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Abstract.

Projection methods are a standard approach for the numerical solution of differential
equations on manifolds. It is known that geometric properties (such as symplecticity or
reversibility) are usually destroyed by such a discretization, even when the basic method
is symplectic or symmetric. In this article, we introduce a new kind of projection
methods, which allows us to recover the time-reversibility, an important property for
long-time integrations.
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1 Differential equations on manifolds.

We consider the initial value problem

y′ = f(y), y(0) = y0,(1.1)

and we assume the existence of an invariant manifold

M = {y ∈ Rn ; g(y) = 0}(1.2)

for its flow, i.e., g′(y)f(y) = 0 for y ∈ M. The functions g : Rn → Rm

and f : Rn → Rn are assumed to be sufficiently differentiable. Examples
are differential-algebraic equations which, by repeated differentiation of the con-
straints, are brought to an index 1 system, from which the algebraic variables are
eliminated [10]. Further problems of this type arise in the simulation of mechan-
ical systems whose configuration space is a matrix Lie group (see Example 4.1
below).
Numerical methods for the solution of differential equations on manifolds,

which avoid the use of local coordinates, can be divided into two groups: (i)
methods for which the numerical solution automatically stays on M without
using explicitly the function g(y), and (ii) methods which, after every successful
step, project the numerical approximation onto the manifold M. To the first
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class belong symplectic one-step methods, if g(y) = yT Cy is a quadratic first
integral (i.e., g′(y)f(y) = 0 for all y in a neighborhood of the solution). Also
the methods of Crouch and Grossman [2] and Lie group methods, such as those
proposed by Munthe-Kaas [9], yield numerical solutions which automatically lie
on M. They, however, require a special formulation of the vector field. Pro-
jection methods form the second class of numerical integrators for our problem.
They need that the vector field f(y) is defined in a neighborhood of the manifold
M (what is usually fulfilled in practical applications). The idea of projection
methods is to perform in every step the following two operations ( 1.1, left):

• compute ŷ1 = Φ̂h(y0) by an arbitrary one-step method,
• project the value ŷ1 onto the manifold M to obtain y1 ∈ M.

For y0 ∈ M the distance of ŷ1 to the manifoldM is of the size of the local error,
i.e., O(hp+1). We therefore also have y1−y(h) = O(hp+1), so that the projection
does not deteriorate the convergence order of the method. Projection methods
are thoroughly investigated in the context of differential-algebraic problems (see
e.g., [6, SectionVII.2] and [3, Section 5.3]).
Here, we are mainly interested in problems where the flow on the manifoldM

has additional geometric properties such as symplecticity or reversibility. It is
known that even in the case where the basic method is symplectic or symmet-
ric, a discretization with the above projection algorithm destroys the geometric
properties and makes it inappropriate for long-time integrations. The same is
true for Lie group methods. For this reason, Zanna, Engø, and Munthe-Kaas [11]
introduced selfadjoint Lie group methods which have more favorable properties
for long-time integrations.
In the present article, we introduce a new kind of projection methods. It

retains the time-reversibility of the basic one-step method and allows for an
efficient implementation (Section 2). In Section 3 we present a backward error
analysis for these methods. Their excellent long-time behavior is illustrated in
Section 4 on some typical examples.
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Figure 1.1: Standard projection (left) compared to symmetric projection (right).

2 Symmetric projection methods.

The idea of symmetric projection methods is very simple. We first perturb
the initial value y0 ∈ M out of the manifold, we then apply one step of a
symmetric method, and, finally, we project back to the manifoldM (Figure 1.1,
right picture). Care has to be taken about the choice of the perturbation and
the projection in order to make the procedure symmetric. Using orthogonal
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projections this yields:

ŷ0 = y0 +GT (y0)µ where g(y0) = 0,(2.1)

ŷ1 = Φ̂h(ŷ0), (symmetric one-step method applied to (1.1))(2.2)
y1 = ŷ1 +GT (y1)µ with µ such that g(y1) = 0.(2.3)

Here, G(y) = g′(y) denotes the Jacobian of g(y). It is important to take the
same vector µ in (2.1) and (2.3).
A closely related symmetric projection has recently been proposed by Ascher

and Reich [1]. They consider the implicit midpoint rule and perform a symmetric
projection step in order to enforce conservation of energy.

Existence of numerical solution. The vector µ is implicitly defined by

F (µ) = g
(
Φ̂h

(
y0 +GT (y0)µ

)
+GT (y1)µ

)
= 0,(2.4)

and can be computed by Newton-type iterations. We have

F ′(µ) = 2G(y1)GT (y1) +O(h).

Hence, if G(y) is of maximal rank m, the inverse of F ′(µ) is bounded, and
the Newton–Kantorovich theorem implies existence and local uniqueness of the
solution µ of (2.4). Since F (0) = O(hp+1), this solution is of size µ = O(hp+1).

Symmetry. Assuming the basic method Φ̂h to be symmetric, i.e., Φ̂h = Φ̂−1
−h,

the projection method y1 = Φh(y0) defined by (2.1)–(2.3) is also symmetric.
This follows from the fact that exchanging h ↔ −h, y0 ↔ y1, ŷ0 ↔ ŷ1, and
µ ↔ −µ, yields the same formulas.

Modifications of the algorithm. In some particular situations, it may be
advantageous to modify the projection steps (2.1) and (2.3). Without deteri-
orating the symmetry of the method, it is possible to replace the arguments
of GT (y) in (2.1) and (2.3) with y1/2 = (y0 + y1)/2 (which is natural for the
implicit midpoint rule), or with a suitable internal stage approximation of the
method Φ̂h.
Sometimes, it may also be advantageous to replace the Jacobian G(y) = g′(y)

with some suitable approximation. If the same kind of approximation is used in
(2.1) and (2.3), the symmetry of the method is retained. For example, in multi-
body systems (see Example 4.2 below) the computation of the second derivative
of the position constraint can be avoided, if we first project onto the position
constraint and then onto the velocity constraint. This is a standard approach in
multibody simulation.

Implementation. The symmetric one-step method used in (2.2) is in general
implicit (e.g., trapezoidal rule, implicit midpoint rule, implicit Runge–Kutta
method) and can be written as ŷ1 = ŷ0 + hΨ(h, ŷ0, ŷ1). It is then natural
to solve the nonlinear equation (2.4) in tandem with (2.2). This can be done
by simplified Newton iterations as follows: suppose that y1 and µ are given
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approximations to the solution, then compute ŷ0 and ŷ1 from (2.1) and (2.3),
and let d := ŷ1 − ŷ0 − hΨ(h, ŷ0, ŷ1) be the defect of the one-step method. The
increments for y1 and µ can then be computed from(

I −2GT

G 0

) (
∆y1

∆µ

)
= −

(
d

g(y1)

)
.

Convergence of this iteration is usually as fast as that for the basic method
without projection.
We remark that this implementation can conveniently be combined with the

reversible stepsize strategy of Stoffer (see [5]).

3 Backward error analysis.

If f(y) and g(y) are defined in a neighborhood ofM, we can extend our projec-
tion algorithm to initial values y0 
∈ M by replacing the condition “g(y1) = 0”
with “g(y1) = g(y0)”. This yields a symmetric one-step method y1 = Φh(y0)
which is defined on an open set of Rn, and where Φh(y0) is as smooth as the
functions f(y), g(y), and Φ̂h(y). We are thus in the position where standard
backward error analysis can be applied (see e.g., [4, ChapterV]). This extended
one-step method is consistent with the differential equation

y′ = P (y)f(y), P = I − GT (GGT )−1G,(3.1)

which, on the manifold M, reduces to (1.1) (if g(y) is a first integral of (1.1),
then P (y)f(y) = f(y) for all y ∈ Rn). Hence, its numerical solution is (formally)
equal to yn = ϕ̃nh(y0), where ϕ̃t(y0) is the flow of the modified equation

y′ = f0(y) + h2f2(y) + h4f4(y) + · · ·(3.2)

(with f0(y) = P (y)f(y)), which due to the symmetry of the method is a series
in even powers of h. If the basic method (2.2) is of order p, i.e., Φ̂h(y)−ϕh(y) =
hp+1dp(y) +O(hp+2), where ϕt(y) denotes the flow of (1.1), then, restricted to
the manifold M, the modified equation (3.2) becomes

y′ = f(y) + hpfp(y) + hp+2fp+2(y) + · · ·(3.3)

with fp(y) = P (y)dp(y) for y ∈ M. Hence, fp(y) is just the projected local
error.

Theorem 3.1. The coefficient functions of the modified equation (3.2) satisfy

g′(y)fj(y) = 0 for all y ∈ Rn.(3.4)

Hence, g(y) is a first integral of the modified equation (when truncated at an
arbitrary power of h) and therefore has M as invariant manifold.

Proof. The proof is by induction and follows standard arguments. The
statement (3.4) is obviously true for j = 0. Assume now that (3.4) holds for
j ≤ r, and denote by ϕr,t(y) the flow of (3.2) where the series is truncated
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after the O(hr) term. By definition of fr+2(y) in the modified equation, we
have Φh(y) = ϕr,h(y) + hr+2fr+2(y) + O(hr+3). Since g

(
Φh(y)

)
= g(y) and

g
(
ϕr,h(y)

)
= g(y) for all h and all y ∈ Rn, this implies that

0 = g
(
Φh(y)

)
− g

(
ϕr,h(y)

)
= g′

(
ϕr,h(y)

)
hr+2fr+2(y) +O(hr+3)

= hr+2g′(y)fr+2(y) +O(hr+3).

For h → 0, we thus get (3.4) with j = r + 2.
Theorem 3.2. If (1.1) is ρ-reversible with an orthogonal matrix ρ, i.e.,

f(ρy) = −ρf(y) for y ∈ Rn, and if g(ρy) = σg(y) with some invertible ma-
trix σ and for y ∈ Rn, then it holds that

fj(ρy) = −ρfj(y) for y ∈ Rn and for all j,

and therefore the modified differential equation (3.2) is also ρ-reversible.
Proof. For numerical methods satisfying Φ−h(ρy) = ρΦh(y), their symme-

try is necessary and sufficient for the modified equation being ρ-reversible (see
[4, Theorem V.2.1]). Without having formulated it explicitly, we assume that
Φ̂h satisfies this relation (this is trivially true for all Runge–Kutta methods).
Differentiating g(ρy) = σg(y), we get ρT GT (ρy) = GT (y)σT and, due to the
orthogonality of ρ, we see that (2.1) is equivalent to

ρŷ0 = ρy0 +GT (ρy0)σ−T µ, g(ρy0) = 0.

This, together with a similar relation for (2.3), implies Φ−h(ρy) = ρΦh(y) for
the symmetric projection method.
All results on the long-time behavior of symmetric methods, applied to ρ-

reversible systems in an Euclidean space, remain therefore valid for symmetric
projection methods and ρ-reversible differential equations on manifolds.

4 Numerical illustrations.

Let us illustrate the qualitative performance of symmetric projection methods
at two representative examples.

Example 4.1 (Rigid body). A commonly used test problem for Lie group
methods are the equations of motion of a rigid body

y′
1 = a1y2y3, a1 = (I2 − I3)/(I2I3),

y′
2 = a2y3y1, a2 = (I3 − I1)/(I3I1),(4.1)

y′
3 = a3y1y2, a3 = (I1 − I2)/(I1I2),

where the vector y = (y1, y2, y3)T represents the angular momentum in the body
frame, and I1, I2, I3 are the principal moments of inertia (see [8, Chapter 15] for
a detailed description). This is a differential equation on the manifold defined
by

g(y1, y2, y3) := y2
1 + y2

2 + y2
3 − R2 = 0,(4.2)
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Figure 4.1: Numerical solution of the rigid body equations (4.1) obtained by the trape-
zoidal rule with h = 1 (5000 steps) without projection (upper picture), with standard
projection (lower left), and with symmetric projection (lower right).

where R is the Euclidean norm of the initial vector. It is interesting to note
that the system (4.1) is actually a Hamiltonian system on the sphere (4.2) with
Hamiltonian

H(y1, y2, y3) =
1
2

( y2
1

I1
+

y2
2

I2
+

y2
3

I3

)
.(4.3)

We do not explicitly use this additional invariant in our algorithm, but it is
interesting to study how well it is conserved by the numerical solution. The
exact solution of the problem lies on the intersection of the sphere (4.2) with the
ellipsoid H(y1, y2, y3) = const (see Figure 4.1).
Since (4.2) and (4.3) are both quadratic first integrals of the system (4.1),

it does not make sense to study the performance of symplectic methods (they
exactly conserve both invariants, and a projection onto the manifold is super-
fluous). We therefore consider the trapezoidal rule as the basic method for our
projection algorithm. We take I1 = 2, I2 = 1 and I3 = 2/3, a large stepsize
h = 1, and y0 = (R cos(1.1), 0, R sin(1.1))T as initial value (R = 2.3).
The upper picture of Figure 4.1 shows the numerical solution obtained without

any projections. We see that it is qualitatively correct, but it does not lie
on the sphere. The lower left picture shows the numerical solution obtained
with standard projection (Figure 1.1, left). Now, the solution is forced to lie on
the correct manifold, but the qualitative behavior becomes completely wrong
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(because standard projection destroys the symmetry of the method). The lower
right picture of Figure 4.1 shows the numerical solution of method (2.1)–(2.3).
This time, the numerical solution lies on the manifold, and it shows the correct
qualitative behavior, as expected from the backward error analysis.

100 200 300
6.85

6.86

6.87

symmetric projection

standard projectionnumerical Hamiltonian
(rigid body)

Figure 4.2: Numerical Hamiltonian for the rigid body simulation with h = 0.5.

In Figure 4.2 we plot the value of the Hamiltonian (4.3) along the numerical
solution. This should be constant equal to the value H(y0) ≈ 6.8466 (horizontal
axis in Figure 4.2). Standard projection shows a linear drift from the exact value,
whereas symmetric projection gives a numerical Hamiltonian that stays close to
the correct value for all times. The same correct behavior can be observed for
symmetric methods without any projection.
Let us remark that projection as postprocessing is also possible. This means

that after every step the solution is projected onto the manifold, but the inte-
gration is continued with the unprojected value. In the previous example this
gives also excellent results, but it is less satisfactory, because using the vector
field f(y) outside the manifold may be dangerous. This is in particular the case
when g(y) is not a first integral.
An important class of problems are conservative multibody systems with holo-

nomic constraints.

q′ = Hp(p, q),(4.4)
p′ = −Hq(p, q)− GT (q)λ,(4.5)
0 = g(q).(4.6)

Here, H : Rn ×Rn → R is the Hamiltonian function, Hp and Hq denote partial
derivatives, g : Rn → Rm are the constraints, and G(q) = gq(q). Typically,
H(p, q) = 1

2pT M(q)−1p+ U(q) is the sum of the kinetic and potential energies.
Differentiating the constraint (4.6) twice, we get

0 = G(q)Hp(p, q),(4.7)

0 =
d

dq

(
G(q)Hp(p, q)

)
Hp(p, q)− G(q)Hpp(p, q)

(
Hq(p, q) +GT (q)λ

)
,(4.8)

and we see that λ can be expressed in terms of p and q, if G(q)Hpp(p, q)GT (q) is
invertible. Inserting the so-obtained λ = λ(p, q) into (4.5), we get a differential
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equation for (q, p), whose solution stays on the manifold

M = {(q, p) ; g(q) = 0, G(q)Hp(p, q) = 0}.(4.9)

There exist numerical methods that produce qualitatively correct solutions, e.g.,
the RATTLE algorithm which is much used in molecular dynamics, and the
Lobatto IIIA–IIIB pair [7]. However, it is known that the numerical treatment of
the index 3 problem (4.4)–(4.6) is much more difficult than that of the underlying
ordinary differential equation for q and p. We show, at the example of the
simple pendulum, that the symmetric projection method (2.1)–(2.3) also gives
qualitatively correct numerical approximations when integrating over long times.

200 300

−.02

−.01

.00

.01
symmetric projection

standard projection

numerical Hamiltonian
(pendulum)

Figure 4.3: Numerical Hamiltonian for the pendulum problem with stepsize h = 0.1
(midpoint rule).

Example 4.2 (Pendulum). We consider the problem (4.4)–(4.6) with Hamil-
tonian H(p, q) = (p2

1 + p2
2)/2 + q2 and constraint g(q1, q2) = q2

1 + q2
2 − 1. This

yields the equations for the simple pendulum, expressed in Cartesian coordi-
nates. This time we apply the implicit midpoint rule (as representative of the
Gauss methods) with stepsize h = 0.1 and initial values q1(0) = 1, q2(0) = 0,
p1(0) = 0, and p2(0) = 0. Applying this method to the underlying differen-
tial equation for (q, p), we observe that the quadratic constraint g(q1, q2) = 0 is
not exactly conserved. This is not a contradiction to the symplecticity of the
method, because g(q1, q2) is not a first integral. Hence, the use of projection
methods makes sense.
The numerical results are similar to those of the preceding example. Fig-

ure 4.3 shows the numerical Hamiltonian for both types of projection algorithms
(see [6, SectionVII.2] for a discussion of projections in multibody simulations).
Again, we observe that symmetric projection yields a correct qualitative behav-
ior, whereas standard projection cannot keep the energy close to the correct
value when integrated over long times.
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