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CH-1211 Genève 24, Switzerland. email: Ernst.Hairer@math.unige.ch

Abstract.

This article illustrates how classical integration methods for differential equations on
manifolds can be modified in order to preserve certain geometric properties of the exact
flow. Projection methods as well as integrators based on local coordinates are considered.
The central ideas of this article have been presented at the 40th anniversary meeting of
the journal BIT.
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1 Idea of geometric integration.

In this introductory section we consider systems of ordinary differential equations
(initial value problems)

ẏ = f(y), y(0) = y0,(1.1)

and we study the question to what extent geometric properties of the exact flow
ϕt(y0) can be preserved by a numerical approximation.

Example 1.1. Consider the equations for the mathematical pendulum

ṗ = − sin q, q̇ = p.(1.2)

One can check by differentiation that the expression (total energy)

H(p, q) = 1

2
p2 − cos q

is constant along solutions of (1.2). This means that the solutions remain on
the level curves of H(p, q), which are drawn as solid lines in Fig. 1.1. We now
apply two numerical methods: the explicit Euler method gives qualitatively wrong
approximations (the energy H(p, q) increases), whereas the trapezoidal rule shows
a qualitatively correct periodic motion. We therefore call the trapezoidal rule a
geometric integrator for this problem.
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h = 0.2

explicit Euler: yn+1 = yn + hf(yn)

h = 0.8

trapezoidal rule: yn+1 = yn + h

2

(
f(yn) + f(yn+1)

)

Figure 1.1: Numerical solution (150 steps) for problem (1.2) obtained by Euler’s method
and by the trapezoidal rule with h = 0.2 and h = 0.8, respectively. Initial values are
p0 = 0, q0 = 0.5 for Euler’s method, and p0 = 0, q0 ∈ {0.5 − 2π, 1.5, 2.873 + 2π} for the
trapezoidal rule. The solid lines represent the exact flow.

Let us give a simple geometric explanation of
the numerical phenomenon encountered in Ex-
ample 1.1. With the reflection

ρ(p, q) = (−p, q),

the exact flow ϕt of the pendulum equation sat-
isfies

ρ ◦ ϕt = ϕ−t ◦ ρ = ϕ−1
t ◦ ρ(1.3)

y0
y1

ρy0
ρy1

ρ ρ

ϕt

ϕt

q

p

(see the small picture to the right, where yi = (pi, qi)). This can be checked
analytically by differentiation with respect to time, and implies that any solution
that crosses twice the horizontal axis has to be periodic. Consider then a numerical
method, denoted by yn+1 = Φh(yn). Using the fact that for the problem (1.2) the
righthand side f(y) satisfies f ◦ ρ = −ρ ◦ f , one obtains that the Euler method
as well as the trapezoidal rule (in fact all Runge–Kutta methods) satisfy ρ ◦Φh =
Φ−h ◦ρ, which is the first identity in (1.3). The second relation of (1.3) holds only
for symmetric or time-reversible methods, i.e., methods that satisfy

Φh = Φ−1
−h.

This means that exchanging h ↔ −h and yn ↔ yn+1 leaves the formula unchanged.
This is the case for the trapezoidal rule, but not for the explicit Euler method.
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Hence, the same argumentation as for the analytic solution makes it plausible that
for symmetric methods the numerical solution lies near a closed curve.

Example 1.2 (Toda lattice). The movement of particles interacting pairwise
with exponential forces is described by a Hamiltonian system

ṗ = −∂H

∂q
(p, q), q̇ =

∂H

∂p
(p, q)

with

H(p, q) =
n∑

k=1

(
1

2
p2k + exp(qk − qk−1)

)
.

We consider periodic boundary conditions q0 = qn and n = 3. This system has
the remarkable property that the eigenvalues of the matrix

L =


 a1 b1 b3

b1 a2 b2
b3 b2 a3




(where ak = −pk/2 and bk = 1
2 exp

(
1
2 (qk−qk+1)

)
) are constant along the solutions

(isospectral flow). Moreover, the time-one flow of the system is related to one
iteration of the QR method for computing the eigenvalues of a matrix.
In our experiment of Fig. 1.2 we fix initial values as p1 = 0, p2 = 1, p3 = 0.5,

q1 = 1, q2 = 2, q3 = 4, and we apply two different methods. Similarly as in the
first experiment we observe that the non-symmetric method (here the classical
explicit Runge–Kutta method of order 4) cannot conserve the eigenvalues along
the numerical solution, but the symmetric method (trapezoidal rule) preserves
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Figure 1.2: Numerically obtained eigenvalues (left) and errors in the eigenvalues (right)
for the step sizes h = 0.1 (dotted) and h = 0.05 (solid line).
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them very well with an error that remains bounded as O(h2) over very long time
intervals. Here, a simple explanation is no longer possible. One needs to combine
the techniques of backward error analysis with those of Hamiltonian perturbation
theory (see Hairer, Lubich, and Wanner [14]).

The examples above have shown that symmetric methods perform qualitatively
better for integrations over long time intervals. Most of the commonly used tech-
niques for solving differential equations on manifolds destroy the symmetry of the
underlying method. The aim of this article is to show how the symmetry can be
restored.

2 Differential equations on manifolds.

Let M ⊂ R
n be a given manifold. A system of ordinary differential equations

ẏ = f(y) (y ∈ R
n)(2.1)

is a differential equation on the manifold M, if

y0 ∈ M implies y(t) ∈ M for all t.

This is equivalent to the requirement on the vector field that

f(y) ∈ TyM for y ∈ M,

where TyM is the tangent space of M at the point y ∈ M. Recall that for
manifolds given by M = {y ∈ R

n | g(y) = 0}, the tangent space takes the form
TyM = {v ∈ R

n | g′(y)v = 0}.
Differential equations on manifolds arise in a variety of applications, and their

numerical treatment has been the subject of many publications. Let us mention
some important situations with a selection of typical references:

• Differential equations with invariants: Baumgarte [4], Shampine [24], Ascher,
Chin, and Reich [2].

• Problems on Lie groups: Crouch and Grossman [6], Munthe-Kaas [19], Diele,
Lopez and Peluso [7], Iserles, Munthe-Kaas, Nørsett, and Zanna [16].

• Differential-algebraic systems: Gear [9], Rheinboldt [22], Griepentrog and
März [10], Hairer, Lubich, and Roche [13], Brenan, Campbell, and Petzold
[5], Hairer and Wanner [15], Eich-Soellner and Führer [8].

A näıve approach for the numerical solution of a differential equation on a man-
ifold M would be to apply a method to the problem (2.1) without taking care of
the manifold M, and to hope that the solution stays close to the manifold. This
is of course illusory as demonstrated in Figure 2.1 (left picture), where we applied
the explicit Euler method (370 steps) with step size h = 0.1 to the equation (2.2).
A foremost requirement on a numerical integrator is that the numerical ap-

proximation lies exactly on the manifold. But, if the exact flow on the manifold
has certain geometric properties, it is natural to ask for numerical methods that
preserve them. Let us demonstrate this with the following two examples:
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Figure 2.1: Rigid body simulation (I1 = 2, I2 = 1, I3 = 2/3); explicit Euler (left), and
explicit Lie–Euler method (right); initial value y0 = (cos(1.1), 0, sin(1.1))T and step size
h = 0.1.

Example 2.1 (Rigid body). The movement of a rigid body with mass centered
at the origin is described by the Euler equations

 ẏ1
ẏ2
ẏ3


 =


 0 y3/I3 −y2/I2

−y3/I3 0 y1/I1
y2/I2 −y1/I1 0





 y1

y2
y3


 ,(2.2)

where the vector y = (y1, y2, y3)T is the angular momentum in the body frame,
and I1, I2, I3 are the principal moments of inertia.
This problem is of the form

Ẏ = B(Y )Y with skew-symmetric B(Y ).(2.3)

One checks by differentiation that (2.3) is a differential equation on the manifold

M = {Y |Y TY = const}

(orthogonal Lie group, if Y is matrix-valued).
The most simple Lie group method for the problem (2.3) is the so-called Lie–

Euler method
yn+1 = exp

(
hB(yn)

)
yn.

Since the exponential of a skew-symmetric matrix is orthogonal, the numerical
solution stays exactly on the sphere (see the right picture of Figure 2.1).
However, the flow of (2.2) has a further interesting property: it has

H(y) =
1
2

(y21
I1

+
y22
I2

+
y23
I3

)
(2.4)

as conserved quantity. Hence, the solutions of (2.2) lie on the intersection of the
sphere and the ellipsoid given by H(y) = const (closed curves in Figure 2.1). The
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numerical solution of the Lie–Euler method does not mimic this property. From a
geometric integrator of (2.2) we would expect that the numerical solution lies on
a closed curve.

Example 2.2 (Outer solar system). Consider the N -body problem, which
is a Hamiltonian system

ṗ = −∂H

∂q
(p, q), q̇ =

∂H

∂p
(p, q),

H(p, q) =
1
2

N∑
i=1

m−1
i ‖pi‖2 +

∑
i<j

Vij

(
‖qi − qj‖

)
,

where Vij(r) = −Gmimj/r, and the constants G,mi are those used in [11]. This
system has the total energy H(p, q) and also the angular momentum L(p, q) =∑N

i=1 pi×qi as first integrals. Therefore, it is a differential equation on the manifold

M = {(p, q) |H(p, q) = const , L(p, q) = const}.(2.5)

In our experiment of Figure 2.2 we apply the explicit Euler method with step size
h = 10, and we project after every integration step orthogonally onto the manifold
M (see Section 3). Hence the numerical solution exactly conserves the energy
H(p, q) and also the angular momentum L(p, q), but nevertheless it does not show
the expected quasiperiodic motion of the planets. From a geometric integrator of
this problem we expect more that just producing an approximation that lies on
the manifold (2.5).

At this point it is interesting to mention that for constrained Hamiltonian sys-
tems much attention has been paid for qualitatively correct simulations (especially
in molecular dynamics). Let us mention the symmetric methods SHAKE and

J S

U
N

P

explicit Euler, projection onto H and L, h = 10

Figure 2.2: Numerical simulation of the outer solar system.
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RATTLE of Ryckaert, Ciccotti and Berendsen [23] and Andersen [1]. Their sym-
plecticity has been studied by Leimkuhler and Skeel [18], and further geometric
integrators are investigated by Reich [21] and Jay [17].
For differential equations on general manifolds much less work has been inves-

tigated for a qualitatively correct simulation. The next two sections will show
how classical approaches for differential equations on manifolds can be modified
in order to make them to symmetric integrators.

3 Projection methods.

Consider a differential equation ẏ = f(y) on a manifold M. Projection methods
are a standard approach for the numerical solution of differential equations on
manifolds. One step yn �→ yn+1 proceeds as follows:

Algorithm 3.1 (Standard projection method).

• Compute ŷn+1 = Φh(yn), where Φh represents any numerical integrator ap-
plied to ẏ = f(y), e.g., a Runge–Kutta method;

• project ŷn+1 orthogonally onto the manifold M to obtain yn+1 ∈ M.

M
Φh

ŷ1

y0

y1 y2
y3

Figure 3.1: Use of standard projection.

The standard projection method is illustrated in Figure 3.1. Consider again the
rigid body equations of Example 2.1. This time we apply the (symmetric) trape-
zoidal rule (5000 steps with h = 1) and, in order to obtain an approximation that
lies exactly on the sphere, we apply the projection of Algorithm 3.1. The rather
disappointing result is presented in Figure 3.2 (left picture). This is explained by
the fact that the projection destroys the symmetry of the underlying method.
How can we restore the symmetry? A symmetric projection step has been pro-

posed by Ascher and Reich [3] in order to enforce energy conservation in Hamilto-
nian systems. The following algorithm is introduced and discussed in Hairer [12].

Figure 3.2: Rigid body simulation with projection methods; standard projection (left),
and symmetric projection (right).



GEOMETRIC INTEGRATION ON MANIFOLDS 1003

The idea is to perturb the vector yn before applying a symmetric one-step method,
such that the final projection is of the same size as the perturbation.

Algorithm 3.2 (Symmetric projection method).

• ŷn = yn +GT (yn)µ where g(yn) = 0;
• ŷn+1 = Φh(ŷn) (symmetric one-step method for ẏ = f(y));
• yn+1 = ŷn+1 +GT (yn+1)µ with µ such that g(yn+1) = 0.

Here, G(y) = g′(y) denotes the Jacobian of g(y), if the manifold is given by M =
{y | g(y) = 0}. It is important to take the same vector µ in the perturbation and
in the projection.

M

y0
y3

Figure 3.3: Use of symmetric projection.

In the numerical experiment of Figure 3.2 we replace the standard projection
with the symmetric projection of Algorithm 3.2. The numerical solution appar-
ently lies on a closed curve close to the exact solution (right picture of Figure 3.2).
This new algorithm is therefore a geometric integrator for the rigid body equations,
considered as a differential equation on the sphere. Further numerical experiments
(not presented here) demonstrate that the symmetric projection recovers in many
situations the correct long-time behaviour.

4 Methods based on local coordinates.

Besides projection methods, the use of local coordinate transformations is a
further well-established approach for solving differential equations on manifolds.
Let us shortly outline the main idea. Assume that

ψ : U → R
n, ψ(U) ⊂ M

is a local parametrization of the manifold M (close to yn = ψ(zn)). The change
of coordinates y = ψ(z) then transforms the differential equation ẏ = f(y) into

ψ′(z)ż = f
(
ψ(z)

)
.(4.1)

This looks like an overdetermined system of differential equations, because the
dimension of z is equal to that of M, which is usually smaller than that of y
and f(y). However, f(y) ∈ TyM by assumption, so that (4.1) actually becomes
equivalent to a system

ż = F (z), z(tn) = zn.(4.2)

The idea is to compute one step of a numerical method applied to (4.2), and to
map the result via the transformation ψ back to the manifold. One step yn �→ yn+1

of the resulting algorithm is defined as follows:
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Algorithm 4.1 (Local coordinates approach).

• Choose a local parametrization and compute zn from yn = ψ(zn);
• compute ẑn+1 = Φh(zn), the result of the method Φh applied to (4.2);
• define the numerical solution by yn+1 = ψ(ẑn+1).

It is important to remark that the parametrization y = ψ(z) can be changed in
every step (see Figure 4.1).

There are many possible choices for local parametrizations. We just mention a
few of them, which are rather general. For the first two choices we assume that
the manifold is given by M = {y | g(y) = 0}.

• Generalized coordinate partitioning (Wehage and Haug [25]): based on a QR
decomposition of the matrix g′(y), one selects for z a suitable subset of the
components of y.

• Tangent space parametrization (Potra and
Rheinboldt [20]): we split

y − y0 = Q0z︸︷︷︸
Ty0M

+ g′(y0)Tu︸ ︷︷ ︸
(Ty0M)⊥

,

where u = u(z) is such that g(y) = 0.
This defines y = ψ(z) = ψy0(z).

y0

y

Q0z

g′(y0)Tu

• Exponential map exp : g → G for differential equations on Lie groups G
(Munthe-Kaas [19]). The parameter space is the corresponding Lie algebra
g.

• Cayley transform for quadratic Lie groups (Diele, Lopez and Peluso [7])

Y = ψ(Z) = (I − Z)−1(I + Z).

y0

y1
y2 y3

y4

Figure 4.1: Use of standard tangent space parametrization.

For an illustration we use again the rigid body equations of Example 2.1. But,
in order to avoid symmetries in the manifold, we consider this time the differential
equation (2.2) as a problem on the manifold

M =
{
y

∣∣∣ y21
I1

+
y22
I2

+
y23
I3

= const
}
,

and we do not explicitly use the fact that the solution lies on the sphere. Using the
symmetric trapezoidal rule and the above described tangent space parametrization
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Figure 4.2: Rigid body simulation with methods based on local coordinates; tangent
space at initial value (left), and tangent space at the midpoint (right).

(see Figure 4.1), the local coordinates approach of Algorithm 4.1 produces the
result shown in the left picture of Figure 4.2. As expected, the solution lies on the
ellipsoid, but there it does not show the correct qualitative behaviour.
We now explain how this approach can be symmetrized. We consider the tangent

space parametrization only (see Figure 4.3), but an extension to other parametriza-
tions such as the exponential map or the Cayley transform for Lie group methods,
is straight-forward.

Algorithm 4.2 (Symmetric use of local coordinates).

• Consider a local parametrization depending on ζ and compute zn from yn =
ψζ(zn);

• compute ẑn+1 = Φh(zn), the result of the method Φh applied to (4.2);
• define the numerical solution by yn+1 = ψζ(ẑn+1);
• determine implicitly ζ ∈ M such that ζ = (zn + ẑn+1)/2.

y0
z0

ζ

ẑ1

y1

z1

ẑ2

y2

y3

Figure 4.3: Use of symmetric tangent space parametrization.

Using Algorithm 4.2 we get a qualitatively correct result as shown in the right
picture of Figure 4.2. There is a close connection of Algorithm 4.2 with the one
proposed by Zanna, Engø and Munthe-Kaas [26] for Lie group methods. In that
article, the exponential map is centered at the geodesic midpoint of yn and yn+1.
We suggest to consider the midpoint in the parameter space.
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