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Abstract. This paper investigates the use of an implicit prior in Bayesian model-
based 3D reconstruction of architecture from image sequences. In our previous
work architecture is represented as a combination of basic primitives such as win-
dows and doors etc, each with their own prior. The contribution of this work is to
provide a global prior for the spatial organization of the basic primitives. How-
ever, it is difficult to explicitly formulate the prior on spatial organization. Instead
we define an implicit representation that favours global regularities prevalent in
architecture (e.g. windows lie in rows etc.). Specifying exact parameter values for
this prior is problematic at best, however it is demonstrated that for a broad range
of values the prior provides reasonable results. The validity of the prior is tested
visually by generating synthetic buildings as draws from the prior simulated us-
ing MCMC. The result is a fully Bayesian method for structure from motion in
the domain of architecture.

1 Introduction

Many algorithms (e.g. [1,3, 16, 14]) have been developed for inferring 3D structure
from a set of 2D images. A review of the state of the art in this area can be found
at [17]. However there are often cases in which image information is ambiguous or
misleading, such as in areas of homogeneous or repeated texture. In such cases extra
information is required to obtain a model of the scene.

In the past, dense stereo algorithms have used heuristics favouring “likely” sce-
narios such as regularization or smoothing in an attempt to resolve these ambiguities
(e.g. [5, 16)), but in general these are unsatisfactory (for instance, the smooth surface
assumption is violated at occlusion boundaries). It is our belief that maximum like-
lihood estimates (even regularized) of structure have progressed as much as they are
able, and that further research in this area will yield negligible or arguable benefit. Our
approach to structure from motion is to develop generic methods to exploit domain-
specific knowledge to overcome these ambiguities. This has been successfully done for
other 3D reconstruction domains, e.g. heads [9, 18], bodies [15]. 7

Within this paper we explore the reconstruction of generic buildings from images,
using strong prior knowledge of building form provided by architects, this is most nat-
urally done in a Bayesian framework. The Bayesian framework provides a rational
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method for incorporating prior information into the estimation process [12]. However
in complicated scenarios such as the modelling of architecture, there still remains two
problems to be resolved. Whilst Bayes provides the basic laws for manipulating proba-
bilities, we still need to resolve the problem of parameterization, and once the problem
is parameterized choose the best algorithm to optimize the parameters.

Structure is represented as a collection of planes (corresponding to walls) and prim-
itives (representing windows, doors and so on). Each primitive is defined by several
parameters, as listed in Table 1. The advantages of this model-based approach are that
it enables the inference of scene structure and geometry where evidence from the im-
ages is weak, such as in occluded regions or areas of homogeneous texture, and that
it provides an interpretation of the scene as well as its geometry and texture [8]. The
representation of the scene as a set of planes and primitives is useful for reasoning
about the scene during reconstruction and for subsequent rendering and manipulation
of the model. The compactness of the representation also makes recovery of structure
and motion more reliable, as demonstrated in [19].

In previous work [8] a framework was defined for model based structure from mo-
tion for buildings. In this framework an algorithm for estimating a maximum a pos-
teriori (MAP) estimate of the model based on priors and image likelihood measures
was proposed (this is summarized in Section 2). However the spatial prior used in this
work applied only to the parameters of each individual primitive, thus ignoring infor-
mation about their spatial juxtaposition (for instance, that windows are likely to occur
in rows and columns). In this paper the spatial prior is expanded to include this sort of
information.

The form which the spatial prior should take is far from obvious. Ideally it should
admit all plausible buildings while excluding those which are for practical or aesthetic
reasons implausible. However the plausibility of a structure can in general only be ver-
ified by manual inspection. Thus a crucial step in the formulation of the prior is to test
it by drawing sample buildings from it and checking that they appear reasonable. How-
ever even with expert knowledge, it is very difficult to explicitly represent the prob-
ability density function (pdf) of a suitable prior. What is somewhat easier to do is to
express the prior as a scoring function that favours particular configurations, such as
windows in rows. One approach is to use a scoring function suggested by an expert and
then draw samples from the implicitly defined pdf using an MCMC algorithm. If the
samples drawn look like reasonable buildings then the prior must be close to the true
prior.

This raises the question of just how close to the true prior our estimate must be to
generate reasonable looking models. To answer this empirically the scoring function
is varied both on a small scale and a large scale, and the effect on models generated
from the prior, and reconstructions obtained using the prior and an image sequence, is
observed.

The paper is organized as follows: Section 2 defines an architectural model as a
collection of wall planes containing parameterized shapes, and establishes a framework
for optimizing it. In Section 3 the spatial prior is discussed and the MCMC algorithm
is used to simulate samples from it. Section 4 then presents some reconstructions based
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on this prior, and demonstrates the effect of varying the prior on reconstruction. The
paper concludes with discussion and ideas for future work in Section 6.

2 Problem Formulation

This section briefly recapitulates previous work [8] on the definition of a model for
architecture and an algorithm for optimizing it. The projection matrices are initially
recovered using point matching and robust methods as described in [2,20]. With the
projection matrices recovered the 3D structure of the scene must be parameterized.
An architectural model is formulated as a number of base planes (generally walls),
each of which contains a number of offset primitives such as doors and windows. Also
modelled are the height of the apex of the roof, and the number of floors in the building,
as these will affect the window layout. The model M therefore contains parameters 8 =
{n,8r,0s,07,0}, where n is the number of primitives in the model, 8, identifies
the type of each primitive, 8¢ are structure parameters which define its shape, O are
texture parameters describing its appearance, and @ are global parameters describing
such things as the number of floors and the style of the building (e.g. Classical, Gothic).
The types of primitive available and their shape parameters are given in Table 1. The
texture parameters are intensity variables i(x) (between 0 and 255) defined at each point
x on a regular 2D grid covering the model surface !.

Our choice of primitive reflects the scale of detail in the model. The model is de-
signed to be used with photographs of architecture taken from ground level. Therefore
it models a level of detail consistent with these viewpoints; for instance doors and win-
dows are modelled in addition to the walls of each building. However finer levels of
detail, such as the location of individual bricks, door handles and fine ornamentation
are not modelled. Similarly little attention is paid to modelling roofs (in fact they are
only modelled as a simple pyramid), as most images taken from ground level include
very little if any information about the roof structure.

To recover the architectural model we want to maximize

Pr(M6|DI) o Pr(D|M6I) Pr(M6I)
= Pr(D|M#I) Pr(6|MI) Pr(MI)
= Pr(DIMeLogengl) Pr(eL050TOG|MI) PI‘(MI)
= PI‘(D'MGLOSBTOGI) Pr(0T|9L9GMI)
Pr(65|60,0cMI) Pr(0.|0cMI) Pr(8c|MI) (1)

where D is the available data (the images), I denotes prior information (the camera
calibration and the estimated wall planes), and

- Pr(D|M6165016:]) is the likelihood of the images given a complete specifica-
tion of the model. This is determined by the deviation of image intensities from
those predicted by the texture parameters.

! This allows us to specify the model to super resolution; however this aspect is not dealt with
in this paper.
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Table 1. Some primitives available for modelling classical architecture. Parameters in
brackets are optional. The parameters are defined as follows: z: = position; y: y position;
w: width; k: height; d: depth; a: arch height; b: bevel (sloped edge); dw: taper of pillars,
buttresses. The NULL model is simply a collection of sparse triangulated 3D points. M,
is reserved as the background model (generally a wall).

#7, |Description Parameters
M | Window | z,y,w,h,d, (b),(a)
M| Door z,y,w, h,d, (b), (a)

M3 | Pediment z,y, w, h,d
My | Pedestal z,y,w,h,d
M |Entablature z,y,w,h,d

Meg | Column z,y, w, h,d,dw
M7 | Buttress z,y, w, h,d,dw

Mg | Drain pipe z,w,h
Mgy | Floor y
M 10 Roof h

Mii1| NULL [ZT1...Tn, Y1---Yn, Z1--2n

— Pr(07|0105MI) is the probability of the texture parameters. This is evaluated
using learnt models of appearance, such as the fact that windows are often dark
with intersecting mullions (vertical bars) and transoms (horizontal bars), or that
columns contain vertical fluting.

- Pr(81]|605MI) is the prior probability for each type of primitive. It is used to spec-
ify the relative frequency with which primitive types occur, e.g. that windows are
more common than doors, or that buttresses appear frequently in Gothic architec-
ture.

- Pr(05|6165MI) is a prior on shape. The formulation and validation of this prior
is described in more detail in Section 3.

The global parameters 8¢ are generally given rather than estimated (for instance, the
style of the model is specified manually) and hence the probability Pr(6¢|MI) is fixed
at 1 for the given parameters, and O elsewhere.

2.1 Obtaining an Initial Model Estimate

The input to our system is an uncalibrated sequence of 3—6 images, in which corner and
line features are automatically detected and matched as in [3] to estimate the structure
of the building and the motion of the cameras. This reconstruction is then segmented
into planes to obtain an initial estimate of the position and orientation of each wall in
the building [7].

Ideally the combined @7, 85 and @ parameter space would then be searched for
MAP parameter values. However each primitive may contain thousands of texture pa-
rameters, so only the 8¢ and 8}, parameter spaces are searched. This is carried out in
two steps: an initial search based on an approximate single image likelihood function
locates likely values for a subset 81 = {z,y,w, h} of the shape parameters, while
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the remaining shape parameters d, a, b, dw are set to zero. These are then used to seed
searches in the full parameter space using the complete likelihood function [8]. Models
found using this method are subsequently used as seed points for the MCMC algorithm
described in this paper.

3 The Shape Prior

In this section an architectural shape prior Pr(85|6;,MI) is defined and assessed using
a Markov Chain simulation. Ideally this prior should encode information about:

— The scale of each primitive. For instance a door should be tall enough for a person
to comfortably walk through. Scale priors can only be used when the absolute scale
of the model is known.

— The shape of each primitive. For instance columns are likely to be long and thin,
while pedestals are more broad and flat.

— The alignment of primitives. For instance windows are likely to occur in rows cor-
responding to the floors of a building.

— Other spatial relations such as symmetry about a vertical axis.

It is extremely difficult to explicitly formulate a prior pdf to meet this set of desider-
ata. When it is required to draw samples from a pdf Pr(@) which cannot be explicitly
defined, a common technique is to simulate the drawing of samples using a Markov
process defined on the parameters 6. The Markov process is chosen so that over time
(as t — oo0) its transition probability Pr(6;|0;_1) converges to the desired distribution
Pr(8). Therefore as the number of iterations increases, the values of @ visited by the
Markov process mimics independent draws from Pr(@) with increasing accuracy. The
group of algorithms which operate on this principle are known as Markov Chain Monte
Carlo (MCMC) algorithms [10] (Monte Carlo refers to the fact that Markov processes
are seeded at many points in parameter space).

There are a number of ways to generate a Markov process with the desired conver-
gence properties. These include the Metropolis-Hastings class of algorithms, in which
transitions or jumps are drawn from a user-defined jumping distribution J;(0;|0;—1)
and the updated model is accepted or rejected based on a scoring function f(@). In
particular the Reversible Jump [11] Metropolis-Hastings algorithm is used in this pa-
per, as it allows jumps between parameter spaces of varying dimension, as required
when primitives are added or removed from the model. This algorithm is summarized
in Algorithm 1.

The behaviour of the Reversible Jump MCMC algorithm depends largely on the
choice of both the scoring function and the jumping distribution. These are the subjects
of the following two sections.

3.1 The Scoring Function

The scoring function contains terms relating to the scale, shape and alignment of prim-
itives:

fprior (0) = fscale (9) + fshape (0) + falign (0) + fsym(a) (3)
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Algorithm 1 Reversible Jump MCMC algorithm.

Draw an initial point 8o from a starting distribution Pro(8).
fort =1..T do
Draw candidate point 8, from the jumping distribution J;(6.|6:-1).

Calculate the ratio
.o £(0:)J:(68:-1]6.)
f(0:-1)J:(0460:-1)

Set 8; = 6. with probability min(r,1), otherwise set 8; = 6;_;
end for

()]

The shape and scale terms apply only to individual primitives. In this paper the shape
and scale components of the scoring function are given by simple functions, some of
which are listed in Table 3. The purpose of these components is mainly to disqualify
implausible primitives such as doors which are too thin or short to be practical, win-
dows which extend between floors of the building, or buttresses which do not reach the
ground.

The component of the scoring function for the alignment of shapes into rows and
columns computes the deviation of the shapes from an aligned grid containing R rows
and C' columns. It is defined as

R

fatign(8) = 3 [Var(t,) + Var(b,) + Var(r, —1.)] @
C

+ Z [Var(l.) + Var(r.) + Var(t. — b.)] S

where t,,b,, 1., 1, are the top, bottom, left and right coordinates of the primitives
belonging to row 7 and t., b1, r. are similarly defined for primitives belonging to
column c. The function Var(x) gives the variance of the elements of x. When a wall
contains O or 1 primitives, it is assigned a fixed score of high variance which encodes a
preference for more than one window per wall if the wall is large enough to accommo-
date it.

The symmetry component of the scoring function is maximized when a row is ex-
actly centred on a wall, and decays quadratically:

R

foym(@) =D [l =) = (rr — 1) ©6)

r=1

where [, is the leftmost point of row r, 7, is the rightmost point of row r, and 1 and r
are the left and right coordinates of the wall on which the row appears. The symmetry
function is applied only to rows as it was found that columns of shapes are not generally
vertically symmetric on a wall.
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The Jumping Distribution

As well as a scoring function, an MCMC algorithm requires the specification of a jump-

ing

distribution J(8;|0;_1). The jumping distribution is a mixture of several types of

jump, which are listed in Table 2.

There are a number of issues bearing on the choice of jump types to use:

A building should always be a closed structure with walls which intersect at near
right angles. Therefore the add/remove/modify wall jumps actually add, remove
or modify a closed set of perpendicular walls to the model, effectively adding or
removing a room from the reconstruction while maintaining closure.

For efficiency, it should be easy to sample from the jumping distributions. Each
jump should also traverse a significant distance in parameter space, and have a high
acceptance rate. Therefore simple jump types which are likely to generate a more
probable model should be used.

Reversible jump MCMC requires that jumps be symmetric; that is, after jumping
from {M, 8;} to {Ma, 8-} it should always be possible to return to {M;, 0, } in
a single jump. More precisely, given a jump type J;; which moves from the param-
eter space @; to 8, based on the values of @, and some extra random variables ¢,
there must be a reverse jump type ;2 which moves from 85 to 8, based on 8> and
@5, where the dimension of 8; @ ¢, equals that of 8> ® ¢, . This poses difficulties
when considering jumps such as aligning a group of shapes into a regular column.
To maintain reversibility, a related jump must be included which can take a column
of shapes and perturb each shape so that if the column-aligning jump is applied
again, the same column configuration would result.

Table 2. Jump types available to MCMC algorithm. The parameter n identifies a single
primitive to which the jump is applied. Jump J10 "regularises” a row or column of shapes
by aligning all shapes, making them the same size, and evenly spaced. Jump J1 is
similar but also positions the row so that it is centred in the wall.

Jump type Description Parameters
J1 Add shape Mi,z,y,w, h
T2 Remove shape n
Js Modify shape n, T, Yy, w,h
Js Add wall n,w,h
Is Remove wall n
Je Modify wall w, h
T Add window row/col n
Js Remove window row/col n
Jo Modify window row/col n
Jio  |Regularise window row/col n
Ju Symmetrise window row n
Ji2 Perturb window row/col | n,z,y,w,h
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3.3 Verifying the Shape Prior

Having specified a scoring function and jumping distribution, the Reversible Jump
MCMC algorithm can be used to simulate drawing independent samples from the shape
prior that they define. It is important to sample from the shape prior to verify that it gen-
erates plausible buildings, and that is not too restrictive, in which case it would produce
very similar buildings.

In the following experiment, a total of 9 Markov processes are seeded from one of 3
starting points, shown in Figure 1: a square “hut”, a tower, or a bungalow shape. Each of
the seed models has one wall containing a door at ground level, and each wall contains O
or 1 windows. Each Markov chain is iterated for 2000 jumps. After this period, samples

Fig. 1. “Hut”, “tower” and “bungalow” seed points for the MCMC algorithm.

are drawn at random from each chain and displayed in Figure 2. Samples are drawn at
random intervals rather than from consecutive iterations; consecutive iterations tend
to be correlated as most jumps entail only a minor change to the model. The samples
are displayed as a city of buildings to illustrate both the inter-building variation of the
results and the plausibility of each individual structure.

Fig. 2. Collection of Classical style buildings generated from the shape prior.

4 Results for a Single Wall

Some results of the MCMC algorithm are now shown for a single wall. The scoring
function is altered to include image information by adding a likelihood term, so that the
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complete score is now given by

£(8) = Afprior(8) + > Z ( i) — Z(x)) %)

i(x) j=1

where i(x7) is the projection of the texture parameter i(x) onto the jth image, o is an
image variance parameter and X is a relative scale factor. The global parameter set O
is reduced to contain simply a style parameter, as the number of floors can be deduced
from the images.

Starting points for the algorithm are generated from the results of a previously de-
veloped algorithm for finding a MAP model estimate, described in Section 2.1. It is first
tested on images of the Downing library, one of which is shown in Figure 3(a), which
contains strong information and complies with our priors on regularity and shape. Be-
cause the our old algorithm incorporated priors only on individual primitives, the win-
dows estimated, although approximately correct, are slightly misaligned. Furthermore
the window obscured by the tree is incorrectly fitted. However the new global shape
prior described in this paper significantly improves matters: After running the MCMC
algorithm for 2000 iterations, with A = 10* and ¢ = 10, the prior has overridden lo-
cal likelihood maxima and the MAP model is one in which the windows are properly
aligned, even where the window is occluded in some images by a tree (Figure 3(d)). To
test the sensitivity of this result to the choice of prior, a Gothic shape prior is substituted
for the original Classical shape prior. Although the Gothic prior favours narrower and
more arched windows, the same result is obtained (Figure 3(e)). In Figure 3(f) a very
different prior is proposed in which very tall narrow windows are strongly favoured (Ta-
ble 3). This results in a different interpretation of the scene in which vertically aligned
windows are merged.

Table 3. Relevant shape priors. H and W are the height and width of the wall containing
the primitive. G(u, o) is a Gaussian distribution with mean ¢ and standard deviation o.

Primitive |Param. Score
—(G(0.75,0.25) + G(1.0,0.25)

(g:s]i?;) hjw | +G(1.25,0.25) + G(1.5,0.25)
+G(1.75,0.25) + G(2.0,0.25))

Window

Gothic) | M@ | —(G(20,025) + G(25,0.25))

Window

(Narrow) | P/ | —(G(40,1.0) + G(6.0,1.0))

Window | y/H |0,if0.1 < y/H < 0.9. Else LARGE.
Window | z/W |0,if 0.1 < z/W < 0.9. Else LARGE.
Window | h/d |0,if —0.2 < h/d < 0.2. Else LARGE.

The next image sequence, of the Palazzo Pitti, one image of which is shown in
Figure 4(a), is more challenging. The images were taken on a rainy day, and the window
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(@ (b) (© (@) (e) ®

Fig. 3. (a) One image of the wall. (b) Model obtained using only Classical single primitive
prior. (¢) Frontal view of this model (windows are darker, background is light). (d) Model
obtained using MCMC and Gothic shape prior. (e) Same model, projected onto image.
(f) Incorrect model obtained using prior favouring very narrow windows.

texture is indistinct from wall texture—the windows and wall are a similar colour, and
the brick texture of the wall is not easily distinguished from that of the windows. Due
to the lack of information in the images, the reconstruction obtained is dependent on
whether a Classical or Gothic prior is used. Using Classical priors (Figure 4(b)), only
the interior parts of the top windows are detected, whereas a Gothic prior (Figure 4(c))
detects the surrounding arch structure. Applying the full set of shape priors with A =
10, o = 10 results in a MAP model where the windows are aligned despite this not
being the case for the bottom row of windows. To prevent this from occurring, A can be
reduced to 1 in which case the prior has no significant effect on the model.

(@ () ®

(@ (b)

Fig.4. (a) One image of the Palazzo Pitti. (b) Model obtained using Classical priors. (c)
Model obtained using Gothic priors. (d) Primitives before MCMC. (e) After MCMC. (f)
Projected onto image.

5 Building Results

When jump types involving wall plane parameters are included in the MCMC algo-
rithm, closure of the building is enforced and the reconstruction converges to a sym-
metric model such as that shown in Figure 5. The texture for this model is cut and
pasted from areas of the image identified as a wall, window, columns and so on, and the
same texture sample is used for every instance of a type of primitive. Another feature
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of using an MCMC algorithm to sample the posterior is that as well as having a MAP
model estimate, other probable samples can also be examined. This is useful for iden-
tifying ambiguities in the reconstruction. Four of the more marked ambiguities present
in this model are shown in Figure 5 (i)-(1).

The operation of this algorithm is shown in Figure 6 for the Trinity Chapel sequence.
Note that the entire model is obtained from only 3 images. Although the model is not
completely accurate in areas which are not visible in the images, it is a plausible struc-
ture, and is obtained automatically except for the prior specification of the structure as
being Gothic, and the restriction of the variety and shape of primitives this entails. The
width of each part of the building is obtained from the average size of the window or
door primitives on visible walls—each segment of the building is made wide enough to
accommodate one window of height and width equal to the average height and width
of the visible windows, with spacing to either side equal to half the window width.
In the absence of image information, this seems a reasonable assumption to make and
produces generally plausible architectural models.

5.1 Comparison with Ground Truth

It is difficult to directly compare the results of this algorithm with previous methods, as
no other method solves quite the same problem as this one. In the absence of experi-
mental results with which to compare it, some ground truth measurements were taken
from the Downing College library, reconstructed in Figure 5.

The height, width and depth of a set of windows belonging to this building were
measured with a tape measure. The resulting lengths are shown in Figure 7. Because
the absolute scale of the model is unknown, only ratios of lengths are compared to
ground truth values. It is assumed that there is a +1cm error in each measurement.
In Table 4, a comparison of the corresponding model values and ground truth mea-
surements is given. The uncertainty in the model values is based on the resolution of
the grid of texture parameters on each plane. It can be seen that the ratios of win-
dow height to width, and width to depth, are recovered to within the accuracy bounds

Table 4. Comparison of ratios of window height (h) to width (w), width to depth (d) wall—column
separation (dz) to window width and the circumference of a column (c) to window width. The
upper and lower bounds are based on t1cm accuracy for ground truth measurements, except for
the circumference of the base of the column, which is measured to £10cm. The accuracy of the
model measurements is limited to the resolution of the texture parameters.

Ratio|Ground truth| Model

Lower|Upper|Lower|Upper
hjw| 1.48 | 1.52 | 1.50 | 1.64
w/d| 5.67 | 6.37 | 5.00 | 7.40
dafw| 222 | 224 | 2.18 | 2.28
c/w| 2.56 | 277 | 2.74 | 3.00
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i i L
ik LR

(i} (i) (k) h

Fig. 5. (a) MAP model of side wall of Downing library, after 2000 MCMC iterations using the
Classical prior. (b) Front wall. Both front and back faces of primitives are drawn, hence the
pair of triangles and rectangles for the pediment and entablature. (c)-(d) 3D rendering of MAP
Downing model, obtained without using add/remove/delete wall jumps. The textures shown on the
model are automatically extracted from the images which are most front-on to each plane. (e)-
(h) Four views of the completed model of Downing library, with extra walls added. Even though
only two walls are visible, a complete building has been modelled using symmetry. Wall, window,
roof and column textures are sampled from the images and applied to the appropriate primitives.
(i)-(1) Some ambiguities in the Downing model, chosen from the 20 most probable models visited
by the MCMC process. (i) Window sills are included in the window primitives. (j) Windows are
represented using two primitives each. (k) The door is omitted. (1) Extra columns are added in
between the existing ones.
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(a) (b) (c)

{h) (i} () (k) {1y

Fig. 6. (a)-(c) 3 original images of Trinity college courtyard. (d) MAP model primitives, super-
imposed on image. (e) Wireframe MAP model. (f)-(g) 3D model with texture taken from images.
(i)-(m) Five views of the completed model of the north-east corner of Great Court, Trinity College.
Only two of the walls are visible in the images.

ol
L ] e
Iy i B

Fig. 7. Some measurements made of the Downing Library scene. The other windows in the scene
are the same size as the one shown (to an accuracy of +1cm).
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of the ground truth measurements. The error margins are generally greater for model
measurements, which are constrained by the resolution of the images. Although high
resolution images (1600 x 1200 pixels) were used for this model, it seems that even
more resolution is required to precisely recover fine details such as the depth of each
window. The distance from the column to the wall is also identified accurately, but the
circumference of the column is slightly underestimated (although the error margins just
overlap). The circumference of the column is quite difficult to measure precisely, due to
the stonework on its outer rim. Therefore there is an uncertainty of +10cm associated
with its measurement—this is derived from the fact that there are 20 partitions in the
fluting around the base of the column, each of which can be measured to a precision of
approximately £0.5cm.

6 Conclusion

If structure from motion algorithms are to progress they must find ways of incorporating
more and higher level prior information concerning the nature of the world. To effec-
tively use this information, recognition of what we are observing will play a crucial role.
Recovering structure from visual input alone is highly ill conditioned, thus is it envis-
aged that a robot of the future might carry many prior models in its head and recognize
which class of priors is appropriate to reduce the ambiguity in resolving a particular
scene. Thus classic geometric structure from motion becomes a blend of learning, clas-
sification and geometry. This paper has presented a framework for representing one
such spatial prior for the case of architecture. Samples are generated from the prior
and shown to be reasonable instances of genuine buildings. A Bayesian framework is
a natural way to effectively use the prior information to enhance 3D reconstruction in
a variety of ways. Future work includes the parametrization of texture in a similar way
to shape, i.e. using only a few texture parameters per primitive, which would also re-
sult in a super resolution of the images. As previously mentioned, the roof structure
is currently modelled simply as a pyramid; however more complex roof models could
improve the appearance of the model from elevated viewpoints.

The general philosophy underlying this paper is that the state of the art has been
reached with existing structure from motion methods, and that the best route for progress
is to combine structure from motion with recognition. This allows the use of strong prior
models of shape, stronger than the markov random fields traditionally used. To some
extent this has been done in the past with simple shape models e.g. [4, 6, 13], but these
models possess only limited variability. Within this paper we have attempted to present
a generic framework which could be used to optimize classes of objects that possess
a much greater variability of shape, but that can be decomposed into a ‘lego kit’ of
parameterizable parts.

Software: It is intended to release a Matlab SFM toolkit to illustrate some of the
methods described, please check http://research.microsoft.com/ philtorr/, as the release
is aimed to coincide with ECCV.
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