LAFRANCE, M. 2001. First Impressions and Hair Impressions.
Unpublished manuscript. Yale University, Department of Psychology,
New Haven, Connecticut.
http://www.physique.com/sn/sn_yale-study2.asp

LEE, D.-W. AND KO, H.-S. 2001. Natural Hairstyle Modeling and
Animation. Graphical Models, 63(2), 67-85.

LENGYEL, J. E. 2000. Realtime Fur. Rendering Techniques 2000, Springer,
243-256.

LENGYEL, J. E., PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2001.
Real-Time Fur over Arbitrary Surfaces. ACM Symposium on Interactive
3D Techniques 2001, 227-232.

LEVOY, M. AND WHITTED, T. 1985. The Use of Points as a Display
Primitive. Technical Report 85-022, Computer Science Department,
University of North Carolina at Chapel Hill, January.

LOKOVIC, T. AND VEACH, E. 2000. Deep Shadow Maps, In Proceedings of
SIGGRAPH 2000, ACM, New York, 385-392.

MAUCH, S. 2000. A Fast Algorithm for Computing the Closest Point and
Distance Transform. Submitted for publication in the Jounral of SIAM
SISC. http://www.acm.caltech.edu/~seanm/software/cpt/cpt.pdf

MCREYNOLDS, T. (Organizer) 1997. Programming with OpenGL:
Advanced Techniques, ACM SIGGRAPH Course Note 11.

NEYRET, F. 1997. Modeling, Animating, and Rendering Complex Scenes
Using Volumetric Textures. IEEE Transaction on Visualization and
Computer Graphics, 4(1), 55-70.

O’BRIEN, D., FISHER, S., AND LIN M. 2001. Automatic Simplification of
Particle System. In Computer Animation 2001, Seoul, Korea, IEEE
Computer Society, 210-219.

PARKE, F. AND WATERS, K. 1996. Computer Facial Animation. A K Peters.
PLANTE, E., CANI, M.-P., AND POULIN, P. 2001. A Layered Wisp Model

for Simulating Interactions Inside Long Hair. Eurographics Workshop
on Computer Animation and Simulation 2001,139–148.

ROSENBLUM, R., CARLSON, W., AND TRIPP E. 1991. Simulating the
Structure and Dynamics of Human Hair: Modeling, Rendering and
Animation. The Journal of Visualization and Computer Animation, 2(4),
141-148.

SINGH, K. AND FIUME, E. 1998. Wires: A Geometric Deformation
Technique. In Proceedings of ACM SIGGRAPH 98, ACM, New York,
405 - 415.

STOLLNITZ, E. AND DEROSE, T. D. AND SALESIN, D. H. 1996. Wavelets for

Computer Graphics. Morgan Kaufmann.
THALMANN, N. M. AND HADAP, S. 2000. State of the Art in Hair

Simulation. International Workshop on Human Modeling and
Animation, Korea Computer Graphics Society, 3-9.

TURK, G. 1991. Generating Textures on Arbitrary Surface Using Reaction
Diffusion. In Computer Graphics (Proceedings of ACM SIGGRAPH
91), 21(4), 289-298.

WATANABE, Y. AND SUENAGA, Y. 1992. A Trigonal Prism-Based Method
for Hair Image Generation. IEEE Computer Graphics and Application,
12(1), 47-53.

XU, Z. AND YANG, X. D. 2001. V-HairStudio: An Interactive Tool for Hair
Design. IEEE Computer Graphics and Applications, 21(3), 36-43.

YANG, X. D., XU, Z., YANG, J., AND WANG, T. 2000. The Cluster Hair
Model. Graphical Models, 62(2), 85-103.

Appendix
A. Generation of Generalized Cylinder from Scalp Surface
When the user places a 2D contour on the scalp, the corresponding GC is
created. First, the root position P0 of the skeleton curve is calculated as
P0 = C(0) = S(uc, vc), where uc and vc denote the center of the scalp
space contour. Let N0 be the surface normal at P0. Initially, the
skeleton curve is formed as a straight line (Each control point Pi of the
skeleton curve is given as Pi = P0 + iL / (N – 1) N0, where N is the number
of control points) and L is the length of the skeleton curve. As a next
step, we convert Rs(θ), the scalp space contour to Rw(θ) in world space.
Let Ri be the 3D position of each sample point of the contour (recall from
section 4.1 that each contour is represented with the sample values R(θi)).

))()(R),()(R(SR ss
i iiciic vu θθθθ sincos ++=

To make the contour planar, we project Ri to the plane formed by P0 and
N0. Let iR̂ be such a projected point. Then, Rw(θi) is the distance
from the center point P0 to iR̂ in 3D space.

0i
w PR̂)(R −=iθ

The contour function is then decomposed into the global scale s and offset
function as defined in section 4.1. The number of contours is the same as
the number of control points of the skeleton curves. These contours are
simply copied at each control point of the skeleton curves.
B. Inclusion Test for a Hair Strand
A hair strand is given its location on the scalp by (uh,vh). Let the center
of the contour Rs(θ) of each cluster be represented by (uc,vc). Let ∆u = uh
- uc and ∆v = vh - vc. Then, the angle θh is given as















+
= −

22

1cos
vu

u
h

∆∆
∆θ

and
hh θπθ −= 2 if ∆u < 0 (B.1)

A hair strand is contained by a cluster if 22 vuh
S ∆∆θ +≤)(R

A bounding box of each contour is used to speed up the test. Also, the
inverse cosine function is tabulated. If a hair strand is assigned to a
cluster, the parametric coordinate for the root position of the hair strand is
given as (rh ,θh) ,where

)(R s
h

h
vur

θ
∆∆ 22 += .

C. Binding a Point P to a Cluster V
Given a point P and a cluster V, the parametric coordinate (r, θ, t) of the
point with respect to the cluster is found as follows. First, t is chosen as
the value that minimizes the Euclidean distance between point P and the
skeleton curve C(t). Let PC be such a point that PC = C(t). Then θ is
given as the angle between a vector connecting P and PC and the principle
normal N(t). The angle should be corrected for the scaling terms SN(t),
SB(t). Let the projection of the vector PPC

 on N(t), B(t) be PN, PB.

Then, the angle θ is given using equation B.1, by letting ∆u = PN / SN(t),
and ∆v = PB / SB(t). After correcting for the twist term W(t), θ = θ −
W(t). The parameter r is the ratio between the Euclidean distance
between P, PC and R(θ, t).

()tPPr C ,/R θ−= .

629

